Fish Cooking Methods and Impaired Glucose Metabolism Among Japanese Workers: The Furukawa Nutrition and Health Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Procedure
2.2. Participants
2.3. Blood Measurements
2.4. Ascertainment of Impaired Glucose Metabolism
2.5. Dietary Assessment
2.6. Other Variables
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health, Labour and Welfare. The National Health and Nutrition Survey in Japan. 2017. Available online: https://www.mhlw.go.jp/content/10904750/000351576.pdf (accessed on 26 December 2018).
- Nkondjock, A.; Receveur, O. Fish-seafood consumption, obesity, and risk of type 2 diabetes: An ecological study. Diabetes Metab. 2003, 29, 635–642. [Google Scholar] [CrossRef]
- Wallin, A.; Di Giuseppe, D.; Orsini, N.; Patel, P.S.; Forouhi, N.G.; Wolk, A. Fish consumption, dietary long-chain n-3 fatty acids, and risk of type 2 diabetes: Systematic review and meta-analysis of prospective studies. Diabetes Care 2012, 35, 918–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Zong, G.; Wu, K.; Hu, Y.; Li, Y.; Willett, W.C.; Eisenberg, E.M.; Hu, F.B.; Sun, Q. Meat cooking methods and risk of type 2 diabetes: Results from three prospective cohort studies. Diabetes Care 2018, 41, 1049–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, P.S.; Sharp, S.J.; Luben, R.N.; Khaw, K.T.; Bingham, S.A.; Wareham, N.J.; Forouhi, N.G. Association between type of dietary fish and seafood intake and the risk of incident type 2 diabetes: The European prospective investigation of cancer (EPIC)-Norfolk cohort study. Diabetes Care 2009, 32, 1857–1863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallin, A.; Di Giuseppe, D.; Orsini, N.; Akesson, A.; Forouhi, N.G.; Wolk, A. Fish consumption and frying of fish in relation to type 2 diabetes incidence: A prospective cohort study of Swedish men. Eur. J. Nutr. 2017, 56, 843–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Committee of the Japan Diabetes Society on the Diagnostic Criteria of Diabetes Mellitus; Seino, Y.; Nanjo, K.; Tajima, N.; Kadowaki, T.; Kashiwagi, A.; Araki, E.; Ito, C.; Inagaki, N.; Iwamoto, Y.; et al. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J. Diabetes Investig. 2010, 1, 212–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Comparison of relative validity of food group intakes estimated by comprehensive and brief-type self-administered diet history questionnaires against 16 d dietary records in Japanese adults. Public Health Nutr. 2011, 14, 1200–1211. [Google Scholar] [CrossRef] [PubMed]
- Science and Technology Agency. Standard Tables of Food Composition in Japan, 5th Revised and Enlarged ed.; Printing Bureau of the Ministry of Finance: Tokyo, Japan, 2005. (In Japanese)
- Carlström, M.; Larsson, S.C. Coffee consumption and reduced risk of developing type 2 diabetes: A systematic review with meta-analysis. Nutr. Rev. 2018, 76, 395–417. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Wang, K.; Han, D.; He, X.; Wei, J.; Zhao, L.; Imam, M.U.; Ping, Z.; Li, Y.; Xu, Y.; et al. Dietary magnesium intake and the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality: A dose-response meta-analysis of prospective cohort studies. BMC Med. 2016, 14, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, E.A.; Pan, A.; Malik, V.; Sun, Q. White rice consumption and risk of type 2 diabetes: Meta-analysis and systematic review. BMJ 2012, 344, e1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Fan, Y.; Zhang, X.; Hou, W.; Tang, Z. Fruit and vegetable intake and risk of type 2 diabetes mellitus: Meta-analysis of prospective cohort studies. BMJ Open 2014, 4, e005497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McRae, M. Dietary fiber intake and type 2 diabetes mellitus: An umbrella review of meta-analyses. J. Chiropr. Med. 2018, 17, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Pittas, A.G.; Lau, J.; Hu, F.B.; Dawson-Hughes, B. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2007, 92, 2017–2029. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, Y.; Wang, C.; Mao, Z.; Zhou, W.; Zhang, L.; Fan, M.; Cui, S.; Li, L. Meat and fish intake and type 2 diabetes: Dose-response meta-analysis of prospective cohort studies. Diabetes Metab. 2020. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K.H.; Elmadfa, I. Chemical and biological modulations of food due to the frying process. Int. J. Vitam. Nutr. Res. 2012, 82, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Mark, A.B.; Poulsen, M.W.; Andersen, S.; Andersen, J.M.; Bak, M.J.; Ritz, C.; Holst, J.J.; Nielsen, J.; de Courten, B.; Dragsted, L.O.; et al. Consumption of a diet low in advanced glycation end products for 4 weeks improves insulin sensitivity in overweight women. Diabetes Care 2014, 37, 88–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felton, J.S.; Malfatti, M.A.; Knize, M.G.; Salmon, C.P.; Hopmans, E.C.; Wu, R.W. Health risks of heterocyclic amines. Mutat. Res. 1997, 376, 37–41. [Google Scholar] [CrossRef]
Raw and Stewing | Broiling, Deep-Frying, and Stir-Frying | |||||||
---|---|---|---|---|---|---|---|---|
Tertile of Fish and Shellfish Intake | Tertile of Fish and Shellfish Intake | |||||||
Lowest | Middle | Highest | Trend p 1 | Lowest | Middle | Highest | Trend p 1 | |
No. of participants | 142 | 143 | 143 | 448 | 449 | 449 | ||
Age, year, mean (standard deviation) | 43.0 (9.6) | 43.9 (9.2) | 46.6 (10.3) | 0.001 | 42.4 (8.4) | 43.3 (8.9) | 44.8 (9.4) | <0.001 |
Women, % | 7.7 | 11.2 | 11.2 | 0.38 | 8.0 | 9.6 | 10.9 | 0.15 |
Site A, % | 48.6 | 53.1 | 35.0 | 0.010 | 44.9 | 46.5 | 36.1 | 0.004 |
BMI, kg/m2, mean (standard deviation) | 23.7 (3.6) | 23.2 (3.5) | 23.9 (3.4) | 0.53 | 23.2 (3.5) | 23.3 (3.1) | 23.3 (3.2) | 0.79 |
Night and rotating shift work, % | 27.5 | 17.5 | 14.7 | 0.010 | 20.3 | 17.4 | 19.4 | 0.82 |
Current smokers, % | 38.7 | 26.6 | 28.7 | 0.10 | 31.7 | 27.6 | 24.9 | 0.028 |
High physical activity 2, % | 40.8 | 28.0 | 30.1 | 0.09 | 37.3 | 28.3 | 34.1 | 0.49 |
High leisure-time physical activity 3, % | 34.5 | 31.5 | 34.3 | 0.97 | 30.4 | 35.6 | 34.1 | 0.31 |
Alcohol consumption ≥1 day/week, % | 65.5 | 60.1 | 62.9 | 0.74 | 48.7 | 55.7 | 52.8 | 0.31 |
Parental history of diabetes, % | 14.1 | 16.1 | 11.9 | 0.52 | 16.5 | 15.4 | 16.3 | 0.96 |
History of hypertension, % | 12.7 | 11.2 | 14.7 | 0.55 | 9.2 | 8.5 | 9.6 | 0.78 |
History of dyslipidemia, % | 6.3 | 7.0 | 8.4 | 0.50 | 4.0 | 5.1 | 4.5 | 0.82 |
Dietary intake, mean (standard deviation) | ||||||||
Total energy, kcal | 1830 (525) | 1770 (495) | 1826 (476) | 0.94 | 1788 (468) | 1769 (457) | 1841 (505) | 0.067 |
Rice, g/1000 kcal | 193 (78) | 181 (67) | 161 (67) | <0.001 | 201 (69) | 185 (67) | 169 (63) | <0.001 |
Fish and shellfish, g/1000 kcal | 18 (6) | 32 (4) | 59 (21) | <0.001 | 18 (6) | 32 (4) | 57 (17) | <0.001 |
Meat, g/1000 kcal | 41 (19) | 37 (16) | 39 (18) | 0.35 | 37 (18) | 38 (16) | 39 (18) | 0.10 |
Vegetables, g/1000 kcal | 92 (46) | 116 (61) | 132 (80) | <0.001 | 103 (67) | 118 (54) | 137 (67) | <0.001 |
Fruits, g/1000 kcal | 31 (40) | 44 (53) | 51 (54) | 0.001 | 40 (50) | 46 (50) | 50 (49) | 0.003 |
Calcium, mg/1000 kcal | 189 (78) | 230 (85) | 256 (103) | <0.001 | 203 (82) | 236 (75) | 271 (85) | <0.001 |
Magnesium, mg/1000 kcal | 111 (21) | 125 (23) | 137 (35) | <0.001 | 113 (24) | 126 (20) | 140 (26) | <0.001 |
Dietary fiber, g/1000 kcal | 4.8 (1.3) | 5.6 (1.8) | 5.9 (2.2) | <0.001 | 5.3 (1.8) | 5.7 (1.5) | 6.2 (1.8) | <0.001 |
Saturated fatty acids, % energy | 5.9 (1.9) | 6.0 (2.1) | 6.1 (1.5) | 0.55 | 5.9 (1.8) | 6.2 (1.7) | 6.3 (1.6) | <0.001 |
Monounsaturated fatty acids, % energy | 8.4 (2.2) | 8.5 (2.1) | 8.9 (2.0) | 0.03 | 8.3 (2.2) | 8.7 (2.1) | 9.1 (2.0) | <0.001 |
Polyunsaturated fatty acids, % energy | 5.6 (1.4) | 6.0 (1.4) | 6.4 (1.4) | <0.001 | 5.7 (1.4) | 6.1 (1.3) | 6.6 (1.3) | <0.001 |
Protein, % energy | 12.0 (2.0) | 13.2 (1.7) | 15.5 (2.6) | <0.001 | 12.1 (1.9) | 13.6 (1.8) | 15.6 (2.3) | <0.001 |
Sugar, g/1000kcal | 4.4 (4.1) | 3.9 (3.4) | 3.2 (2.4) | 0.002 | 4.2 (3.8) | 3.8 (3.7) | 3.8 (3.3) | 0.16 |
Coffee consumption ≥1 cup/day, % | 68.3 | 65.7 | 58.7 | 0.08 | 67.6 | 68.2 | 64.4 | 0.26 |
Tertile of Fish and Shellfish Intake | ||||
---|---|---|---|---|
Lowest | Middle | Highest | Trend p 1 | |
Raw and stewing | ||||
Fish intake (median, g/1000 kcal) | 19 | 32.1 | 52.5 | |
Fish intake (range, g/1000kcal) | <26.2 | 26.2-<41.3 | ≥41.3 | |
No. of participants | 142 | 143 | 143 | |
Impaired glucose metabolism | ||||
No. of cases | 15 | 13 | 19 | |
Adjusted2 OR (95% CI) | 1.00 (ref) | 0.84 (0.37–1.93) | 0.96 (0.44–2.10) | 0.97 |
Adjusted3 OR (95% CI) | 1.00 (ref) | 0.87 (0.32–2.39) | 0.78 (0.21–2.83) | 0.70 |
Adjusted4 OR (95% CI) | 1.00 (ref) | 0.95 (0.32-2.78) | 0.64 (0.16–2.54) | 0.52 |
Diabetes | ||||
No. of cases | 9 | 7 | 8 | |
Adjusted 2 OR (95% CI) | 1.00 (ref) | 0.74 (0.26-2.12) | 0.73 (0.26-2.06) | 0.58 |
Adjusted 3 OR (95% CI) | 1.00 (ref) | 0.83 (0.20–3.50) | 1.16 (0.17–7.87) | 0.89 |
Adjusted 4 OR (95% CI) | 1.00 (ref) | 1.27 (0.24–6.81) | 0.89 (0.11–7.32) | 0.92 |
Broiling, deep-frying, and stir-frying | ||||
Fish intake (median, g/1000 kcal) | 18.8 | 32.0 | 51.9 | |
Fish intake (range, g/1000kcal) | <25.8 | 25.8 -<39.95 | ≥39.95 | |
No. of participants | 448 | 449 | 449 | |
Impaired glucose metabolism | ||||
No. of cases | 43 | 46 | 60 | |
Adjusted 2 OR (95% CI) | 1.00 (ref) | 0.99 (0.63–1.55) | 1.26 (0.82–1.94) | 0.25 |
Adjusted 3 OR (95% CI) | 1.00 (ref) | 0.98 (0.58–1.65) | 1.21 (0.62–2.38) | 0.53 |
Adjusted 4 OR (95% CI) | 1.00 (ref) | 1.00 (0.58–1.72) | 1.20 (0.60–2.40) | 0.58 |
Diabetes | ||||
No. of cases | 18 | 15 | 30 | |
Adjusted 2 OR (95% CI) | 1.00 (ref) | 0.80 (0.39–1.62) | 1.44 (0.78–2.67) | 0.16 |
Adjusted 3 OR (95% CI) | 1.00 (ref) | 0.97 (0.42–2.28) | 1.88 (0.70–5.02) | 0.17 |
Adjusted 4 OR (95% CI) | 1.00 (ref) | 1.07 (0.44–2.62) | 1.95 (0.71–5.41) | 0.16 |
Tertile of Fish and Shellfish Intake | ||||
---|---|---|---|---|
Lowest | Middle | Highest | Trend p 1 | |
Raw and stewing | ||||
Fasting glucose (mg/dl) | ||||
Adjusted 2 mean (95% CI) | 93.2 (91.2–95.3) | 92.0 (90.0–94.1) | 93.5 (91.5–95.6) | 0.75 |
Adjusted 3 mean (95% CI) | 93.8 (91.4–96.2) | 91.9 (89.8–94.0) | 93.2 (90.5–95.8) | 0.80 |
Adjusted 4 mean (95% CI) | 94.0 (91.6-96.3) | 92.3 (90.3–94.2) | 92.6 (90.1–95.1) | 0.51 |
HbA1c (%) | ||||
Adjusted 2 mean (95% CI) | 5.52 (5.44–5.61) | 5.50 (5.42–5.59) | 5.47 (5.39–5.56) | 0.43 |
Adjusted 3 mean (95% CI) | 5.57 (5.48–5.67) | 5.51 (5.42–5.59) | 5.42 (5.32–5.53) | 0.07 |
Adjusted 4 mean (95% CI) | 5.58 (5.49–5.67) | 5.52 (5.45–5.60) | 5.39 (5.29–5.49) | 0.02 |
Broiling, deep-frying, and stir-frying | ||||
Fasting glucose (mg/dl) | ||||
Adjusted 2 mean (95% CI) | 92.2 (91.0–93.4) | 91.6 (90.4–92.8) | 92.6 (91.4–93.9) | 0.57 |
Adjusted 3 mean (95% CI) | 92.6 (91.1–94.1) | 91.7 (90.5–92.9) | 92.1 (90.5–93.7) | 0.72 |
Adjusted 4 mean (95% CI) | 92.7 (91.3-94.1) | 91.7 (90.5–92.9) | 92.1 (90.5–93.6) | 0.65 |
HbA1c (%) | ||||
Adjusted 2 mean (95% CI) | 5.47 (5.42–5.52) | 5.45 (5.40–5.50) | 5.48 (5.43–5.53) | 0.65 |
Adjusted 3 mean (95% CI) | 5.48 (5.43–5.54) | 5.46 (5.41–5.51) | 5.46 (5.40–5.52) | 0.67 |
Adjusted 4 mean (95% CI) | 5.49 (5.43–5.54) | 5.46 (5.41–5.50) | 5.46 (5.40–5.52) | 0.60 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nanri, A.; Takazaki, A.; Kochi, T.; Eguchi, M.; Kabe, I.; Mizoue, T. Fish Cooking Methods and Impaired Glucose Metabolism Among Japanese Workers: The Furukawa Nutrition and Health Study. Nutrients 2020, 12, 1775. https://doi.org/10.3390/nu12061775
Nanri A, Takazaki A, Kochi T, Eguchi M, Kabe I, Mizoue T. Fish Cooking Methods and Impaired Glucose Metabolism Among Japanese Workers: The Furukawa Nutrition and Health Study. Nutrients. 2020; 12(6):1775. https://doi.org/10.3390/nu12061775
Chicago/Turabian StyleNanri, Akiko, Ayane Takazaki, Takeshi Kochi, Masafumi Eguchi, Isamu Kabe, and Tetsuya Mizoue. 2020. "Fish Cooking Methods and Impaired Glucose Metabolism Among Japanese Workers: The Furukawa Nutrition and Health Study" Nutrients 12, no. 6: 1775. https://doi.org/10.3390/nu12061775
APA StyleNanri, A., Takazaki, A., Kochi, T., Eguchi, M., Kabe, I., & Mizoue, T. (2020). Fish Cooking Methods and Impaired Glucose Metabolism Among Japanese Workers: The Furukawa Nutrition and Health Study. Nutrients, 12(6), 1775. https://doi.org/10.3390/nu12061775