Vitamin K Status in Adherent and Non-Adherent Patients with Phenylketonuria: A Cross-Sectional Study
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- van Wegberg, A.M.J.; MacDonald, A.; Ahring, K.; Bélanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet. J. Rare Dis. 2017, 12, 162. [Google Scholar] [CrossRef] [Green Version]
- Walkowiak, D.; Bukowska-Posadzy, A.; Kałużny, Ł.; Ołtarzewski, M.; Staszewski, R.; Musielak, M.; Walkowiak, J. Therapy compliance in children with phenylketonuria younger than 5 years: A cohort study. Adv. Clin. Exp. Med. 2019, 28, 1385–1391. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.; Daly, A.; MacDonald, J.; Preece, M.A.; Santra, S.; Vijay, S.; Chakrapani, A.; MacDonald, A. The micronutrient status of patients with phenylketonuria on dietary treatment: an ongoing challenge. Ann. Nutr. Metab. 2014, 65, 42–48. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.; Rocha, J.C.; van Rijn, M.; Feillet, F. Nutrition in phenylketonuria. Mol. Genet. Metab. 2011, 104, S10–S18. [Google Scholar] [CrossRef] [PubMed]
- Shearer, M.J. Vitamin K. The Lancet 1995, 345, 229–234. [Google Scholar] [CrossRef]
- Schwalfenberg, G.K. Vitamins K1 and K2: The emerging group of vitamins required for human health. J. Nutr. Metab. 2017, 2017, 6254836. [Google Scholar] [CrossRef]
- Adams, J.; Pepping, J. Vitamin K in the treatment and prevention of osteoporosis and arterial calcification. Am. J. Health Syst. Pharm. 2005, 62, 1574–1581. [Google Scholar] [CrossRef] [Green Version]
- Palermo, A.; Tuccinardi, D.; D’Onofrio, L.; Watanabe, M.; Maggi, D.; Maurizi, A.R.; Greto, V.; Buzzetti, R.; Napoli, N.; Pozzilli, P.; et al. Vitamin K and osteoporosis: Myth or reality? Metab. Clin. Exp. 2017, 70, 57–71. [Google Scholar] [CrossRef] [Green Version]
- Cranenburg, E.C.M.; Schurgers, L.J.; Vermeer, C. Vitamin K: the coagulation vitamin that became omnipotent. Thromb. Haemost. 2007, 98, 120–125. [Google Scholar] [CrossRef] [Green Version]
- Bolzetta, F.; Veronese, N.; Stubbs, B.; Noale, M.; Vaona, A.; Demurtas, J.; Celotto, S.; Cacco, C.; Cester, A.; Caruso, M.G.; et al. The relationship between dietary vitamin k and depressive symptoms in late adulthood: a cross-sectional analysis from a large cohort study. Nutrients 2019, 11, 787. [Google Scholar] [CrossRef] [Green Version]
- Cheung, C.-L.; Sahni, S.; Cheung, B.M.Y.; Sing, C.-W.; Wong, I.C.K. Vitamin K intake and mortality in people with chronic kidney disease from NHANES III. Clin. Nutr. 2015, 34, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Ferland, G. Vitamin K and brain function. Semin. Thromb. Hemost. 2013, 39, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Okano, Y.; Hattori, T.; Fujimoto, H.; Noi, K.; Okamoto, M.; Watanabe, T.; Watanabe, R.; Fujii, R.; Tamaoki, T. Nutritional status of patients with phenylketonuria in Japan. Mol. Genet. Metab. Rep. 2016, 8, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Stroup, B.M.; Ney, D.M.; Murali, S.G.; Rohr, F.; Gleason, S.T.; van Calcar, S.C.; Levy, H.L. Metabolomic insights into the nutritional status of adults and adolescents with phenylketonuria consuming a low-phenylalanine diet in combination with amino acid and glycomacropeptide medical foods. J. Nutr. Metab. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Green, B.; Browne, R.; Firman, S.; Hill, M.; Rahman, Y.; Kaalund Hansen, K.; Adam, S.; Skeath, R.; Hallam, P.; Herlihy, I.; et al. Nutritional and Metabolic Characteristics of UK Adult Phenylketonuria Patients with Varying Dietary Adherence. Nutrients 2019, 11, 2459. [Google Scholar] [CrossRef] [Green Version]
- Kose, E.; Arslan, N. Vitamin/mineral and micronutrient status in patients with classical phenylketonuria. Clin. Nutr. 2019, 38, 197–203. [Google Scholar] [CrossRef]
- Crujeiras, V.; Aldámiz-Echevarría, L.; Dalmau, J.; Vitoria, I.; Andrade, F.; Roca, I.; Leis, R.; Fernandez-Marmiesse, A.; Couce, M.L. Vitamin and mineral status in patients with hyperphenylalaninemia. Mol. Genet. Metab. 2015, 115, 145–150. [Google Scholar] [CrossRef]
- Hochuli, M.; Bollhalder, S.; Thierer, C.; Refardt, J.; Gerber, P.; Baumgartner, M.R. Effects of inadequate amino acid mixture intake on nutrient supply of adult patients with phenylketonuria. Ann. Nutr. Metab. 2017, 71, 129–135. [Google Scholar] [CrossRef]
- Güttler, F. Hyperphenylalaninemia: diagnosis and classification of the various types of phenylalanine hydroxylase deficiency in childhood. Acta Paediatr. Scand. Suppl. 1980, 280, 1–80. [Google Scholar]
- Food Data Central. Available online: https://fdc.nal.usda.gov/ (accessed on 8 January 2020).
- Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001; ISBN 978-0-309-07279-3. [Google Scholar]
- Krzyżanowska, P.; Książyk, J.; Kocielińska-Kłos, M.; Banaś, E.; Kaleta, M.; Popińska, K.; Szczapa, T.; Walkowiak, J. Vitamin K status in patients with short bowel syndrome. Clin. Nutr. 2012, 31, 1015–1017. [Google Scholar] [CrossRef]
- Krzyżanowska, P.; Pogorzelski, A.; Skorupa, W.; Moczko, J.; Grebowiec, P.; Walkowiak, J. Exogenous and endogenous determinants of vitamin K status in cystic fibrosis. Sci. Rep. 2015, 5, 12000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekin, S.; Dogan, M.; Gok, F.; Karakus, Y. Assessment of antioxidant enzymes, total sialic acid, lipid bound sialic acid, vitamins and selected amino acids in children with phenylketonuria. Pediatr. Res. 2018, 84, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Schulpis, K.H.; Platokouki, H.; Papakonstantinou, E.D.; Adamtziki, E.; Bargeliotis, A.; Aronis, S. Haemostatic variables in phenylketonuric children under dietary treatment. J. Inherit. Metab. Dis. 1996, 19, 603–609. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Dietary Reference Values for Nutrients: Summary Report; EFSA Supporting Publication, Wiley: Hoboken, NJ, USA, 2017. [Google Scholar] [CrossRef] [Green Version]
- Vermeer, C.; Shearer, M.J.; Zittermann, A.; Bolton-Smith, C.; Szulc, P.; Hodges, S.; Walter, P.; Rambeck, W.; Stöcklin, E.; Weber, P. Beyond deficiency: potential benefits of increased intakes of vitamin K for bone and vascular health. Eur. J. Nutr. 2004, 43, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Bilder, D.A.; Kobori, J.A.; Cohen-Pfeffer, J.L.; Johnson, E.M.; Jurecki, E.R.; Grant, M.L. Neuropsychiatric comorbidities in adults with phenylketonuria: A retrospective cohort study. Mol. Genet. Metab. 2017, 121, 1–8. [Google Scholar] [CrossRef]
- Burton, B.K.; Jones, K.B.; Cederbaum, S.; Rohr, F.; Waisbren, S.; Irwin, D.E.; Kim, G.; Lilienstein, J.; Alvarez, I.; Jurecki, E.; et al. Prevalence of comorbid conditions among adult patients diagnosed with phenylketonuria. Mol. Genet. Metab. 2018, 125, 228–234. [Google Scholar] [CrossRef]
- Dong, R.; Wang, N.; Yang, Y.; Ma, L.; Du, Q.; Zhang, W.; Tran, A.H.; Jung, H.; Soh, A.; Zheng, Y.; et al. Review on Vitamin K Deficiency and its Biomarkers: Focus on the Novel Application of PIVKA-II in Clinical Practice. Clin. Lab. 2018, 64, 413–424. [Google Scholar] [CrossRef]
- Ryu, M.R.; Kang, E.-S.; Park, H.-D. Performance evaluation of serum PIVKA-II measurement using HISCL-5000 and a method comparison of HISCL-5000, LUMIPULSE G1200, and ARCHITECT i2000. J. Clin. Lab. Anal. 2019, 33, e22921. [Google Scholar] [CrossRef] [Green Version]
- Au, N.T.; Ryman, T.; Rettie, A.E.; Hopkins, S.E.; Boyer, B.B.; Black, J.; Philip, J.; Yracheta, J.; Fohner, A.E.; Reyes, M.; et al. Dietary Vitamin K and Association with Hepatic Vitamin K Status in a Yup’ik Study Population from Southwestern Alaska. Mol. Nutr. Food Res. 2018, 62. [Google Scholar] [CrossRef]
- Lee, S.E.; Schulze, K.J.; Cole, R.N.; Wu, L.S.F.; Yager, J.D.; Groopman, J.; Christian, P.; West, K.P. Biological Systems of Vitamin K: A Plasma Nutriproteomics Study of Subclinical Vitamin K Deficiency in 500 Nepalese Children. OMICS 2016, 20, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Wyskida, K.; Żak-Gołąb, A.; Wajda, J.; Klein, D.; Witkowicz, J.; Ficek, R.; Rotkegel, S.; Spiechowicz, U.; Kocemba Dyczek, J.; Ciepał, J.; et al. Functional deficiency of vitamin K in hemodialysis patients in Upper Silesia in Poland. Int. Urol. Nephrol. 2016, 48, 765–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glapa, A.; Waraczewski, K.; Nowak, J.K.; Paszkowski, J.; Borejsza-Wysocki, M.; Krzyżanowska-Jankowska, P.; Banasiewicz, T.; Walkowiak, J. Vitamin K Deficiency in Patients After Restorative Proctocolectomy. Inflamm. Bowel Dis. 2019, 25, e17–e18. [Google Scholar] [CrossRef] [PubMed]
- Nowak, J.K.; Grzybowska-Chlebowczyk, U.; Landowski, P.; Szaflarska-Poplawska, A.; Klincewicz, B.; Adamczak, D.; Banasiewicz, T.; Plawski, A.; Walkowiak, J. Prevalence and correlates of vitamin K deficiency in children with inflammatory bowel disease. Sci. Rep. 2014, 4, 4768. [Google Scholar] [CrossRef] [PubMed]
- Stankowiak-Kulpa, H.; Krzyżanowska, P.; Kozioł, L.; Grzymisławski, M.; Wanic-Kossowska, M.; Moczko, J.; Walkowiak, J. Vitamin K status in peritoneally dialyzed patients with chronic kidney disease. Acta Biochim. Pol. 2011, 58, 617–620. [Google Scholar] [CrossRef] [PubMed]
- Damon, M.; Zhang, N.Z.; Haytowitz, D.B.; Booth, S.L. Phylloquinone (vitamin K1) content of vegetables. J. Food Compost. Anal. 2005, 18, 751–758. [Google Scholar] [CrossRef]
- Dumont, J.F.; Peterson, J.; Haytowitz, D.; Booth, S.L. Phylloquinone and dihydrophylloquinone contents of mixed dishes, processed meats, soups and cheeses. J. Food Compost. Anal. 2003, 16, 595–603. [Google Scholar] [CrossRef]
- Vanpraag, L. Warfarin and beetroot. Aust. Prescr. 2015, 38, 150. [Google Scholar] [CrossRef] [Green Version]
- Marles, R.J. Mineral nutrient composition of vegetables, fruits and grains: The context of reports of apparent historical declines. J. Food Compost. Anal. 2017, 56, 93–103. [Google Scholar] [CrossRef]
Parameter | Age (Years) | Z-Score | Phe Concentrations | Blood Drawings (% of Recommended) | SPIKE 6 (%) | SPIKE 12 (%) | PIVKA II (ng/mL) | Phe Intake (mg/day) | Protein Intake | Total Vitamin K Intake | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Body Height | Body Weight | Median (mg/dL) | Abnormal (%) | Total (g/day) | From Formula /kg Body Weight | (µg/day) | %RDA | |||||||
Range | 0.8–35.0 | −2.05–1.47 | −1.66–4.38 | 1.57–23.6 | 0–100 | 16.7–450.0 | 0–100 | 1.2–3.8 | 0–100 | 182–736 | 15.7–136.0 | 0–3.44 | 33.0–286.6 | 57.8–523.8 |
Median (IQR) | 17.9 (6.1–24.0) | −0.13 (−0.60–0.58) | 0.18 (−0.4–0.74) | 6.8 (3.9–11.5) | 30.0 (10.1–78.8) | 83.3 (50.0–111.5) | 63.9 (22.4–95.0) | 2.3 (2.1–3.0) | 5.5 (0–47.5) | 362 (284–426) | 60.4 (33.1–76.6) | 1.06 (0.85–1.24) | 125.1 (83.0–153.5) | 158.0 (110.4–227.2) |
Mean (SD) | 16.3 (10.8) | −0.08 (0.83) | 0.25 (1.13) | 8.1 (5.4) | 46.3 (39.1) | 96.3 (86.3) | 55.1 (36.4) | 2.5 (0.7) | 26.3 (35.3) | 370 (120) | 59.5 (30.0) | 1.10 (0.57) | 125.1 (58.7) | 196.1 (113.0) |
* PIVKA-II < 3 ng/mL (n = 25) | ||||||||
---|---|---|---|---|---|---|---|---|
Parameter | Phe Concentrations | SPIKE 6 | SPIKE 12 | Total Vitamin K Intake | Dietary Vitamin K Intake | |||
Median (mg/dL) | Abnormal (%) | (%) | (%) | (µg/day) | %RDA ** | (µg/day) | %RDA ** | |
Range | 1.6–23.6 | 0–100 | 5.8–100 | 0–100 | 33.0–255.0 | 85.4–523.8 | 17.0–154.3 | 31.4–463.8 |
Median (IQR) | 7.8 (4.6–12.2) | 66.7 (18.4–100) | 71.4 (41.7–100) | 7.4 (0–66.7) | 131.0 (95.7–157.1) | 187.3 (111.1–234.8) | 70.9 (49.9–123.0) | 88.7 (60.2–153.8) |
Mean (SD) | 9.0 (5.8) | 52.0 (39.5) | 63.7 (33.6) | 30.9 (38.9) | 135.9 (57.4) | 210.2 (122.9) | 80.7 (40.9) | 134.2 (108.4) |
* PIVKA-II > 3 ng/mL (n = 9) | ||||||||
Range | 2.7–11.6 | 0–100 | 0–100 | 0–50.0 | 56.2–155.9 | 57.9–333.1 | 15.3–55.9 | 24.1–76.6 |
Median (IQR) | 4.3 (3.7–4.5) | 22.2 (0–30.4) | 23.1 (0–30.4) | 5.4 (0–15.4) | 82.3 (66.6–109.1) | 136.3 (102.8–197.7) | 28.9 (24.4–34.1) | 56.0 (32.0–57.7) |
Mean (SD) | 5.5 (3.4) | 30.3 (35.2) | 31.2 (34.9) | 13.4 (18.7) | 90.9 (33.1) | 156.9 (81.0) | 30.8 (12.9) | 50.1 (19.0) |
p | 0.101 | 0.207 | 0.035 | 0.549 | 0.033 | 0.263 | 0.0002 | 0.003 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mozrzymas, R.; Walkowiak, D.; Drzymała-Czyż, S.; Krzyżanowska-Jankowska, P.; Duś-Żuchowska, M.; Kałużny, Ł.; Walkowiak, J. Vitamin K Status in Adherent and Non-Adherent Patients with Phenylketonuria: A Cross-Sectional Study. Nutrients 2020, 12, 1772. https://doi.org/10.3390/nu12061772
Mozrzymas R, Walkowiak D, Drzymała-Czyż S, Krzyżanowska-Jankowska P, Duś-Żuchowska M, Kałużny Ł, Walkowiak J. Vitamin K Status in Adherent and Non-Adherent Patients with Phenylketonuria: A Cross-Sectional Study. Nutrients. 2020; 12(6):1772. https://doi.org/10.3390/nu12061772
Chicago/Turabian StyleMozrzymas, Renata, Dariusz Walkowiak, Sławomira Drzymała-Czyż, Patrycja Krzyżanowska-Jankowska, Monika Duś-Żuchowska, Łukasz Kałużny, and Jarosław Walkowiak. 2020. "Vitamin K Status in Adherent and Non-Adherent Patients with Phenylketonuria: A Cross-Sectional Study" Nutrients 12, no. 6: 1772. https://doi.org/10.3390/nu12061772
APA StyleMozrzymas, R., Walkowiak, D., Drzymała-Czyż, S., Krzyżanowska-Jankowska, P., Duś-Żuchowska, M., Kałużny, Ł., & Walkowiak, J. (2020). Vitamin K Status in Adherent and Non-Adherent Patients with Phenylketonuria: A Cross-Sectional Study. Nutrients, 12(6), 1772. https://doi.org/10.3390/nu12061772