Eating Pattern and Nutritional Risks among People with Multiple Sclerosis Following a Modified Paleolithic Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Dietary Recalls and Analysis
2.3. Laboratory Assessment and Analysis
3. Results
3.1. Dietary Assessment
3.2. Laboratory Assessment
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple sclerosis. Lancet 2018, 391, 1622–1636. [Google Scholar] [CrossRef]
- Wallin, M.T.; Culpepper, W.J.; Campbell, J.D.; Nelson, L.M.; Langer-Gould, A.; Marrie, R.A.; Cutter, G.R.; Kaye, W.E.; Wagner, L.; Tremlett, H.; et al. The prevalence of ms in the united states: A population-based estimate using health claims data. Neurology 2019, 92, e1029–e1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compston, A.; Coles, A. Multiple sclerosis. Lancet 2008, 372, 1502–1517. [Google Scholar] [CrossRef]
- Lauer, K. Environmental risk factors in multiple sclerosis. Expert Rev. Neurother. 2010, 10, 421–440. [Google Scholar] [CrossRef]
- Hartung, D.M.; Bourdette, D.N.; Ahmed, S.M.; Whitham, R.H. The cost of multiple sclerosis drugs in the us and the pharmaceutical industry: Too big to fail? Neurology 2015, 84, 2185–2192. [Google Scholar] [CrossRef] [Green Version]
- Rafiee Zadeh, A.; Ghadimi, K.; Ataei, A.; Askari, M.; Sheikhinia, N.; Tavoosi, N.; Falahatian, M. Mechanism and adverse effects of multiple sclerosis drugs: A review article. Part 2. Int. J. Physiol. Pathophysiol. Pharmacol. 2019, 11, 105–114. [Google Scholar]
- Rafiee Zadeh, A.; Askari, M.; Azadani, N.N.; Ataei, A.; Ghadimi, K.; Tavoosi, N.; Falahatian, M. Mechanism and adverse effects of multiple sclerosis drugs: A review article. Part 1. Int. J. Physiol. Pathophysiol. Pharmacol. 2019, 11, 95–104. [Google Scholar]
- Yadav, V.; Shinto, L.; Bourdette, D. Complementary and alternative medicine for the treatment of multiple sclerosis. Expert Rev. Clin. Immunol. 2010, 6, 381–395. [Google Scholar] [CrossRef] [Green Version]
- Wahls, T.; Adamson, E. The Wahls Protocol: How I Beat Progressive ms Using Paleo Principles and Functional Medicine; Avery/Penguin: New York, NY, USA, 2014. [Google Scholar]
- Bisht, B.; Darling, W.G.; Shivapour, E.T.; Lutgendorf, S.K.; Snetselaar, L.G.; Chenard, C.A.; Wahls, T.L. Multimodal intervention improves fatigue and quality of life in subjects with progressive multiple sclerosis: A pilot study. Degener. Neurol. Neuromuscul. Dis. 2015, 5, 19–35. [Google Scholar]
- Bisht, B.; Darling, W.G.; White, E.C.; White, K.A.; Shivapour, E.T.; Zimmerman, M.B.; Wahls, T.L. Effects of a multimodal intervention on gait and balance of subjects with progressive multiple sclerosis: A prospective longitudinal pilot study. Degener. Neurol. Neuromuscul. Dis. 2017, 7, 79–93. [Google Scholar] [CrossRef] [Green Version]
- Fellows Maxwell, K.; Wahls, T.; Browne, R.W.; Rubenstein, L.; Bisht, B.; Chenard, C.A.; Snetselaar, L.; Weinstock-Guttman, B.; Ramanathan, M. Lipid profile is associated with decreased fatigue in individuals with progressive multiple sclerosis following a diet-based intervention: Results from a pilot study. PLoS ONE 2019, 14, e0218075. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Bisht, B.; Hall, M.J.; Rubenstein, L.M.; Louison, R.; Klein, D.T.; Wahls, T.L. A multimodal, nonpharmacologic intervention improves mood and cognitive function in people with multiple sclerosis. J. Am. Coll. Nutr. 2017, 36, 150–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irish, A.K.; Erickson, C.M.; Wahls, T.L.; Snetselaar, L.G.; Darling, W.G. Randomized control trial evaluation of a modified paleolithic dietary intervention in the treatment of relapsing-remitting multiple sclerosis: A pilot study. Degener. Neurol. Neuromuscul. Dis. 2017, 7, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.E.; Titcomb, T.J.; Bisht, B.; Rubenstein, L.M.; Louison, R.; Wahls, T.L. A modified mct-based ketogenic diet increases plasma β-hydroxybutyrate but has less effect on fatigue and quality of life in people with multiple sclerosis compared to a modified paleolithic diet: A waitlist-controlled, randomized pilot study [published online ahead of print, 26 Mart 2020]. J. Am. Coll. Nutr. 2020, 1–13. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans, 8th ed.; USDA: Washington, DC, USA, 2015.
- Masullo, L.; Papas, M.A.; Cotugna, N.; Baker, S.; Mahoney, L.; Trabulsi, J. Complementary and alternative medicine use and nutrient intake among individuals with multiple sclerosis in the united states. J. Community Health 2015, 40, 153–160. [Google Scholar] [CrossRef]
- Chenard, C.A.; Rubenstein, L.M.; Snetselaar, L.G.; Wahls, T.L. Nutrient composition comparison between a modified paleolithic diet for multiple sclerosis and the recommended healthy u.S.-style eating pattern. Nutrients 2019, 11, 537. [Google Scholar] [CrossRef] [Green Version]
- Bisht, B.; Darling, W.G.; Grossmann, R.E.; Shivapour, E.T.; Lutgendorf, S.K.; Snetselaar, L.G.; Hall, M.J.; Zimmerman, M.B.; Wahls, T.L. A multimodal intervention for patients with secondary progressive multiple sclerosis: Feasibility and effect on fatigue. J. Altern. Complement. Med. 2014, 20, 347–355. [Google Scholar] [CrossRef] [Green Version]
- United States Department of Agriculture Fooddata Central. Available online: https://fdc.nal.usda.gov (accessed on 30 March 2020).
- Zhang, Y.; Chhonker, Y.S.; Bala, V.; Hagg, A.; Snetselaar, L.G.; Wahls, T.L.; Murry, D.J. Reversed phase uplc/apci-ms determination of vitamin k1 and menaquinone-4 in human plasma: Application to a clinical study. J. Pharm. Biomed. Anal. 2020, 183, 113147. [Google Scholar] [CrossRef]
- Gannon, B.M.; Valentine, A.R.; Davis, C.R.; Howe, J.A.; Tanumihardjo, S.A. Duration of retinol isotope dilution studies with compartmental modeling affects model complexity, kinetic parameters, and calculated vitamin a stores in us women. J. Nutr. 2018, 148, 1387–1396. [Google Scholar] [CrossRef]
- Shim, J.S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef]
- Sintzel, M.B.; Rametta, M.; Reder, A.T. Vitamin d and multiple sclerosis: A comprehensive review. Neurol. Ther. 2018, 7, 59–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, E.; Piccio, L.; Cross, A.H. Use of vitamins and dietary supplements by patients with multiple sclerosis: A review. JAMA Neurol. 2018, 75, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Zikan, V. Bone health in patients with multiple sclerosis. J. Osteoporos. 2011, 2011, 596294. [Google Scholar] [CrossRef] [Green Version]
- Kelley, G. Aerobic exercise and lumbar spine bone mineral density in postmenopausal women: A meta-analysis. J. Am. Geriatr. Soc. 1998, 46, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.; Edwards, L.R. Magnesium supplementation in vitamin d deficiency. Am. J. Ther. 2019, 26, e124–e132. [Google Scholar] [CrossRef]
- Uwitonze, A.M.; Razzaque, M.S. Role of magnesium in vitamin d activation and function. J. Am. Osteopath Assoc. 2018, 118, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Loken-Amsrud, K.I.; Myhr, K.M.; Bakke, S.J.; Beiske, A.G.; Bjerve, K.S.; Bjornara, B.T.; Hovdal, H.; Lilleas, F.; Midgard, R.; Pedersen, T.; et al. Alpha-tocopherol and mri outcomes in multiple sclerosis--association and prediction. PLoS ONE 2013, 8, e54417. [Google Scholar] [CrossRef] [Green Version]
- Goudarzvand, M.; Javan, M.; Mirnajafi-Zadeh, J.; Mozafari, S.; Tiraihi, T. Vitamins e and d3 attenuate demyelination and potentiate remyelination processes of hippocampal formation of rats following local injection of ethidium bromide. Cell. Mol. Neurobiol. 2010, 30, 289–299. [Google Scholar] [CrossRef]
- Spanevello, R.; Mazzanti, C.M.; Schmatz, R.; Bagatini, M.; Stefanello, N.; Correa, M.; Kaizer, R.; Maldonado, P.; Mazzanti, A.; Graca, D.L.; et al. Effect of vitamin e on ectonucleotidase activities in synaptosomes and platelets and parameters of oxidative stress in rats experimentally demyelinated. Brain Res. Bull. 2009, 80, 45–51. [Google Scholar] [CrossRef]
- Bitarafan, S.; Saboor-Yaraghi, A.; Sahraian, M.A.; Soltani, D.; Nafissi, S.; Togha, M.; Beladi Moghadam, N.; Roostaei, T.; Mohammadzadeh Honarvar, N.; Harirchian, M.H. Effect of vitamin a supplementation on fatigue and depression in multiple sclerosis patients: A double-blind placebo-controlled clinical trial. Iran. J. Allergy Asthma Immunol. 2016, 15, 13–19. [Google Scholar]
- Løken-Amsrud, K.I.; Myhr, K.M.; Bakke, S.J.; Beiske, A.G.; Bjerve, K.S.; Bjornara, B.T.; Hovdal, H.; Lilleas, F.; Midgard, R.; Pedersen, T.; et al. Retinol levels are associated with magnetic resonance imaging outcomes in multiple sclerosis. Mult. Scler. 2013, 19, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Rosjo, E.; Myhr, K.M.; Loken-Amsrud, K.I.; Bakke, S.J.; Beiske, A.G.; Bjerve, K.S.; Hovdal, H.; Lilleas, F.; Midgard, R.; Pedersen, T.; et al. Increasing serum levels of vitamin a, d and e are associated with alterations of different inflammation markers in patients with multiple sclerosis. J. Neuroimmunol. 2014, 271, 60–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokote, H.; Kamata, T.; Toru, S.; Sanjo, N.; Yokota, T. Serum retinol levels are associated with brain volume loss in patients with multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin. 2017, 3, 2055217317729688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasemi, R.; Kundi, M.; Moghadam, N.B.; Moshammer, H.; Hainfellner, J.A. Vitamin k2 in multiple sclerosis patients. Wien. Klin. Wochenschr. 2018, 130, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Ramsaransing, G.S.; Fokkema, M.R.; Teelken, A.; Arutjunyan, A.V.; Koch, M.; De Keyser, J. Plasma homocysteine levels in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2006, 77, 189–192. [Google Scholar] [CrossRef] [Green Version]
- Teunissen, C.E.; Killestein, J.; Kragt, J.J.; Polman, C.H.; Dijkstra, C.D.; Blom, H.J. Serum homocysteine levels in relation to clinical progression in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 1349–1353. [Google Scholar] [CrossRef]
- Refsum, H.; Smith, A.D.; Ueland, P.M.; Nexo, E.; Clarke, R.; McPartlin, J.; Johnston, C.; Engbaek, F.; Schneede, J.; McPartlin, C.; et al. Facts and recommendations about total homocysteine determinations: An expert opinion. Clin. Chem. 2004, 50, 3–32. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Lim, I.K.; Park, G.H.; Paik, W.K. Biological methylation of myelin basic protein: Enzymology and biological significance. Int. J. Biochem. Cell. Biol. 1997, 29, 743–751. [Google Scholar] [CrossRef]
- Dardiotis, E.; Arseniou, S.; Sokratous, M.; Tsouris, Z.; Siokas, V.; Mentis, A.A.; Michalopoulou, A.; Andravizou, A.; Dastamani, M.; Paterakis, K.; et al. Vitamin b12, folate, and homocysteine levels and multiple sclerosis: A meta-analysis. Mult. Scler. Relat. Disord. 2017, 17, 190–197. [Google Scholar] [CrossRef]
- Skripuletz, T.; Linker, R.A.; Stangel, M. The choline pathway as a strategy to promote central nervous system (cns) remyelination. Neural Regen. Res. 2015, 10, 1369–1370. [Google Scholar]
- Skripuletz, T.; Manzel, A.; Gropengiesser, K.; Schafer, N.; Gudi, V.; Singh, V.; Salinas Tejedor, L.; Jorg, S.; Hammer, A.; Voss, E.; et al. Pivotal role of choline metabolites in remyelination. Brain 2015, 138 Pt 2, 398–413. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.C.; Fulgoni, V.L., 3rd. Assessment of total choline intakes in the united states. J. Am. Coll. Nutr. 2016, 35, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Siegel, L.; Putnam, T.J.; Lynn, J.G. Blood pantothenic acid values in multiple sclerosis. Proc. Soc. Exp. Biol. Med. 1941, 47, 362–364. [Google Scholar] [CrossRef]
- Nemazannikova, N.; Mikkelsen, K.; Stojanovska, L.; Blatch, G.L.; Apostolopoulos, V. Is there a link between vitamin b and multiple sclerosis? Med. Chem. 2018, 14, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, E.; Nathoo, N.; Mahjoub, Y.; Dunn, J.F.; Yong, V.W. Iron in multiple sclerosis: Roles in neurodegeneration and repair. Nat. Rev. Neurol. 2014, 10, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Bredholt, M.; Frederiksen, J.L. Zinc in multiple sclerosis: A systematic review and meta-analysis. ASN Neuro 2016, 8, 1759091416651511. [Google Scholar] [CrossRef]
- Choi, B.Y.; Jung, J.W.; Suh, S.W. The emerging role of zinc in the pathogenesis of multiple sclerosis. Int. J. Mol. Sci. 2017, 18, 2070. [Google Scholar] [CrossRef] [Green Version]
- National Academies of Sciences Engineering and Medicine. In Dietary Reference Intakes for Sodium and Potassium; Oria, M.; Harrison, M.; Stallings, V.A. (Eds.) National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- Fitzgerald, K.C.; Munger, K.L.; Hartung, H.P.; Freedman, M.S.; Montalban, X.; Edan, G.; Wicklein, E.M.; Radue, E.W.; Kappos, L.; Pohl, C.; et al. Sodium intake and multiple sclerosis activity and progression in benefit. Ann. Neurol. 2017, 82, 20–29. [Google Scholar] [CrossRef]
Food Group | Daily Intake (Mean ± SD) | Diet Recommendation | Individuals Meeting Recommendation (%) |
---|---|---|---|
Recommended | |||
Total FV (cup equivalents/day) 1 | 10.3 ± 4.5 | 6–9 | 16 (84) |
-Intensely colored FV (cup equivalents/day) 1 | 6.3 ± 3.1 | 2–3 | 16 (84) |
-Leafy green V (cup equivalents/day) 1 | 2.2 ± 1.4 | 2–3 | 6 (32) |
-Sulfur-rich V (cup equivalents/day) 1 | 1.9 ± 1.4 | 2–3 | 3 (16) |
Excluded | |||
Dairy (ounce equivalents/day) | 0.2 ± 0.6 | 0 | 13 (69) |
Eggs (egg/day) | 0.0 ± 0.1 | 0 | 18 (95) |
Gluten-containing grains (ounce equivalents/day) | 0.0 ± 0.2 | 0 | 15 (79) |
Encouraged | |||
Meat and fish (ounces/day) | 5.8 ± 4.3 | 6–12 | 6 (32) |
Organ meat (ounces/day) 2 | 0.2 ± 0.8 | 1.7 | 0 (0.0) |
Fatty fish (ounces/day) 2 | 1.0 ± 1.6 | 2.3 | 3 (16) |
Seaweed/algae (tsp/day) | 2.2 ± 2.6 | 0.25 | 11 (58) |
Nutritional yeast (tbsp/day) | 0.6 ± 0.9 | 1 | 4 (21) |
Nutrient | Intake (Mean ± SD) | % Kilocalories |
---|---|---|
Energy (kilocalories/day) | 1820 ± 506 | 100.0 |
Available carbohydrate (g/day) 1 | 167 ± 62.4 | 38.2 ± 12.1 |
Added sugar (g/day) | 19.9 ± 19.8 | 5.1 ± 6.2 |
Fiber (g/day) | 37.7 ± 15.7 | NA |
Protein (g/day) | 79.7 ± 36.4 | 17.9 ± 7.3 |
Total fat (g/day) | 91.7 ± 41.2 | 43.9 ± 13.2 |
Saturated fat (g/day) | 20.5 ± 14.1 | 9.8 ± 5.5 |
Monounsaturated fat (g/day) | 34.5 ± 18.9 | 16.7 ± 7.7 |
Polyunsaturated fat (g/day) | 29.2 ± 16.7 | 13.8 ± 6.1 |
Micronutrient | Intake (Mean ± SD) | RDA or AI * | Number below Requirement (%) | UL or CDRR * | Number above UL (%) | Nutrient Adequacy Ratio |
---|---|---|---|---|---|---|
Vitamin A (μg) 2 | 1910 ± 1880 | 700–900 | 3 (16) | 3000 3 | 1 (5) | 258 ± 198 |
Vitamin D (μg) | 4.44 ± 5.19 | 15 | 18 (95) | 100 | 0 (0) | 29.6 ± 34.6 |
Vitamin E (mg) 2 | 18.1 ± 10.6 | 15 | 9 (47) | 1000 4 | 0 (0) | 121 ± 70.6 |
Vitamin K (μg) | 688 ± 555 | 90 *–120 * | 1 (5) | ND | NA | 703 ± 598 |
Vitamin C (mg) | 311 ± 182 | 75–90 | 0 (0) | 2000 | 0 (0) | 391 ± 229 |
Thiamin (mg) | 4.10 ± 4.91 | 1.1–1.2 | 3 (16) | ND | NA | 355 ± 411 |
Riboflavin (mg) | 4.62 ± 5.05 | 1.1–1.3 | 1 (5) | ND | NA | 386 ± 390 |
Niacin (mg) 2 | 55.4 ± 38.2 | 14–16 | 0 (0) | 35 4 | 0 (0) | 373 ± 234 |
Pantothenic acid (mg) | 6.09 ± 2.69 | 5 * | 8 (42) | ND | NA | 122 ± 53.8 |
Vitamin B6 (mg) | 5.29 ± 5.20 | 1.3–1.7 | 2 (11) | 100 4 | 0 (0) | 360 ± 321 |
Folate (μg) 2 | 616 ± 304 | 400 | 5 (26) | 1000 4 | 0 (0) | 154 ± 76.0 |
Vitamin B12 (μg) | 7.62 ± 9.24 | 2.4 | 4 (21) | ND | NA | 318 ± 385 |
Choline (mg) | 337 ± 135 | 425 *–550 * | 16 (84) | 3500 | 0 (0) | 73.2 ± 27.2 |
Calcium (mg) | 654 ± 246 | 1000-1200 | 18 (95) | 2000–2500 | 0 (0) | 60.3 ± 22.8 |
Phosphorus (mg) | 1190 ± 342 | 700 | 2 (11) | 4000 | 0 (0) | 170 ± 48.9 |
Magnesium (mg) | 451 ± 124 | 320–420 | 5 (26) | 350 4 | 0 (0) | 133 ± 42.5 |
Iron (mg) | 15.3 ± 5.33 | 8–18 | 6 (32) | 45 | 0 (0) | 165 ± 83.7 |
Zinc (mg) | 13.5 ± 9.30 | 8–11 | 6 (32) | 40 | 1 (5) | 154 ± 107 |
Copper (mg) | 2.74 ± 1.36 | 0.9 | 0 (0) | 10 | 0 (0) | 304 ± 151 |
Selenium (μg) | 94.6 ± 52.9 | 55 | 2 (11) | 400 | 0 (0) | 172 ± 96.2 |
Potassium (mg) | 4170 ± 1300 | 2600–3400 * | 3 (16) | ND | NA | 148 ± 43.5 |
Sodium (mg) | 2030 ± 976 | 1500 | 5 (26) | 2300 * | 7 (37) | 149 ± 67.4 |
Manganese (mg) | 5.28 ± 1.57 | 1.8–2.3 | 0 (0) | 11 | 0 (0) | 277 ± 91.7 |
Mean Adequacy Ratio 5 | 91.5 ± 6.2 |
Micronutrient | Number of Supplement Users (%) | Supplement Intake (Mean ± SD) | Total Intake (Mean ± SD) | RDA or AI * | Number below Requirement (%) | UL or CDRR * | Number above UL (%) |
---|---|---|---|---|---|---|---|
Vitamin A (μg) 2 | 6 (32) | 376 ± 820 | 2290 ± 1860 | 700–900 | 1 (5) | 3000 3 | 1 (5) |
Vitamin D (μg) | 17 (89) | 168 ± 323 | 173 ± 324 | 15 | 2 (11) | 100 | 9 (47) |
Vitamin E (mg) 2 | 10 (53) | 35.8 ± 82.5 | 55.7 ± 82.8 | 15 | 5 (26) | 1000 4 | 0 (0) |
Vitamin K (μg) | 7 (37) | 8.33 ± 13.9 | 696 ± 571 | 90 *–120 * | 0 (0) | ND | NA |
Vitamin C (mg) | 14 (74) | 299 ± 540 | 609 ± 562 | 75–90 | 0 (0) | 2000 | 1 (5) |
Thiamin (mg) | 17 (89) | 61.2 ± 59.9 | 65.3 ± 60.2 | 1.1–1.2 | 1 (5) | ND | NA |
Riboflavin (mg) | 17 (89) | 68.7 ± 78.3 | 73.3 ± 78.2 | 1.1–1.3 | 0 (0) | ND | NA |
Niacin (mg) 2 | 16 (84) | 201 ± 273 | 257 ± 273 | 14–16 | 0 (0) | 35 4 | 10 (53) |
Pantothenic acid (mg) | 16 (84) | 38.3 ± 52.5 | 44.4 ± 52.4 | 5 * | 1 (5) | ND | NA |
Vitamin B6 (mg) | 16 (84) | 35.7 ± 53.7 | 41.0 ± 54.3 | 1.3–1.7 | 2 (11) | 100 4 | 3 (16) |
Folate (μg) 2 | 19 (100) | 1120 ± 714 | 1730 ± 765 | 400 | 2 (11) | 1000 4 | 0 (0) |
Vitamin B12 (μg) | 19 (100) | 1270 ± 1440 | 1280 ± 1440 | 2.4 | 0 (0) | ND | NA |
Choline (mg) | 5 (26) | 14.1 ± 27.0 | 351 ± 161 | 425 *–550 * | 15 (79) | 3500 | 0 (0) |
Calcium (mg) | 12 (63) | 206 ± 239 | 860 ± 246 | 1000–1200 | 17 (89) | 2000–2500 | 0 (0) |
Phosphorus (mg) | 2 (11) | 2.11 ± 6.19 | 1190 ± 385 | 700 | 2 (11) | 4000 | 0 (0) |
Magnesium (mg) | 9 (47) | 186 ± 354 | 637 ± 392 | 320–420 | 4 (21) | 350 4 | 5 (26) |
Iron (mg) | 5 (26) | 0.79 ± 1.95 | 16.1 ± 5.75 | 8–18 | 4 (21) | 45 | 0 (0) |
Zinc (mg) | 8 (42) | 8.60 ± 12.8 | 22.1 ± 9.30 | 8–11 | 4 (21) | 40 | 2 (11) |
Copper (mg) | 9 (47) | 0.37 ± 0.74 | 3.11 ± 2.34 | 0.9 | 0 (0) | 10 | 0 (0) |
Selenium (μg) | 4 (21) | 11.3 ± 36.3 | 106 ± 77.9 | 55 | 2 (11) | 400 | 0 (0) |
Potassium (mg) | 5 (26) | 16.5 ± 30.9 | 4190 ± 1370 | 2600–3400 * | 3 (16) | ND | NA |
Sodium (mg) | 7 (37) | 12.2 ± 27.7 | 2040 ± 1150 | 1500 | 5 (26) | 2300 * | 7 (37) |
Manganese (mg) | 9 (47) | 0.83 ± 1.07 | 6.11 ± 2.38 | 1.8–2.3 | 0 (0) | 11 | 0 (0) |
Metabolite | Reference Range 1 | Baseline | 12 Months | Change | p-Value 2 |
---|---|---|---|---|---|
Calcium (mg/dL) | 8.5–10.5 | 9.43 ± 0.36 | 9.52 ± 0.35 | 0.08 ± 0.39 | 0.35 |
Magnesium (mg/dL) | 1.5–2.9 | 2.15 ± 0.23 | 2.07 ± 0.16 | −0.08 ± 0.13 | 0.011 |
Folate (ng/mL) | 3.0–20.0 | 15.8 ± 3.85 | 18.8 ± 2.67 | 3.86 ± 6.23 | 0.022 |
Vitamin B12 (pg/mL) | 232–1245 | 784 ± 605 | 1220 ± 582 | 440 ± 841 | 0.035 |
Homocysteine (μmol/L) | <10.0 | 11.7 ± 6.62 | 8.54 ± 1.51 | −3.65 ± 6.53 | 0.048 |
Vitamin D (ng/mL) | 20–80 | 42.7 ± 17.5 | 59.5 ± 21.4 | 15.9 ± 24.1 | 0.009 |
Vitamin K1 (ng/mL) 3 | 0.10–2.20 | 0.74 ± 0.45 | 1.22 ± 0.68 | 0.35 ± 0.63 | 0.022 |
Vitamin K2 (ng/mL) 3,4 | NA | 1.57 ± 0.97 | 2.23 ± 1.45 | 0.48 ± 1.02 | 0.050 |
Vitamin A (μmol/L) 5 | 1.0–4.1 | 2.03 ± 0.52 | 1.95 ± 0.37 | −0.08 ± 0.27 | 0.23 |
-Retinyl Esters (nmol/L) 6 | <100.0 | 24.8 ± 25.9 | 21.8 ± 15.6 | −3.10 ± 27.3 | 0.64 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Titcomb, T.J.; Bisht, B.; Moore, D.D., III; Chhonker, Y.S.; Murry, D.J.; Snetselaar, L.G.; Wahls, T.L. Eating Pattern and Nutritional Risks among People with Multiple Sclerosis Following a Modified Paleolithic Diet. Nutrients 2020, 12, 1844. https://doi.org/10.3390/nu12061844
Titcomb TJ, Bisht B, Moore DD III, Chhonker YS, Murry DJ, Snetselaar LG, Wahls TL. Eating Pattern and Nutritional Risks among People with Multiple Sclerosis Following a Modified Paleolithic Diet. Nutrients. 2020; 12(6):1844. https://doi.org/10.3390/nu12061844
Chicago/Turabian StyleTitcomb, Tyler J., Babita Bisht, David D. Moore, III, Yashpal S. Chhonker, Daryl J. Murry, Linda G. Snetselaar, and Terry L. Wahls. 2020. "Eating Pattern and Nutritional Risks among People with Multiple Sclerosis Following a Modified Paleolithic Diet" Nutrients 12, no. 6: 1844. https://doi.org/10.3390/nu12061844
APA StyleTitcomb, T. J., Bisht, B., Moore, D. D., III, Chhonker, Y. S., Murry, D. J., Snetselaar, L. G., & Wahls, T. L. (2020). Eating Pattern and Nutritional Risks among People with Multiple Sclerosis Following a Modified Paleolithic Diet. Nutrients, 12(6), 1844. https://doi.org/10.3390/nu12061844