Combination of Exercise and Vegetarian Diet: Relationship with High Density-Lipoprotein Cholesterol in Taiwanese Adults Based on MTHFR rs1801133 Polymorphism
Abstract
:1. Introduction
2. Methods
2.1. Study Participants
2.2. Variant Selection/Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mann, S.; Beedie, C.; Jimenez, A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: Review, synthesis and recommendations. Sports Med. 2014, 44, 211–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusuf, S.; Hawken, S.; Ounpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet 2004, 364, 937–952. [Google Scholar] [CrossRef]
- März, W.; Kleber, M.E.; Scharnagl, H.; Speer, T.; Zewinger, S.; Ritsch, A.; Parhofer, K.G.; von Eckardstein, A.; Landmesser, U.; Laufs, U. HDL cholesterol: Reappraisal of its clinical relevance. Clin. Res. Cardiol. 2017, 106, 663–675. [Google Scholar] [CrossRef] [Green Version]
- Parhofer, K.G. Interaction between glucose and lipid metabolism: More than diabetic dyslipidemia. Diabetes Metab. J. 2015, 39, 353–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shor, R.; Wainstein, J.; Oz, D.; Boaz, M.; Matas, Z.; Fux, A.; Halabe, A. Low HDL levels and the risk of death, sepsis and malignancy. Clin. Res. Cardiol. 2008, 97, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Yeh, M.-C.; Glick-Bauer, M. Chapter 8—Vegetarian diets and disease outcomes. In Fruits, Vegetables, and Herbs; Watson, R.R., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 149–164. [Google Scholar]
- Picasso, M.C.; Lo-Tayraco, J.A.; Ramos-Villanueva, J.M.; Pasupuleti, V.; Hernandez, A.V. Effect of vegetarian diets on the presentation of metabolic syndrome or its components: A systematic review and meta-analysis. Clin. Nutr. 2019, 38, 1117–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.-W.; Jian, Z.-H.; Chang, H.-C.; Nfor, O.N.; Ko, P.-C.; Lung, C.-C.; Lin, L.-Y.; Ho, C.-C.; Chiang, Y.-C.; Liaw, Y.-P. Vegan diet and blood lipid profiles: A cross-sectional study of pre and postmenopausal women. BMC Women’s Health 2014, 14, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Zheng, J.; Yang, B.; Jiang, J.; Fu, Y.; Li, D. Effects of vegetarian diets on blood lipids: A systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 2015, 4, e002408. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, Y.; Levin, S.M.; Barnard, N.D. Association between plant-based diets and plasma lipids: A systematic review and meta-analysis. Nutr. Rev. 2017, 75, 683–698. [Google Scholar] [CrossRef]
- Sambol, S.Z.; Glišić, M.O.; Bašić, N.M.; Dvornik, Š; Grahovac, B.; Mihić, S.S.; Štimac, D. Influence of Dietary Pattern and Methylentetrahydrofolate Reductase C677t Polymorphism on the Plasma Homocysteine Level Among Healthy Vegetarians and Omnivores. Hrana Zdr. Boles. Znan. Stručni Časopis Za Nutr. Dijetetiku 2017, 6, 54–62. [Google Scholar]
- Kelley, G.A.; Kelley, K.S. Effects of diet, aerobic exercise, or both on non-HDL-C in adults: A meta-analysis of randomized controlled trials. Cholesterol 2012, 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drygas, W.; Kostka, T.; Jegier, A.; Kuski, H. Long-term effects of different physical activity levels on coronary heart disease risk factors in middle-aged men. Int. J. Sports Med. 2000, 21, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Larrydurstine, J.; Haskell, W.L. Effects of exercise training on plasma lipids and lipoproteins. Exerc. Sport Sci. Rev. 1994, 22, 477–522. [Google Scholar] [CrossRef]
- MayoClinic.Com. HDL Cholesterol: How to Boost Your ‘Good’ Cholesterol. Available online: https://www.mayoclinic.org/diseases-conditions/high-blood-cholesterol/in-depth/hdl-cholesterol/art-20046388?pg=2 (accessed on 24 October 2018).
- Wang, Y.; Xu, D. Effects of aerobic exercise on lipids and lipoproteins. Lipids Health Dis. 2017, 16, 132. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.T. Interactive effects of exercise, alcohol, and vegetarian diet on coronary artery disease risk factors in 9242 runners: The National Runners’ Health Study. Am. J. Clin. Nutr. 1997, 66, 1197–1206. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Lu, Z.; Muhammad, I.; Chen, Y.; Chen, Q.; Zhang, J.; Song, Y. Associations of the MTHFR rs1801133 polymorphism with coronary artery disease and lipid levels: A systematic review and updated meta-analysis. Lipids Health Dis. 2018, 17, 191. [Google Scholar] [CrossRef] [Green Version]
- Christensen, K.E.; Mikael, L.G.; Leung, K.-Y.; Lévesque, N.; Deng, L.; Wu, Q.; Malysheva, O.V.; Best, A.; Caudill, M.A.; Greene, N.D. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice. Am. J. Clin. Nutr. 2015, 101, 646–658. [Google Scholar] [CrossRef] [Green Version]
- Kukrele, P.; Sharma, R. High homocysteine level-An important risk factor for coronary artery disease in vegetarians. J. Assoc. Physicians India 2016, 64, 75. [Google Scholar]
- Frosst, P.; Blom, H.; Milos, R.; Goyette, P.; Sheppard, C.A.; Matthews, R.; Boers, G.; Den Heijer, M.; Kluijtmans, L.; Van Den Heuve, L. A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 1995, 10, 111. [Google Scholar] [CrossRef]
- Nie, Y.; Gu, H.; Gong, J.; Wang, J.; Gong, D.; Cong, X.; Chen, X.; Hu, S. Methylenetetrahydrofolate reductase C677T polymorphism and congenital heart disease: A meta-analysis. Clin. Chem. Lab. Med. (Cclm) 2011, 49, 2101–2108. [Google Scholar] [CrossRef]
- Tanaka, T.; Scheet, P.; Giusti, B.; Bandinelli, S.; Piras, M.G.; Usala, G.; Lai, S.; Mulas, A.; Corsi, A.M.; Vestrini, A. Genome-wide association study of vitamin B6, vitamin B12, folate, and homocysteine blood concentrations. Am. J. Hum. Genet. 2009, 84, 477–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhi, X.; Yang, B.; Fan, S.; Wang, Y.; Wei, J.; Zheng, Q.; Sun, G. Gender-specific interactions of MTHFR C677T and MTRR A66G polymorphisms with overweight/obesity on serum lipid levels in a Chinese Han population. Lipids Health Dis. 2016, 15, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iemitsu, M.; Murakami, H.; Sanada, K.; Yamamoto, K.; Kawano, H.; Gando, Y.; Miyachi, M. Lack of carotid stiffening associated with MTHFR 677TT genotype in cardiorespiratory fit adults. Physiol. Genom. 2010, 42, 259–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.-L.; Lee, K.-J.; Nfor, O.N.; Chen, P.-H.; Lu, W.-Y.; Ho, C.C.; Lung, C.-C.; Chou, M.-C.; Liaw, Y.-P. Vegetarian Diets along with Regular Exercise: Impact on High-Density Lipoprotein Cholesterol Levels among Taiwanese Adults. Medicina 2020, 56, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tantoh, D.M.; Lee, K.-J.; Nfor, O.N.; Liaw, Y.-C.; Lin, C.; Chu, H.-W.; Chen, P.-H.; Hsu, S.-Y.; Liu, W.-H.; Ho, C.-C. Methylation at cg05575921 of a smoking-related gene (AHRR) in non-smoking Taiwanese adults residing in areas with different PM 2.5 concentrations. Clin. Epigenetics 2019, 11, 69. [Google Scholar] [CrossRef]
- Clark, J.E. Diet, exercise or diet with exercise: Comparing the effectiveness of treatment options for weight-loss and changes in fitness for adults (18–65 years old) who are overfat, or obese; systematic review and meta-analysis. J. Diabetes Metab. Disord. 2015, 14, 31. [Google Scholar] [CrossRef] [Green Version]
- Borai, I.H.; Soliman, A.F.; Ahmed, H.M.; Ahmed, G.F.; Kassim, S.K. Association of MTHFR C677T and ABCA1 G656A polymorphisms with obesity among Egyptian children. Gene Rep. 2018, 11, 143–149. [Google Scholar] [CrossRef]
- Son, M.; Seo, J.; Yang, S. Association between dyslipidemia and serum uric acid levels in Korean adults: Korea National Health and Nutrition Examination Survey 2016–2017. PLoS ONE 2020, 15, e0228684. [Google Scholar] [CrossRef]
- Ali, N.; Rahman, S.; Islam, S.; Haque, T.; Molla, N.H.; Sumon, A.H.; Kathak, R.R.; Asaduzzaman, M.; Islam, F.; Mohanto, N.C. The relationship between serum uric acid and lipid profile in Bangladeshi adults. BMC Cardiovasc. Disord. 2019, 19, 42. [Google Scholar] [CrossRef] [Green Version]
Variable | rs1801133-GG (n = 5016) | rs1801133-GA + AA (n = 4239) | p-Value | ||
---|---|---|---|---|---|
N | Mean HDL-C (SE) | N | Mean HDL-C (SE) | ||
Diet type | 0.9828 | ||||
Non-vegetarian | 4542 | 54.056 (0.198) | 3842 | 54.010 (0.214) | |
Former vegetarian | 232 | 54.297 (0.953) | 196 | 53.510 (0.960) | |
Vegetarian | 242 | 49.591 (0.707) | 201 | 50.010 (0.867) | |
Exercise | 0.8657 | ||||
No | 2909 | 53.146 (0.244) | 2451 | 52.993 (0.262) | |
Yes | 2107 | 54.826 (0.294) | 1788 | 54.900 (0.320) | |
Sex | 0.5662 | ||||
Women | 2690 | 58.455 (0.255) | 2248 | 58.363 (0.280) | |
Men | 2326 | 48.529 (0.234) | 1991 | 48.642 (0.249) | |
Age (years) | 0.9905 | ||||
30–40 | 1313 | 53.998 (0.364) | 1102 | 53.786 (0.394) | |
41–50 | 1407 | 53.684 (0.352) | 1182 | 53.483 (0.387) | |
51–60 | 1437 | 53.446 (0.353) | 1224 | 54.227 (0.377) | |
61–70 | 859 | 54.582 (0.462) | 731 | 53.603 (0.498) | |
TG (mg/dl) | 0.0046 | ||||
<150 | 3896 | 56.711 (0.207) | 3395 | 56.300 (0.223) | |
≥150 | 1120 | 43.907 (0.273) | 844 | 43.732 (0.297) | |
LDL-C (mg/dl) | 0.6191 | ||||
<130 | 3069 | 54.185 (0.257) | 2615 | 54.001 (0.270) | |
≥130 | 1947 | 53.327 (0.265) | 1624 | 53.470 (0.304) | |
WHR | 0.0770 | ||||
Men < 0.9; women < 0.85 (ref) | 2757 | 56.636 (0.259) | 2252 | 56.206 (0.288) | |
Men ≥ 0.9; women ≥ 0.85 | 2259 | 50.455 (0.255) | 1987 | 51.067 (0.273) | |
Body mass index, kg/m2 | 0.0233 | ||||
18.5–23.9 (ref) | 2489 | 58.039 (0.265) | 1969 | 57.837 (0.298) | |
<18.5 | 128 | 66.828 (1.278) | 108 | 65.204 (1.391) | |
24–26.9 | 1443 | 50.338 (0.309) | 1298 | 51.276 (0.330) | |
≥27 | 956 | 46.517 (0.319) | 864 | 46.953 (0.360) | |
Body fat (%) | 0.1882 | ||||
Men < 25; women < 30 (ref) | 2711 | 55.969 (0.268) | 2233 | 55.456 (0.288) | |
Men ≥ 25; women ≥ 30 | 2305 | 51.363 (0.251) | 2006 | 51.951 (0.280) | |
Smoking | 0.3176 | ||||
Nonsmokers | 3893 | 55.378 (0.213) | 3281 | 55.468 (0.233) | |
Former smokers | 568 | 49.889 (0.513) | 516 | 48.953 (0.476) | |
Current smokers | 555 | 47.205 (0.500) | 442 | 47.048 (0.549) | |
Alcohol intake | 0.2371 | ||||
nondrinkers | 4495 | 54.211 (0.197) | 3820 | 54.199 (0.216) | |
Former drinkers | 160 | 45.531 (0.821) | 110 | 48.036 (1.005) | |
Current drinkers | 361 | 53.066 (0.755) | 309 | 50.883 (0.658) | |
Coffee drinking | 0.4381 | ||||
No | 3333 | 53.361 (0.227) | 2849 | 53.448 (0.247) | |
Yes | 1683 | 54.825 (0.332) | 1390 | 54.514 (0.356) | |
Uric acid, mg/dl | 0.0334 | ||||
men < 7, women < 6 (ref) | 3851 | 55.528 (0.217) | 3174 | 55.665 (0.236) | |
men ≥ 7, women ≥ 6 | 1165 | 48.311 (0.328) | 1065 | 48.230 (0.350) |
Variables | rs1801133-GG | rs1801133-GA + AA | ||
---|---|---|---|---|
β | p-Value | β | p-Value | |
Diet type (ref: Non-vegetarian) | ||||
Former vegetarian | −0.1917 | 0.7918 | −0.3995 | 0.6222 |
Vegetarian | −6.2793 | <0.0001 | −4.6359 | <0.0001 |
p-trend | <0.0001 | <0.0001 | ||
Exercise (ref: No) | ||||
Yes | 1.0508 | 0.0015 | 1.4011 | 0.0001 |
Sex (ref: women) | ||||
Men | −7.9509 | <0.0001 | −7.2069 | <0.0001 |
Age (ref: 30–40) | ||||
41–50 | 0.5879 | 0.1630 | 0.5495 | 0.2453 |
51–60 | 1.0893 | 0.0131 | 1.2023 | 0.0149 |
61–70 | 1.7187 | 0.0009 | 1.0543 | 0.0673 |
TG (ref: <150) | ||||
≥150 | −8.2129 | <0.0001 | −8.1116 | <0.0001 |
LDL-C (ref: <130) | ||||
≥130 | 1.1095 | 0.0005 | 1.4316 | 0.0001 |
WHR (ref: men < 0.9; women < 0.85) | ||||
Men ≥ 0.9; women ≥ 0.85 | −2.6110 | <0.0001 | −2.4022 | <0.0001 |
Body mass index, kg/m2 (ref: 18.5–23.9) | ||||
<18.5 | 6.2828 | <0.0001 | 5.7646 | <0.0001 |
24–26.9 | −3.6743 | <0.0001 | −3.1293 | <0.0001 |
≥27 | −4.5426 | <0.0001 | −5.0012 | <0.0001 |
Body fat (ref: Men < 25; women < 30) | ||||
Men ≥ 25; women ≥ 30 | −1.9773 | <0.0001 | −0.6996 | 0.1201 |
Smoking (ref: Nonsmokers) | ||||
Former smokers | −0.0117 | 0.9824 | −0.9565 | 0.0988 |
Current smokers | −2.7451 | <0.0001 | −1.9437 | 0.0019 |
Alcohol intake (ref: Nondrinkers) | ||||
Former drinkers | −1.0938 | 0.2265 | −0.4513 | 0.6793 |
Current drinkers | 6.0734 | <0.0001 | 3.5075 | <0.0001 |
Coffee drinking (ref: No) | ||||
Yes | 0.7415 | 0.0230 | 0.5075 | 0.1650 |
Uric acid, mg/dl (ref: men < 7, women <6) | ||||
men ≥ 7, women ≥ 6 | −1.5541 | 0.0001 | −2.1708 | <0.0001 |
Variables | rs1801133-GG | rs1801133-GA + AA | ||||||
---|---|---|---|---|---|---|---|---|
No Exercise | Exercise | No Exercise | Exercise | |||||
β | p-Value | β | p-Value | β | p-Value | β | p-Value | |
Diet type (ref: Non-vegetarian) | ||||||||
Former vegetarian | 0.8314 | 0.3476 | −2.0019 | 0.1127 | 0.0519 | 0.9581 | −1.3033 | 0.3485 |
Vegetarian | −5.1297 | <0.0001 | −7.9361 | <0.0001 | −4.6986 | <0.0001 | −4.5577 | 0.0008 |
p-trend | <0.0001 | <0.0001 | <0.0001 | 0.0007 | ||||
Sex (ref: women) | ||||||||
Men | −8.1078 | <0.0001 | −7.7185 | <0.0001 | −6.6446 | <0.0001 | −8.0869 | <0.0001 |
Age (ref: 30–40) | ||||||||
41–50 | 0.4769 | 0.3248 | 0.7870 | 0.3552 | 1.0190 | 0.0585 | −0.8985 | 0.3522 |
51–60 | 1.1302 | 0.0369 | 0.9529 | 0.2370 | 1.9337 | 0.0015 | −0.1497 | 0.8691 |
61–70 | 1.5450 | 0.0371 | 1.6555 | 0.0523 | 0.3052 | 0.6980 | 0.6124 | 0.5294 |
TG (ref: <150) | ||||||||
≥150 | −7.7074 | <0.0001 | −8.9542 | <0.0001 | −7.7816 | <0.0001 | −8.6927 | <0.0001 |
LDL-C (ref: <130) | ||||||||
≥130 | 1.0732 | 0.0102 | 1.1117 | 0.0276 | 2.1314 | <0.0001 | 0.4474 | 0.4294 |
WHR (ref: Men < 0.9; women < 0.85) | ||||||||
Men ≥ 0.9; women ≥ 0.85 | −2.6070 | <0.0001 | −2.6692 | <0.0001 | −2.5188 | <0.0001 | −2.4311 | 0.0001 |
Body mass index, kg/m2 (ref: 18.5–23.9) | ||||||||
BMI < 18.5 | 6.1337 | <0.0001 | 6.6755 | 0.0002 | 4.6449 | 0.0002 | 9.2076 | <0.0001 |
24–26.9 | −3.6149 | <0.0001 | −3.7077 | <0.0001 | −3.2793 | <0.0001 | −2.9512 | <0.0001 |
≥27 | −4.0139 | <0.0001 | −5.3350 | <0.0001 | −5.3062 | <0.0001 | −4.5617 | <0.0001 |
Body fat (ref: Men < 25; women < 30) | ||||||||
Men ≥ 25; women ≥ 30 | −2.2468 | <0.0001 | −1.6160 | 0.0119 | −0.7847 | 0.1727 | −0.6886 | 0.3386 |
Smoking (ref: Nonsmokers) | ||||||||
Former smokers | −0.1570 | 0.8269 | 0.1372 | 0.8636 | −1.0469 | 0.1701 | −0.5860 | 0.5120 |
Current smokers | −2.8800 | <0.0001 | −2.5990 | 0.0096 | −2.6090 | 0.0004 | −1.0954 | 0.3494 |
Alcohol intake (ref: Nondrinkers) | ||||||||
Former drinkers | −0.7260 | 0.5865 | −1.4799 | 0.2390 | −1.3610 | 0.3676 | 0.6249 | 0.6957 |
Current drinkers | 6.5085 | <0.0001 | 5.3821 | <0.0001 | 4.8254 | <0.0001 | 1.8587 | 0.0967 |
Coffee drinking (ref: No) | ||||||||
Yes | 0.9987 | 0.0167 | 0.3849 | 0.4616 | 0.5014 | 0.2790 | 0.5678 | 0.3391 |
Uric acid, mg/dl (ref: men < 7, women < 6) | ||||||||
men ≥ 7, women ≥ 6 | −1.3670 | 0.0065 | −1.7314 | 0.0044 | −1.8402 | 0.0006 | −2.7109 | 0.0001 |
Variables | rs1801133-GG | rs1801133-GA + AA | ||
---|---|---|---|---|
β | p-Value | β | p-Value | |
Exercise and Diet type (ref: no exercise/non-vegetarian) | ||||
No exercise/Former vegetarian | 0.8068 | 0.3724 | 0.0541 | 0.9577 |
No exercise/Vegetarian | −5.1514 | <0.0001 | −4.8426 | <0.0001 |
Regular exercise/non-vegetarian | 1.3135 | 0.0001 | 1.4301 | 0.0002 |
Regular exercise/Former vegetarian | −0.6585 | 0.5862 | 0.2568 | 0.8464 |
Regular exercise/Vegetarian | −6.5552 | <0.0001 | −2.8668 | 0.0273 |
Sex (ref: women) | ||||
Men | −7.9224 | <0.0001 | −7.2075 | <0.0001 |
Age (ref: 30–40) | ||||
41–50 | 0.6059 | 0.1504 | 0.5663 | 0.2317 |
51–60 | 1.0645 | 0.0153 | 1.2121 | 0.0142 |
61–70 | 1.6897 | 0.0011 | 1.0612 | 0.0656 |
TG (ref: <150) | ||||
≥150 | −8.2103 | <0.0001 | −8.1141 | <0.0001 |
LDL-C (ref: <130) | ||||
≥130 | 1.1034 | 0.0006 | 1.4310 | 0.0001 |
WHR (ref: Men < 0.9; women < 0.85) | ||||
Men ≥ 0.9; women ≥ 0.85 | −2.6201 | <0.0001 | −2.4058 | <0.0001 |
Body mass index, kg/m2 (ref: 18.5–23.9) | ||||
<18.5 | 6.3076 | <0.0001 | 5.7872 | <0.0001 |
24–26.9 | −3.6710 | <0.0001 | −3.1217 | <0.0001 |
≥27 | −4.5409 | <0.0001 | −4.9955 | <0.0001 |
Body fat (ref: Men < 25; women < 30) | ||||
Men ≥ 25; women ≥ 30 | −1.9766 | <0.0001 | −0.6998 | 0.1200 |
Smoking (ref: Nonsmokers) | ||||
Former smokers | −0.0321 | 0.9518 | −0.9705 | 0.0942 |
Current smokers | −2.7519 | <0.0001 | −1.9387 | 0.0020 |
Alcohol intake (ref: Nondrinkers) | ||||
Former drinkers | −1.1352 | 0.2093 | −0.4382 | 0.6882 |
Current drinkers | 6.0677 | <0.0001 | 3.5075 | <0.0001 |
Coffee drinking (ref: No) | ||||
Yes | 0.7495 | 0.0215 | 0.5110 | 0.1625 |
Uric acid, mg/dl (ref: men < 7, women < 6) | ||||
men ≥ 7, women ≥ 6 | −1.5389 | 0.0001 | −2.1757 | <0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, S.-L.; Nfor, O.N.; Ho, C.-C.; Lee, K.-J.; Lu, W.-Y.; Lung, C.-C.; Tantoh, D.M.; Hsu, S.-Y.; Chou, M.-C.; Liaw, Y.-P. Combination of Exercise and Vegetarian Diet: Relationship with High Density-Lipoprotein Cholesterol in Taiwanese Adults Based on MTHFR rs1801133 Polymorphism. Nutrients 2020, 12, 1564. https://doi.org/10.3390/nu12061564
Chang S-L, Nfor ON, Ho C-C, Lee K-J, Lu W-Y, Lung C-C, Tantoh DM, Hsu S-Y, Chou M-C, Liaw Y-P. Combination of Exercise and Vegetarian Diet: Relationship with High Density-Lipoprotein Cholesterol in Taiwanese Adults Based on MTHFR rs1801133 Polymorphism. Nutrients. 2020; 12(6):1564. https://doi.org/10.3390/nu12061564
Chicago/Turabian StyleChang, Shu-Lin, Oswald Ndi Nfor, Chien-Chang Ho, Kuan-Jung Lee, Wen-Yu Lu, Chia-Chi Lung, Disline Manli Tantoh, Shu-Yi Hsu, Ming-Chih Chou, and Yung-Po Liaw. 2020. "Combination of Exercise and Vegetarian Diet: Relationship with High Density-Lipoprotein Cholesterol in Taiwanese Adults Based on MTHFR rs1801133 Polymorphism" Nutrients 12, no. 6: 1564. https://doi.org/10.3390/nu12061564
APA StyleChang, S. -L., Nfor, O. N., Ho, C. -C., Lee, K. -J., Lu, W. -Y., Lung, C. -C., Tantoh, D. M., Hsu, S. -Y., Chou, M. -C., & Liaw, Y. -P. (2020). Combination of Exercise and Vegetarian Diet: Relationship with High Density-Lipoprotein Cholesterol in Taiwanese Adults Based on MTHFR rs1801133 Polymorphism. Nutrients, 12(6), 1564. https://doi.org/10.3390/nu12061564