Skin Carotenoid Level as an Alternative Marker of Serum Total Carotenoid Concentration and Vegetable Intake Correlates with Biomarkers of Circulatory Diseases and Metabolic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Self-Administered Questionnaire
2.3. Body Measurement
2.4. Blood Sampling and Testing
2.5. Measurement of Skin Carotenoids
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Subjects
3.2. Correlation between Skin Carotenoid Levels and Serum Carotenoid Concentrations
3.3. Correlation between Vegetable Intake and Skin Carotenoid Levels or Total Serum Carotenoid Concentrations
3.4. Correlation with Markers of Circulatory Diseases and Metabolic Syndrome
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jayedi, A.; Rashidy-Pour, A.; Parohan, M.; Zargar, M.S.; Shab-Bidar, S. Dietary Antioxidants, Circulating Antioxidant Concentrations, Total Antioxidant Capacity, and Risk of All-Cause Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Observational Studies. Adv. Nutr. 2018, 9, 701–716. [Google Scholar] [CrossRef] [Green Version]
- Bechthold, A.; Boeing, H.; Schwedhelm, C.; Hoffmann, G.; Knüppel, S.; Iqbal, K.; De Henauw, S.; Michels, N.; Devleesschauwer, B.; Schlesinger, S.; et al. Food groups and risk of coronary heart disease, stroke and heart failure: A systematic review and dose-response meta-analysis of prospective studies. Crit. Rev. Food Sci. Nutr. 2017, 59, 1071–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, C.; Lu, Q.; Gong, B.; Li, L.; Chang, L.; Fu, L.; Zhao, Y. Stroke and food groups: An overview of systematic reviews and meta-analyses. Public Health Nutr. 2017, 21, 766–776. [Google Scholar] [CrossRef]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef]
- WHO/FAO. Diet, nutrition and the prevention of chronic diseases. Report of a Joint WHO/FAO Expert Consultation. In WHO Technical Report Series 916; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- GBD. Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study. Lancet 2017, 393, 1958–1972. [Google Scholar]
- The Eatwell Guide. Public Health England. Available online: https://www.gov.uk/government/publications/the-eatwell-guide (accessed on 5 January 2020).
- 10 Guidelines for a Wholesome Diet. The German Nutrition Society. Available online: https://www.dge.de/fileadmin/public/doc/fm/10-guidelines-for-a-wholesome-diet.pdf. (accessed on 5 January 2020).
- Konde, Å.B.; Bjerselius, R.; Haglund, L.; Jansson, A.; Pearson, M.; Färnstrand, J.S.; Johansson, A.K. Swedish Dietary Guidelines-Risk and Benefit Management Report. Available online: https://www.livsmedelsverket.se/globalassets/publikationsdatabas/rapporter/2015/rapp-hanteringsrapport-engelska-omslag--inlaga--bilagor-eng-version.pdf. (accessed on 5 January 2020).
- Nakamura, T. Nutritional policies and dietary guidelines in Japan. Asia Pac. J. Clin. Nutr. 2011, 20, 452. [Google Scholar] [PubMed]
- National Health and Nutrition Survey. Fluctuations in Survey Items: Nutritional Intake Status Survey. Intake by Food Groups. Available online: https://www.nibiohn.go.jp/eiken/kenkounippon21/en/eiyouchousa/koumoku_syokuhin_chousa.html. (accessed on 5 January 2020).
- Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, Y.; Takahashi, S.; Aizawa, K.; Mukai, K. Development of singlet oxygen absorption capacity (SOAC) assay method. 4. Measurements of the SOAC values for vegetable and fruit extracts. Biosci. Biotechnol. Biochem. 2014, 79, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Hata, T.R.; Scholz, T.A.; Pershing, L.K.; Ermakov, I.V.; McClane, R.W.; Khachik, F.; Gellermann, W. Non-Invasive Raman Spectroscopic Detection of Carotenoids in Human Skin. J. Investig. Dermatol. 2000, 115, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Rerksuppaphol, S.; Rerksuppaphol, L. Effect of fruit and vegetable intake on skin carotenoid detected by non-invasive Raman spectroscopy. J. Med. Assoc. Thai 2006, 89, 1206–1212. [Google Scholar]
- Nguyen, L.M.; Scherr, R.E.; Linnell, J.D.; Ermakov, I.V.; Gellermann, W.; Jahns, L.; Keen, C.L.; Miyamoto, S.; Steinberg, F.M.; Young, H.M.; et al. Evaluating the relationship between plasma and skin carotenoids and reported dietary intake in elementary school children to assess fruit and vegetable intake. Arch. Biochem. Biophys. 2015, 572, 73–80. [Google Scholar] [CrossRef]
- Pitts, S.B.J.; Jahns, L.; Wu, Q.; Moran, N.E.; Bell, R.A.; Truesdale, K.P.; Laska, M.N. A non-invasive assessment of skin carotenoid status through reflection spectroscopy is a feasible, reliable and potentially valid measure of fruit and vegetable consumption in a diverse community sample. Public Health Nutr. 2018, 21, 1664–1670. [Google Scholar] [CrossRef]
- Ermakov, I.V.; Ermakova, M.; Sharifzadeh, M.; Gorusupudi, A.; Farnsworth, K.; Bernstein, P.S.; Stookey, J.; Evans, J.; Arana, T.; Tao-Lew, L.; et al. Optical assessment of skin carotenoid status as a biomarker of vegetable and fruit intake. Arch. Biochem. Biophys. 2018, 646, 46–54. [Google Scholar] [CrossRef]
- Jahns, L.; Johnson, L.K.; Conrad, Z.; Bukowski, M.; Raatz, S.K.; Pitts, S.J.; Wang, Y.; Ermakov, I.V.; Gellermann, W. Concurrent validity of skin carotenoid status as a concentration biomarker of vegetable and fruit intake compared to multiple 24-h recalls and plasma carotenoid concentrations across one year: A cohort study. Nutr. J. 2019, 18, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darvin, M.E.; Sandhagen, C.; Koecher, W.; Sterry, W.; Lademann, J.; Meinke, M.C. Comparison of two methods for noninvasive determination of carotenoids in human and animal skin: Raman spectroscopy versus reflection spectroscopy. J. Biophotonics 2012, 5, 550–558. [Google Scholar] [CrossRef]
- Darvin, M.E.; Magnussen, B.; Lademann, J.; Köcher, W. Multiple spatially resolved reflection spectroscopy for in vivo determination of carotenoids in human skin and blood. Laser Phys. Lett. 2016, 13, 095601. [Google Scholar] [CrossRef] [Green Version]
- Meinke, M.; Schanzer, S.; Lohan, S.B.; Shchatsinin, I.; Darvin, M.E.; Vollert, H.; Magnussen, B.; Köcher, W.; Helfmann, J.; Lademann, J. Comparison of different cutaneous carotenoid sensors and influence of age, skin type, and kinetic changes subsequent to intake of a vegetable extract. J. Biomed. Opt. 2016, 21, 107002. [Google Scholar] [CrossRef] [PubMed]
- Meinke, M.; Lohan, S.B.; Köcher, W.; Magnussen, B.; Darvin, M.E.; Lademann, J. Multiple spatially resolved reflection spectroscopy to monitor cutaneous carotenoids during supplementation of fruit and vegetable extracts in vivo. Ski. Res. Technol. 2017, 23, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, T.B. The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 1988, 124, 869–871. [Google Scholar] [CrossRef]
- Kanagasabai, T.; Alkhalaqi, K.; Churilla, J.R.; Ardern, C.I. The Association Between Metabolic Syndrome and Serum Concentrations of Micronutrients, Inflammation, and Oxidative Stress Outside of the Clinical Reference Ranges: A Cross-Sectional Study. Metab. Syndr. Relat. Disord. 2019, 17, 29–36. [Google Scholar] [CrossRef]
- Han, G.; Meza, J.; Soliman, G.; Islam, K.M.; Watanabe-Galloway, S. Higher levels of serum lycopene are associated with reduced mortality in individuals with metabolic syndrome. Nutr. Res. 2016, 36, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Sugiura, M.; Ogawa, K.; Ikoma, Y.; Yano, M. Serum β-cryptoxanthin and β-carotene derived from Satsuma mandarin and brachial–ankle pulse wave velocity: The Mikkabi cohort study. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chung, S.-J.; McCullough, M.L.; Song, W.O.; Fernandez, M.-L.; Koo, S.I.; Chun, O.K. Dietary Carotenoids Are Associated with Cardiovascular Disease Risk Biomarkers Mediated by Serum Carotenoid Concentrations. J. Nutr. 2014, 144, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Obana, A.; Gohto, Y.; Gellermann, W.; Ermakov, I.V.; Sasano, H.; Seto, T.; Bernstein, P.S. Skin Carotenoid Index in a large Japanese population sample. Sci. Rep. 2019, 9, 9318. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Honda, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Both Comprehensive and Brief Self-Administered Diet History Questionnaires Satisfactorily Rank Nutrient Intakes in Japanese Adults. J. Epidemiol. 2012, 22, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oshima, S.; Sakamoto, H.; Ishiguro, Y.; Terao, J. Accumulation and clearance of capsanthin in blood plasma after the ingestion of paprika juice in men. J. Nutr. 1997, 127, 1475–1479. [Google Scholar] [CrossRef]
- Aizawa, K.; Inakuma, T. Quantitation of Carotenoids in Commonly consumed Vegetables in Japan. Food Sci. Technol. Res. 2007, 13, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Ermakov, I.V.; Ermakova, M.R.; Gellermann, W.; Lademann, J. Noninvasive selective detection of lycopene and β-carotene in human skin using Raman spectroscopy. J. Biomed. Opt. 2004, 9, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Sowell, A.L.; Huff, D.L.; Yeager, P.R.; Caudill, S.P.; Gunter, E.W. Retinol, alpha-tocopherol, lutein/zeaxanthin, beta-cryptoxanthin, lycopene, alpha-carotene, trans-beta-carotene, and four retinyl esters in serum determined simultaneously by reversed-phase HPLC with multiwavelength detection. Clin. Chem. 1994, 40, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Scarmo, S.; Cartmel, B.; Lin, H.; Leffell, D.J.; Welch, E.; Bhosale, P.; Bernstein, P.S.; Mayne, S.T. Significant correlations of dermal total carotenoids and dermal lycopene with their respective plasma levels in healthy adults. Arch. Biochem. Biophys. 2010, 504, 34–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.M.; Lin, Y.; Moon, T.; Baier, M. Micronutrient concentrations in paired skin and plasma of patients with actinic keratoses: Effect of prolonged retinol supplementation. Cancer Epidemiol. Biomark. Prev. 1993, 2, 145–150. [Google Scholar]
- Liu, J.; Shi, W.-Q.; Cao, Y.; He, L.-P.; Guan, K.; Ling, W.; Chen, Y.-M. Higher serum carotenoid concentrations associated with a lower prevalence of the metabolic syndrome in middle-aged and elderly Chinese adults. Br. J. Nutr. 2014, 112, 2041–2048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, A.D.; Strachan, A.A.; Thies, F.; Aucott, L.S.; Reid, D.M.; Hardcastle, A.C.; Mavroeidi, A.; Simpson, W.G.; Duthie, G.G.; Macdonald, H.M. Patterns of dietary intake and serum carotenoid and tocopherol status are associated with biomarkers of chronic low-grade systemic inflammation and cardiovascular risk. Br. J. Nutr. 2014, 112, 1341–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, M.; Waki, N.; Suganuma, H.; Takahashi, I.; Kurauchi, S.; Sawada, K.; Tokuda, I.; Misawa, M.; Ando, M.; Itoh, K.; et al. Association between biomarkers of cardiovascular diseases and the blood concentrations of antioxidants among the general population without apparent illness. Nutrients. (under review).
- Tucker, K.L.; Chen, H.; Vogel, S.; Wilson, P.W.F.; Schaefer, E.J.; Lammi-Keefe, C.J. Carotenoid intakes, assessed by dietary questionnaire, are associated with plasma carotenoid concentrations in an elderly population. J. Nutr. 1999, 129, 438–445. [Google Scholar] [CrossRef] [Green Version]
- Meinke, M.; Lauer, A.; Taskoparan, B.; Gersonde, I.; Lademann, J.; Darvin, M.E. Influence on the Carotenoid Levels of Skin Arising from Age, Gender, Body Mass Index in Smoking/Non-Smoking Individuals. Free. Radicals Antioxid. 2011, 1, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.M.; Koutsidis, G.; Lodge, J.K.; Ashor, A.W.; Siervo, M.; Lara, J. Tomato and lycopene supplementation and cardiovascular risk factors: A systematic review and meta-analysis. Atherosclerosis 2017, 257, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xu, J. Lycopene Supplement and Blood Pressure: An Updated Meta-Analysis of Intervention Trials. Nutrients 2013, 5, 3696–3712. [Google Scholar] [CrossRef]
- Nonaka, S.; Arai, C.; Takayama, M.; Matsukura, C.; Ezura, H. Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci. Rep. 2017, 7, 7057. [Google Scholar] [CrossRef] [Green Version]
- Utsugi, M.T.; Ohkubo, T.; Kikuya, M.; Kurimoto, A.; Sato, R.I.; Suzuki, K.; Metoki, H.; Hara, A.; Tsubono, Y.; Imai, Y. Fruit and Vegetable Consumption and the Risk of Hypertension Determined by Self Measurement of Blood Pressure at Home: The Ohasama Study. Hypertens. Res. 2008, 31, 1435–1443. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, A.; Kimoto, K. Studies on the mechanism of antihypertensive action by nicotianamine. J. Nutr. Sci. Vitaminol. 2010, 56, 242–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton-Freeman, B. Dietary fiber and energy regulation. J. Nutr. 2000, 130, S272–S275. [Google Scholar] [CrossRef] [Green Version]
- Weickert, M.O.; Pfeiffer, A.F. Impact of Dietary Fiber Consumption on Insulin Resistance and the Prevention of Type 2 Diabetes. J. Nutr. 2018, 148, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Ötleş, S.; Ozgoz, S. Health effects of dietary fiber. Acta Sci. Pol. Technol. Aliment. 2014, 13, 191–202. [Google Scholar] [CrossRef]
- Ceriello, A.; Motz, E. Is Oxidative Stress the Pathogenic Mechanism Underlying Insulin Resistance, Diabetes, and Cardiovascular Disease? The Common Soil Hypothesis Revisited. Arter. Thromb. Vasc. Boil. 2004, 24, 816–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchiyama, K.; Naito, Y.; Hasegawa, G.; Nakamura, N.; Takahashi, J.; Yoshikawa, T. Astaxanthin protects β-cells against glucose toxicity in diabetic db/db mice. Redox Rep. 2002, 7, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Romanchik, J.E.; Morel, D.W.; Harrison, E.H. Distributions of carotenoids and alpha-tocopherol among lipoproteins do not change when human plasma is incubated in vitro. J. Nutr. 1995, 125, 2610–2617. [Google Scholar]
- McEneny, J.; Wade, L.; Young, I.S.; Masson, L.F.; Duthie, G.; McGinty, A.; McMaster, C.; Thies, F. Lycopene intervention reduces inflammation and improves HDL functionality in moderately overweight middle-aged individuals. J. Nutr. Biochem. 2013, 24, 163–168. [Google Scholar] [CrossRef]
- Navarro-González, I.; Pérez-Sánchez, H.; Martín-Pozuelo, G.; García-Alonso, J.; Periago, M.J. The Inhibitory Effects of Bioactive Compounds of Tomato Juice Binding to Hepatic HMGCR: In Vivo Study and Molecular Modelling. PLoS ONE 2014, 9, e83968. [Google Scholar] [CrossRef]
- Blum, A.; Merei, M.; Karem, A.; Blum, A.; Ben-Arzi, S.; Wirsansky, I.; Khazim, K. Effects of tomatoes on the lipid profile. Clin. Investig. Med. 2006, 29, 298–300. [Google Scholar]
Total | Male | Female | ||
---|---|---|---|---|
Number of Subjects | 811 | 340 | 471 | |
Age (years) | 49.5 ± 15.1 | 48.8 ± 14.6 | 50.1 ± 15.4 | |
Current Smoking (%) | 19 ± 0.39 | 31 ± 0.46 | 10 ± 0.30 | *** |
Habitual Exercise (%) | 8 ± 0.27 | 9 ± 0.28 | 7 ± 0.26 | |
Alcohol Intake (mL/d) | 13.75 ± 22.86 | 24.90 ± 28.00 | 5.64 ± 13.30 | *** |
Antihypertensive (%) | 18 ± 0.38 | 20 ± 0.40 | 17 ± 0.37 | |
Skin Carotenoid | 5.41 ± 1.30 | 4.78 ± 1.08 | 5.87 ± 1.25 | *** |
Serum Carotenoid | ||||
Total Carotenoid (µg/mL) | 1.286 ± 0.653 | 1.060 ± 0.549 | 1.460 ± 0.662 | *** |
Lutein (µg/mL) | 0.304 ± 0.146 | 0.282 ± 0.128 | 0.319 ± 0.156 | *** |
Zeaxanthin (µg/mL) | 0.064 ± 0.026 | 0.066 ± 0.025 | 0.063 ± 0.027 | |
β-Cryptoxanthin (µg/mL) | 0.123 ± 0.086 | 0.094 ± 0.065 | 0.144 ± 0.093 | *** |
α-Carotene (µg/mL) | 0.141 ± 0.142 | 0.113 ± 0.146 | 0.161 ± 0.136 | *** |
β-Carotene (µg/mL) | 0.414 ± 0.333 | 0.271 ± 0.253 | 0.517 ± 0.346 | *** |
Lycopene (µg/mL) | 0.250 ± 0.151 | 0.236 ± 0.152 | 0.260 ± 0.149 | ** |
Vegetable and fruit Intake | ||||
Total vegetable (g/day) | 184.2 ± 116.3 | 170.0 ± 109.0 | 194.0 ± 120.0 | ** |
Green vegetables (g/day) | 74.1 ± 56.1 | 66.1 ± 51.6 | 79.9 ± 58.5 | *** |
Light-colored vege. (g/day) | 110.1 ± 70.0 | 104.0 ± 65.3 | 114.0 ± 73.0 | |
Citrus (g/day) | 9.0 ± 16.2 | 7.7 ± 14.5 | 10.0 ± 17.3 | |
BMI (kg/m2) | 22.7 ± 3.5 | 23.9 ± 3.4 | 21.9 ± 3.4 | *** |
baPWV (cm/sec) | 1370 ± 316 | 1420 ± 304 | 1330 ± 320 | *** |
SBP (mmHg) | 123.2 ±18.2 | 127.0 ± 18.0 | 121.0 ± 17.9 | *** |
DBP (mmHg) | 78.2 ± 11.9 | 81.5 ± 12.2 | 75.8 ± 11.1 | *** |
HOMA-IR | 1.25 ± 0.88 | 1.34 ± 1.15 | 1.18 ± 0.61 | |
Insulin (µU/mL) | 5.32 ± 2.87 | 5.52 ± 3.49 | 5.18 ± 2.31 | |
FBG (mg/dL) | 92.4 ± 12.9 | 95.1 ± 15.6 | 90.5 ± 10.1 | *** |
TGs (mg/dL) | 93.6 ± 68.7 | 118.0 ± 90.0 | 76.1 ± 39.2 | *** |
HDL (mg/dL) | 65.7 ± 17.7 | 59.1 ± 16.6 | 70.4 ± 17.0 | *** |
Total (n = 811) | Male (n = 340) | Female (n = 471) | ||||
---|---|---|---|---|---|---|
r | p | r | p | r | p | |
Total Carotenoid | 0.678 | <0.001 | 0.587 | <0.001 | 0.653 | <0.001 |
Lutein | 0.414 | <0.001 | 0.348 | <0.001 | 0.431 | <0.001 |
Zeaxanthin | 0.164 | <0.001 | 0.184 | <0.001 | 0.220 | <0.001 |
β-Cryptoxanthin | 0.475 | <0.001 | 0.339 | <0.001 | 0.417 | <0.001 |
α-Carotene | 0.615 | <0.001 | 0.545 | <0.001 | 0.580 | <0.001 |
β-Carotene | 0.653 | <0.001 | 0.516 | <0.001 | 0.626 | <0.001 |
Lycopene | 0.278 | <0.001 | 0.297 | <0.001 | 0.234 | <0.001 |
Total (n = 811) | Male (n = 340) | Female (n = 471) | ||||
---|---|---|---|---|---|---|
r | p | r | p | r | p | |
(1) Skin Carotenoid | ||||||
Total Vegetable | 0.210 | <0.001 | 0.169 | <0.01 | 0.194 | <0.001 |
Green vegetables | 0.217 | <0.001 | 0.175 | <0.01 | 0.188 | <0.001 |
Light-colored vege. | 0.174 | <0.001 | 0.144 | <0.01 | 0.169 | <0.001 |
Citrus | 0.113 | <0.01 | 0.096 | NS | 0.090 | NS |
(2) Serum Total Carotenoid | ||||||
Total Vegetable | 0.287 | <0.001 | 0.262 | <0.001 | 0.275 | <0.001 |
Green vegetables | 0.350 | <0.001 | 0.266 | <0.001 | 0.293 | <0.001 |
Light-colored vege. | 0.232 | <0.001 | 0.227 | <0.001 | 0.219 | <0.001 |
Citrus | 0.173 | <0.001 | 0.228 | <0.001 | 0.117 | <0.05 |
Carotenoid Level | Gender | Interaction | ||||
---|---|---|---|---|---|---|
std. β | p | std. β | p | std. β | p | |
(1) Skin Carotenoid | ||||||
Total Vegetable | 0.193 | <0.01 | 0.035 | NS | 0.016 | NS |
Green vegetables | 0.195 | <0.01 | 0.078 | NS | 0.010 | NS |
Light-colored vege. | 0.164 | <0.05 | −0.005 | NS | 0.019 | NS |
Citrus | 0.104 | NS | 0.057 | NS | −0.004 | NS |
(2) Serum Total Carotenoid | ||||||
Total Vegetable | 0.256 | <0.001 | 0.004 | NS | 0.058 | NS |
Green vegetables | 0.254 | <0.001 | 0.037 | NS | 0.082 | NS |
Light-colored vege. | 0.221 | <0.001 | −0.023 | NS | 0.030 | NS |
Citrus | 0.213 | <0.001 | 0.008 | NS | −0.076 | NS |
Skin Carotenoid | Serum Total Carotenoid | |||||||
---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | |||||
std. β | p | std. β | p | std. β | p | std. β | p | |
BMI | −0.120 | <0.05 | −0.160 | <0.001 | −0.219 | <0.001 | −0.262 | <0.001 |
baPWV | −0.023 | NS | −0.056 | NS | −0.060 | NS | −0.089 | <0.05 |
SBP | −0.032 | NS | −0.123 | <0.01 | −0.093 | NS | −0.057 | NS |
DBP | −0.058 | NS | −0.095 | <0.05 | −0.097 | NS | −0.055 | NS |
HOMA-IR | −0.108 | NS | −0.122 | <0.05 | −0.202 | <0.01 | −0.236 | <0.001 |
Insulin | −0.127 | <0.05 | −0.125 | <0.01 | −0.236 | <0.001 | −0.243 | <0.001 |
FBG | −0.019 | NS | −0.015 | NS | −0.085 | NS | −0.064 | NS |
TGs | −0.042 | NS | −0.141 | <0.01 | −0.284 | <0.001 | −0.251 | <0.001 |
HDL | −0.047 | NS | 0.134 | <0.01 | 0.183 | <0.01 | 0.337 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsumoto, M.; Suganuma, H.; Shimizu, S.; Hayashi, H.; Sawada, K.; Tokuda, I.; Ihara, K.; Nakaji, S. Skin Carotenoid Level as an Alternative Marker of Serum Total Carotenoid Concentration and Vegetable Intake Correlates with Biomarkers of Circulatory Diseases and Metabolic Syndrome. Nutrients 2020, 12, 1825. https://doi.org/10.3390/nu12061825
Matsumoto M, Suganuma H, Shimizu S, Hayashi H, Sawada K, Tokuda I, Ihara K, Nakaji S. Skin Carotenoid Level as an Alternative Marker of Serum Total Carotenoid Concentration and Vegetable Intake Correlates with Biomarkers of Circulatory Diseases and Metabolic Syndrome. Nutrients. 2020; 12(6):1825. https://doi.org/10.3390/nu12061825
Chicago/Turabian StyleMatsumoto, Mai, Hiroyuki Suganuma, Sunao Shimizu, Hiroki Hayashi, Kahori Sawada, Itoyo Tokuda, Kazushige Ihara, and Shigeyuki Nakaji. 2020. "Skin Carotenoid Level as an Alternative Marker of Serum Total Carotenoid Concentration and Vegetable Intake Correlates with Biomarkers of Circulatory Diseases and Metabolic Syndrome" Nutrients 12, no. 6: 1825. https://doi.org/10.3390/nu12061825
APA StyleMatsumoto, M., Suganuma, H., Shimizu, S., Hayashi, H., Sawada, K., Tokuda, I., Ihara, K., & Nakaji, S. (2020). Skin Carotenoid Level as an Alternative Marker of Serum Total Carotenoid Concentration and Vegetable Intake Correlates with Biomarkers of Circulatory Diseases and Metabolic Syndrome. Nutrients, 12(6), 1825. https://doi.org/10.3390/nu12061825