Effects of Porphyra tenera Supplementation on the Immune System: A Randomized, Double-Blind, and Placebo-Controlled Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Supplements
2.2. Subjects
- (1)
- Males and females >50 years of age at the time of the screening test;
- (2)
- Written consent to participate provided prior to the start of the study;
- (3)
- A peripheral white blood cell (WBC) count > 3 × 103 and < 8 × 103 cells/μL as measured in the screening test.
- (1)
- Vaccination against influenza within 3 months prior to the screening test;
- (2)
- Body mass index (BMI) < 18.5 kg/m2 or > 35 kg/m2 at the time of the screening test;
- (3)
- Presence of a clinically acute disease or chronic cardiovascular, endocrine, immune, respiratory, hepatobiliary, kidney, urinary, neuropsychiatric, musculoskeletal, inflammatory, hematological, or gastrointestinal disease;
- (4)
- Supplementation with medicines or health functional foods associated with immunity enhancement within 1 month prior to the screening test;
- (5)
- Administration of antipsychotics within 3 months prior to the screening test;
- (6)
- Suspected alcoholism or drug abuse;
- (7)
- Participation in other human tests within 3 months prior to the screening test;
- (8)
- The following diagnostic and medical test results:
- ☞ aspartate transaminase (AST) or alanine transaminase (ALT) > 3x the normal upper limit.
- ☞ Serum creatinine >2.0 mg/dL.
- (9)
- Pregnant or nursing;
- (10)
- Those who were fertile and not taking contraceptives;
- (11)
- Deemed inappropriate to participate in the research for other reasons, including the results of diagnostic and medical examinations.
2.3. Study Design
2.4. Randomization
2.5. Outcome Measurements
2.5.1. Clinical and Biochemical Analyses
2.5.2. Primary Outcomes
2.5.3. Secondary Outcomes
2.6. Safety Outcome Measurements
2.7. Evaluation of Diet and Physical Activity
2.8. Statistical Analysis
2.9. Sample Size
3. Results
3.1. Participant Demographic Characteristics
3.2. Dietary Intake and Physical Activity
3.3. Efficacy Evaluation
3.3.1. Primary Outcome
3.3.2. Secondary Outcomes
3.4. Safety and Adverse Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Consent for Publication
Availability of Data and Materials
References
- Hafting, J.T.; Craigie, J.S.; Stengel, D.B.; Loureiro, R.R.; Buschmann, A.H.; Yarish, C.; Edwards, M.D.; Critchley, A.T. Prospects and challenges for industrial production of seaweed bioactives. J. Phycol. 2015, 51, 821–837. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chai, Z.; Wang, Q.; Chen, W.; He, Z.; Jiang, S. Cultivation of seaweed Gracilaria in Chinese coastal waters and its contribution to environmental improvements. Algal Res. 2015, 9, 236–244. [Google Scholar] [CrossRef]
- Park, C.; Kang, T.; Kim, K. The nutritional and functional constituents of laver. Bull. Fish Sic Inst. Yosu. Nat’l Univ. 2000, 9, 133–137. [Google Scholar]
- Cao, J.; Wang, J.; Wang, S.; Xu, X. Porphyra species: A mini-review of its pharmacological and nutritional properties. J. Med. Food 2016, 19, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, T.; Tsuge, K.; Sumi, T.; Yoshiki, M.; Tsuruta, Y.; Abe, S.-I.; Nishino, S.; Sanematsu, S.; Koganemaru, K. Isolation of porphyran-degrading marine microorganisms from the surface of red alga, Porphyra yezoensis. Biosci. Biotechnol. Biochem. 2006, 70, 1026–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bito, T.; Teng, F.; Watanabe, F. Bioactive compounds of edible purple laver Porphyra sp. (Nori). J. Agric. Food Chem. 2017, 65, 10685–10692. [Google Scholar] [CrossRef]
- Negishi, H.; Mori, M.; Mori, H.; Yamori, Y. Supplementation of elderly Japanese men and women with fucoidan from seaweed increases immune responses to seasonal influenza vaccination. J. Nutr. 2013, 143, 1794–1798. [Google Scholar] [CrossRef]
- Hayashi, T.; Hayashi, K.; Kanekiyo, K.; Ohta, Y.; Lee, J.-B.; Hashimoto, M.; Nakano, T. Promising Antiviral Glyco-Molecules from an Edible Alga; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Lee, N.; Oh, K. Screening of radical scavenging effects from marine algae. Cheju J. Life Sci. 2000, 3, 95–101. [Google Scholar]
- Hatada, Y.; Ohta, Y.; Horikoshi, K. Hyperproduction and application of α-agarase to enzymatic enhancement of antioxidant activity of porphyran. J. Agric. Food Chem. 2006, 54, 9895–9900. [Google Scholar] [CrossRef]
- Jung, B.-M.; Ahn, C.-B.; Kang, S.-J.; Park, J.-H.; Chung, D.-H. Effects of Hijikia fusiforme extracts on lipid metabolism and liver antioxidative enzyme activities in triton-induced hyperlipidemic rats. J. Korean Soc. Food Sci. Nutr. 2001, 30, 1184–1189. [Google Scholar]
- Noda, H.; Amano, H.; Arashima, K.; Hashimoto, S.; Nisizawa, K. Antitumour activity of polysaccharides and lipids from marine algae. Nippon Suisan Gakkaishi 1989, 55, 1265–1271. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Li, N.; Liu, X.; Zhao, Z.; Li, Z.; Xu, Z. The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity. Carbohydr. Res. 2004, 339, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-S.; Lee, M.-H.; Koo, J.-G. Effects of porphyran and insoluble dietary fiber isolated from laver, Porphyra yezoensis, on lipid metabolism in rats fed high fat diet. Korean J. Food Nutr. 2010, 23, 562–569. [Google Scholar]
- Lee, J.Y.; Choi, J.W.; Lee, M.K.; Kim, Y.M.; Kim, I.H.; Nam, T.J. Anti-inflammatory Effects of Pyropia yezoensis Extract in LPS-stimulated RAW 264.7 cells. Korean J. Fish. Aquat. Sci. 2014, 47, 757–764. [Google Scholar]
- Cornish, M.L.; Garbary, D.J. Antioxidants from macroalgae: Potential applications in human health and nutrition. Algae 2010, 25, 155–171. [Google Scholar] [CrossRef]
- Kang, H.; Song, J.; You, Y.; Park, J.; Kwak, S.; Lee, Y.-H.; Lee, J.; Kim, S.; Choi, K.-C.; Jun, W. Porphyra tenera extracts have immune stimulation activity via increasing cytokines in mouse primary splenocytes and RAW264. 7 macrophages. J. Food Nutr. Res. 2016, 4, 558–565. [Google Scholar]
- Song, J.-H.; Kang, H.-B.; Park, S.-H.; Jeong, J.-H.; Park, J.; You, Y.; Lee, Y.-H.; Lee, J.; Kim, E.; Choi, K.-C. Extracts of Porphyra tenera (Nori Seaweed) Activate the Immune Response in Mouse RAW264. 7 Macrophages via NF-κ B Signaling. J. Med. Food 2017, 20, 1152–1159. [Google Scholar] [CrossRef]
- Lee, Y.J.; Paik, D.-J.; Kwon, D.Y.; Yang, H.J.; Park, Y. Agrobacterium sp.-derived β-1, 3-glucan enhances natural killer cell activity in healthy adults: A randomized, double-blind, placebo-controlled, parallel-group study. Nutr. Res. Pract. 2017, 11, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Konjević, G.; Jurišić, V.; Spužić, I. Corrections to the original lactate dehydrogenase (LDH) release assay for the evaluation of NK cell cytotoxicity. J. Immunol. Methods 1997, 200, 199–201. [Google Scholar] [CrossRef]
- Barrett, B.; Locken, K.; Maberry, R.; Schwamman, J.; Brown, R.; Bobula, J.; Stauffacher, E.A. The Wisconsin Upper Respiratory Symptom Survey (WURSS): A new research instrument for assessing the common cold. J. Fam. Pract. 2002, 51, 265. [Google Scholar]
- Armstrong, T.; Bull, F. Development of the world health organization global physical activity questionnaire (GPAQ). J. Public Health 2006, 14, 66–70. [Google Scholar] [CrossRef]
- Ennis, F.; Beare, A.; Riley, D.; Schild, G.; Meager, A.; Yi-Hua, Q.; Schwarz, G.; Rook, A. Interferon induction and increased natural killer-cell activity in influenza infections in man. The Lancet 1981, 318, 891–893. [Google Scholar] [CrossRef]
- Goodier, M.R.; Rodriguez-Galan, A.; Lusa, C.; Nielsen, C.M.; Darboe, A.; Moldoveanu, A.L.; White, M.J.; Behrens, R.; Riley, E.M. Influenza vaccination generates cytokine-induced memory-like NK cells: Impact of human cytomegalovirus infection. J. Immunol. 2016, 197, 313–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Culley, F.J. Natural killer cells in infection and inflammation of the lung. Immunology 2009, 128, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Eom, S.-Y.; Zhang, Y.-W.; Kim, N.-S.; Kang, J.-W.; Hahn, Y.-S.; Shin, K.-S.; Song, H.-G.; Park, S.-Y.; Kim, J.-S.; Kim, H. Effects of Keumsa Sangwhang (Phellinus linteus) mushroom extracts on the natural killer cell activity in human. Korean J. Food Sci. Technol. 2006, 38, 717–719. [Google Scholar]
- Myśliwska, J.; Trzonkowski, P.; Szmit, E.; Brydak, L.; Machała, M.; Myśliwski, A. Immunomodulating effect of influenza vaccination in the elderly differing in health status. Exp. Gerontol. 2004, 39, 1447–1458. [Google Scholar] [CrossRef]
- Kwak, J.H.; Baek, S.H.; Woo, Y.; Han, J.K.; Kim, B.G.; Kim, O.Y.; Lee, J.H. Beneficial immunostimulatory effect of short-term Chlorella supplementation: Enhancement of Natural Killercell activity and early inflammatory response (Randomized, double-blinded, placebo-controlled trial). Nutr. J. 2012, 11, 53. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Paik, D.-J.; Kwon, D.Y.; Park, Y. Dietary supplementation with rice bran fermented with Lentinus edodes increases interferon-γ activity without causing adverse effects: A randomized, double-blind, placebo-controlled, parallel-group study. Nutr. J. 2014, 13, 35. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.-T.; Cho, J.M.; Jeong, I.H.; Lee, J.; Ha, K.-C.; Baek, H.-I.; Yang, H.J.; Kim, M.J.; Lee, J.H. The effect of silk peptide on immune system, A randomized, double-blind, placebo-controlled clinical trial. J. Funct. Foods 2019, 55, 275–284. [Google Scholar] [CrossRef]
- Jung, S.J.; Hwang, J.H.; Oh, M.R.; Chae, S.W. Effects of Cordyceps militaris supplementation on the immune response and upper respiratory infection in healthy adults: A randomized, double-blind, placebo-controlled study. J. Nutr. Health 2019, 52, 258–267. [Google Scholar] [CrossRef]
- Jung, S.-J.; Jung, E.-S.; Choi, E.-K.; Sin, H.-S.; Ha, K.-C.; Chae, S.-W. Immunomodulatory effects of a mycelium extract of Cordyceps (Paecilomyces hepiali; CBG-CS-2): A randomized and double-blind clinical trial. BMC Complement. Altern. Med. 2019, 19, 77. [Google Scholar] [CrossRef] [PubMed]
- Nakagami, Y.; Suzuki, S.; Espinoza, J.L.; Vu Quang, L.; Enomoto, M.; Takasugi, S.; Nakamura, A.; Nakayama, T.; Tani, H.; Hanamura, I. Immunomodulatory and Metabolic Changes after Gnetin-C Supplementation in Humans. Nutrients 2019, 11, 1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, C.; Flavell, R.A. Cell fate decision: T-helper 1 and 2 subsets in immune responses. Arthritis Res. Ther. 2000, 2, 179. [Google Scholar] [CrossRef] [Green Version]
- Morgan, D.J.; Davis, D.M. Distinct effects of dexamethasone on human natural killer cell responses dependent on cytokines. Front. Immunol. 2017, 8, 432. [Google Scholar] [CrossRef] [PubMed]
- Orange, J.S.; Ballas, Z.K. Natural killer cells in human health and disease. Clin. Immunol. 2006, 118, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Hama, Y.; Yamaguchi, K.; Oda, T. Inhibitory effect of sulphated polysaccharide porphyran on nitric oxide production in lipopolysaccharide-stimulated RAW264. 7 macrophages. J. Biochem. 2012, 151, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.J.; Baik, H.W.; Kim, S.J.; Lee, S.G.; Ahn, H.Y.; Park, J.S.; Park, S.J.; Jang, E.J.; Park, S.W.; Choi, J.Y. Cordyceps militaris enhances cell-mediated immunity in healthy Korean men. J. Med. Food 2015, 18, 1164–1172. [Google Scholar] [CrossRef]
- Mondal, S.; Varma, S.; Bamola, V.D.; Naik, S.N.; Mirdha, B.R.; Padhi, M.M.; Mehta, N.; Mahapatra, S.C. Double-blinded randomized controlled trial for immunomodulatory effects of Tulsi (Ocimum sanctum Linn.) leaf extract on healthy volunteers. J. Ethnopharmacol. 2011, 136, 452–456. [Google Scholar] [CrossRef]
- Lee, A.; Lee, Y.J.; Yoo, H.J.; Kim, M.; Chang, Y.; Lee, D.S.; Lee, J.H. Consumption of dairy yogurt containing Lactobacillus paracasei ssp. paracasei, Bifidobacterium animalis ssp. lactis and heat-treated Lactobacillus plantarum improves immune function including natural killer cell activity. Nutrients 2017, 9, 558. [Google Scholar] [CrossRef]
- Sato, N.; Kikuchi, S.; Sato, K. Quantifying the stress induced by distress in patients with lumbar disc herniation in terms of natural killer cell activity measurements: Chromium release assay versus multiparameter flow cytometric assay. Spine 2002, 27, 2095–2100. [Google Scholar] [CrossRef]
Component | Test Capsule PTE Supplement (%) | Placebo Supplement (%) |
---|---|---|
PTE | 99.52 | - |
Silicon dioxide | 0.48 | 0.2 |
Microcrystalline cellulose | - | 99.6 |
Caramel coloring | - | 0.2 |
Total | 100 | 100 |
PTE Group | Placebo Group | Total | p-Value 1 | |
---|---|---|---|---|
(n = 58) | (n = 53) | (n = 111) | ||
Sex (M/F) (n.%) | 9(15.5)/49(84.5) | 10(18.9)/43(81.1) | 19(17.1)/92(82.9) | 0.640 2 |
Age (years) | 59.6 ± 4.8 | 59.9 ± 6.1 | 59.8 ± 5.5 | 0.718 |
Height (cm) | 158.3 ± 6.5 | 157.9 ± 7.5 | 158.1 ± 7.0 | 0.803 |
Weight (kg) | 60.1 ± 8.1 | 59.3 ± 10.1 | 59.7 ± 9.1 | 0.651 |
BMI (kg/m2) | 23.9 ± 2.7 | 23.7 ± 3.1 | 23.8 ± 2.8 | 0.615 |
SBP (mmHg) | 120.7 ± 15.6 | 120.1 ± 17.7 | 120.4 ± 16.6 | 0.852 |
DBP (mmHg) | 70.4 ± 10.8 | 69.7 ± 11.9 | 70.1 ± 11.3 | 0.740 |
Pulse (bpm) | 69.3 ± 9.6 | 69.6 ± 9.2 | 69.5 ± 9.4 | 0.869 |
NK cell activity 12.5:1 (%) | 11.4 ± 8.4 | 11.8 ± 9.1 | 11.6 ± 8.7 | 0.828 |
25:1 (%) | 20.6 ± 12.2 | 20.7 ± 13.6 | 20.6 ± 12.8 | 0.992 |
50:1 (%) | 28.0 ± 14.3 | 27.4 ± 14.3 | 27.7 ± 14.3 | 0.837 |
IL-2 (pg/mL) | 1.28 ± 0.85 | 1.44 ± 1.51 | 1.36 ± 1.21 | 0.462 |
IL-6 (pg/mL) | 0.64 ± 0.69 | 0.63 ± 0.85 | 0.63 ± 0.77 | 0.982 |
IL-12 (pg/mL) | 2.31 ± 1.86 | 2.08 ± 1.49 | 2.20 ± 1.69 | 0.466 |
INF-γ (pg/mL) | 8.35 ± 8.68 | 7.04 ± 6.97 | 7.72 ± 7.90 | 0.384 |
TNF-α (pg/mL) | 6.05 ± 2.47 | 7.36 ± 2.82 | 6.68 ± 2.71 | 0.011 |
Alcohol (n, %) | 23(39.7)/35(60.3) | 27(50.9)/26(49.1) | 50(45.1)/61(55.0) | 0.233 2 |
Alcohol (unit 3/week) | 1.54 ± 2.24 | 3.30 ± 4.51 | 2.49 ± 3.72 | 0.082 |
Smoking (Y/N) | 0(0.0)/58(100.0) | 2(3.8)/51(96.2) | 2(1.8)/109(98.2) | 0.226 4 |
Smoking (cigarettes/day) | 0.00 ± 0.00 | 12.5 ± 3.5 | 12.5 ± 3.5 | - |
PTE Group (n = 58) | Placebo Group (n = 53) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | Week 8 | Change | p-Value 1 | Baseline | Week 8 | Change | p-Value 1 | p-Value 2 | |
Energy (kcal) | 1538.2 ± 537.3 | 1552.5 ± 394.5 | 14.4 ± 501.1 | 0.828 | 1682.4 ± 568.5 | 1580.9 ± 520.4 | −101.6 ± 525.5 | 0.165 | 0.237 |
Carbohydrates (g) | 236.9 ± 67.4 | 264.0 ± 66.2 | 29.1 ± 69.0 | 0.002 | 251.9 ± 85.1 | 247.6 ± 81.3 | −4.33 ± 79.6 | 0.694 | 0.020 |
Lipids (g) | 40.3 ± 26.9 | 34.6 ± 18.9 | −5.7 ± 28.8 | 0.137 | 46.4 ± 17.1 | 40.9 ± 23.9 | −5.4 ± 31.9 | 0.219 | 0.965 |
Protein (g) | 62.1 ± 27.1 | 52.9 ± 17.5 | −9.1 ± 26.4 | 0.011 | 64.9 ± 23.2 | 61.7 ± 29.4 | −3.2 ± 26.9 | 0.386 | 0.250 |
Fiber (g) | 19.3 ± 7.9 | 21.5 ± 8.1 | 2.2 ± 9.0 | 0.067 | 19.8 ± 7.7 | 21.4 ± 9.7 | 1.6 ± 8.2 | 0.169 | 0.697 |
MET (min/week) | 1886.9 ± 2055.2 | 3016.6 ± 5722.3 | 1149.7 ± 5732.8.3 | 0.132 | 2891.7 ± 4699.8 | 2307.9 ± 3518.7 | −583.8 ± 4403.9 | 0.339 | 0.079 |
PTE Group (n = 58) | Placebo Group (n = 53) | Adj. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline | Week 8 | Change | p-Value 1 | Baseline | Week 8 | Change | p-Value 1 | p-Value 2 | p-Value 4 | |
NK cell activity (%) | ||||||||||
12.5:1 | 11.4 ± 8.4 | 14.8 ± 8.2 | 3.4 ± 6.9 | 0.0004 | 11.8 ± 9.1 | 13.3 ± 9.6 | 1.6 ± 6.3 | 0.079 | 0.1390 | 0.0829 |
25:1 | 20.6 ± 12.2 | 23.6 ± 12.8 | 3.0 ± 7.4 | 0.0034 | 20.7 ± 13.6 | 21.1 ± 13.1 | 0.5 ± 7.0 | 0.638 | 0.0692 | 0.0587 |
50:1 | 28.0 ± 14.3 | 30.8 ± 14.6 | 2.8 ± 7.3 | 0.0055 | 27.4 ± 14.3 | 28.1 ± 14.6 | 0.6 ± 8.1 | 0.585 | 0.1401 | 0.0832 |
IL-2 (pg/mL) | 1.28 ± 0.85 | 1.28 ± 0.92 | 0.00 ± 0.45 | 0.9909 | 1.44 ± 1.51 | 1.37 ± 1.06 | −0.08 ± 1.02 | 0.5792 | 0.6054 | 0.7319 |
IL-6 (pg/mL) | 0.64 ± 0.69 | 0.69 ± 0.89 | 0.06 ± 0.79 | 0.5922 | 0.63 ± 0.85 | 0.53 ± 0.51 | −0.10 ± 0.50 | 0.1384 | 0.2022 | 0.2582 |
IL-12 (pg/mL) | 2.31 ± 1.86 | 2.18 ± 1.32 | −0.13 ± 0.78 | 0.2007 | 2.08 ± 1.49 | 1.89 ± 1.05 | −0.19 ± 0.87 | 0.1245 | 0.7270 | 0.8367 |
INF-γ (pg/mL) | 8.35 ± 8.68 | 8.00 ± 6.75 | −0.35 ± 2.59 | 0.3135 | 7.04 ± 6.97 | 6.41 ± 4.49 | −0.63 ± 3.53 | 0.2029 | 0.6378 | 0.6044 |
TNF-α (pg/mL) | 6.05 ± 2.47 | 7.01 ± 3.53 | 0.96 ± 3.76 | 0.0577 | 7.36 ± 2.82 | 7.94 ± 4.78 | 0.58 ± 5.48 | 0.4420 | 0.6798 | 0.3650 0.4097 3 |
PTE Group (n = 50) | Placebo Group (n = 51) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | Week 8 | Change | p-Value 1 | Baseline | Week 8 | Change | p-Value 1 | p-Value 2 | |
NK cell activity (%) | |||||||||
12.5:1 | 11.2 ± 8.4 | 14.6 ± 8.0 | 3.4 ± 7.3 | 0.0019 | 11.8 ± 9.2 | 12.8 ± 9.5 | 1.0 ± 5.7 | 0.2238 | 0.0683 |
25:1 | 20.3 ± 12.0 | 23.2 ± 12.4 | 2.8 ± 7.5 | 0.0106 | 20.6 ± 13.8 | 20.5 ± 13.0 | −0.1 ± 6.4 | 0.8907 | 0.0357 |
50:1 | 27.8 ± 14.2 | 30.5 ± 14.4 | 2.7 ± 7.4 | 0.0134 | 27.3 ± 14.4 | 27.3 ± 14.5 | 0.1 ± 7.5 | 0.9457 | 0.0810 |
IL-2 (pg/mL) | 1.33 ± 0.875 | 1.36 ± 0.94 | 0.03 ± 0.46 | 0.6064 | 1.44 ± 1.51 | 1.36 ± 1.07 | −0.08 ± 1.04 | 0.5885 | 0.4811 |
IL-6 (pg/mL) | 0.70 ± 0.72 | 0.65 ± 0.58 | −0.05 ± 0.34 | 0.3395 | 0.64 ± 0.87 | 0.53 ± 0.52 | −0.11 ± 0.51 | 0.1427 | 0.4824 |
IL-12 (pg/mL) | 2.51 ± 1.92 | 2.34 ± 1.34 | −0.17 ± 0.83 | 0.1451 | 2.10 ± 1.51 | 1.91 ± 1.06 | −0.19 ± 0.89 | 0.1263 | 0.9097 |
INF-γ (pg/mL) | 8.95 ± 9.18 | 8.56 ± 7.06 | −0.39 ± 2.74 | 0.3175 | 7.13 ± 7.08 | 6.50 ± 4.55 | −0.63 ± 3.60 | 0.2171 | 0.7084 |
TNF-α (pg/mL) | 6.00 ± 2.56 | 7.09 ± 3.60 | 1.13 ± 3.72 | 0.0368 | 7.31 ± 2.86 | 7.59 ± 3.83 | 0.29 ± 4.65 | 0.6606 | 0.3180 0.7997 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S.-J.; Jang, H.-Y.; Jung, E.-S.; Noh, S.-O.; Shin, S.-W.; Ha, K.-C.; Baek, H.-I.; Ahn, B.-J.; Oh, T.-H.; Chae, S.-W. Effects of Porphyra tenera Supplementation on the Immune System: A Randomized, Double-Blind, and Placebo-Controlled Clinical Trial. Nutrients 2020, 12, 1642. https://doi.org/10.3390/nu12061642
Jung S-J, Jang H-Y, Jung E-S, Noh S-O, Shin S-W, Ha K-C, Baek H-I, Ahn B-J, Oh T-H, Chae S-W. Effects of Porphyra tenera Supplementation on the Immune System: A Randomized, Double-Blind, and Placebo-Controlled Clinical Trial. Nutrients. 2020; 12(6):1642. https://doi.org/10.3390/nu12061642
Chicago/Turabian StyleJung, Su-Jin, Hui-Yeon Jang, Eun-Soo Jung, Soon-Ok Noh, Sang-Wook Shin, Ki-Chan Ha, Hyang-Im Baek, Byung-Jae Ahn, Tae-Hwan Oh, and Soo-Wan Chae. 2020. "Effects of Porphyra tenera Supplementation on the Immune System: A Randomized, Double-Blind, and Placebo-Controlled Clinical Trial" Nutrients 12, no. 6: 1642. https://doi.org/10.3390/nu12061642