Effects of Daily Probiotics Supplementation on Anxiety Induced Physiological Parameters among Competitive Football Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design
2.2. Participants
2.3. Intervention
2.4. Instruments
2.4.1. Electroencephalography
2.4.2. Electrodermal Responses
2.4.3. Heart Rate
2.4.4. Cognitive Task
2.4.5. Anthropometric Measures
2.4.6. Diet and Energy Intake
2.5. Study Procedure
2.6. Data Analysis
3. Results
3.1. Effect of Probiotics on Brain Wave Activities
3.2. Effect of Probiotics on Electrodermal Responses and Heart Rate
3.3. Cognitive Task
3.4. Anthropometric Measures and Diet Intake
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liang, S.; Wu, X.; Hu, X.; Wang, T.; Jin, F. Recognizing Depression from the Microbiota–Gut–Brain Axis. Int. J. Mol. Sci. 2018, 19, 1592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kane, L.; Kinzel, J. The Effects of Probiotics on Mood and Emotion. J. Am. Acad. Physician Assist. 2018, 31, 1–3. [Google Scholar] [CrossRef]
- Foster, J.A.; Rinaman, L.; Cryan, J.F. Stress & the Gut-Brain Axis: Regulation by the Microbiome. Neurobiol. Stress 2017, 7, 124–136. [Google Scholar] [CrossRef] [Green Version]
- Abhari, K.; Hosseini, H. Psychobiotics: Next Generation Treatment for Mental Disorders. J. Clin. Nutr. Diet. 2018, 4, 1–2. [Google Scholar] [CrossRef]
- Abdullah, N.; Kueh, Y.C.; Kuan, G.; Wong, M.S.; Yahaya, F.H.; Lee, Y.Y. Validity and Reliability of the Newly Developed Malay-Language Health Belief of Bloating (HB-Bloat) Scale. Int. J. Environ. Res. Public Health 2020, 17, 2773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.F.; Huang, X.Y.; Chien, C.H.; Cheng, J.F. The Effectiveness of Diaphragmatic Breathing Relaxation Training for Reducing Anxiety. Perspect. Psychiatr. Care 2017, 53, 329–336. [Google Scholar] [CrossRef]
- Foster, J.A.; McVey Neufeld, K.A. Gut-Brain Axis: How the Microbiome Influences Anxiety and Depression. Trends Neurosci. 2013, 36, 305–312. [Google Scholar] [CrossRef]
- Gleeson, M.; Bishop, N.C.; Oliveira, M.; Tauler, P. Daily Probiotic’s (Lactobacillus Casei Shirota) Reduction of Infection Incidence in Athletes. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 55–64. [Google Scholar] [CrossRef]
- Huang, R.; Ning, H.; Yang, L.; Jia, C.; Yang, F.; Xu, G.; Tan, H. Efficacy of Probiotics on Anxiety: A Meta-Analysis of Randomized Controlled Trials. Neuropsychiatry (London) 2017, 7, 862–871. [Google Scholar] [CrossRef]
- Minelli, E.B.; Benini, A. Relationship between Number of Bacteria and Their Probiotic Effects. Microb. Ecol. Health Dis. 2008, 20, 180–183. [Google Scholar] [CrossRef]
- Clark, A.; Mach, N. Microbiota-Brain Axis and Diet: A Systematic Review for Athletes. J. Int. Soc. Sports Nutr. 2016, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Fronso, S.D.I.; Robazza, C.; Bortoli, L.; Bertollo, M. Performance Optimization in Sport: A Psychophysiological Approach. Motriz. Rev. Educ. Física 2017, 23, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Mancevska, S.; Gligoroska, J.P.; Todorovska, L.; Dejanova, B.; Petrovska, S. Psychophysiology and the Sport Science. Res. Phys. Educ. Sport Health 2016, 5, 101–105. [Google Scholar]
- Andreassi, J.L. Psychophysiology: Human Behavior and Physiological Response, 5th ed.; Lawrence Erlbaum Associates, Inc.: New York, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Dieleman, G.C.; Van Der Ende, J.; Verhulst, F.C.; Huizink, A.C. Perceived and Physiological Arousal during a Stress Task: Can They Differentiate between Anxiety and Depression ? Psychoneuroendocrinology 2010, 35, 1223–1234. [Google Scholar] [CrossRef]
- Bellido, A.; Ruisoto, P.; Beltran-Velasco, A.; Clemente-Suárez, V.J. State of the Art on the Use of Portable Digital Devices to Assess Stress in Humans. J. Med. Syst. 2018, 42, 100. [Google Scholar] [CrossRef]
- Kuan, G.; Morris, T.; Kueh, Y.C.; Terry, P.C. Effects of Relaxing and Arousing Music during Imagery Training on Dart-Throwing Performance, Physiological Arousal Indices, and Competitive State Anxiety. Front. Psychol. 2018, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Vitasari, P.; Wahab, M.N.A.; Herawan, T.; Sinnadurai, S.K.; Othman, A.; Awang, M.G. Assessing of Physiological Arousal and Cognitive Anxiety toward Academic Performance: The Application of Catastrophe Model. Procedia Soc. Behav. Sci. 2011, 30, 615–619. [Google Scholar] [CrossRef] [Green Version]
- Baumeister, J.; Reinecke, K.; Liesen, H.; Weiss, M. Cortical Activity of Skilled Performance in a Complex Sports Related Motor Task. Eur. J. Appl. Physiol. 2008, 104, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Park, J.L.; Fairweather, M.M.; Donaldson, D.I. Making the Case for Mobile Cognition: EEG and Sports Performance. Neurosci. Biobehav. Rev. 2015, 52, 117–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Seo, J.; Laine, T.H. Detecting Boredom from Eye Gaze and EEG. Biomed. Signal Process. Control 2018, 46, 302–313. [Google Scholar] [CrossRef]
- Surangsrirat, D.; Intarapanich, A. Analysis of the Meditation Brainwave from Consumer EEG Device. SoutheastCon 2015 2015, 1–6. [Google Scholar] [CrossRef]
- Subhani, A.R.; Mumtaz, W.; Saad, M.N.B.M.; Kamel, N.; Malik, A.S. Machine Learning Framework for the Detection of Mental Stress at Multiple Levels. IEEE Access 2017, 5, 13545–13556. [Google Scholar] [CrossRef]
- Cooke, A.; Kavussanu, M.; Gallicchio, G.; Willoughby, A.; Mcintyre, D.; Ring, C. Preparation for Action: Psychophysiological Activity Preceding a Motor Skill as a Function of Expertise, Performance Outcome, and Psychological Pressure. Psychophysiology 2014, 51, 374–384. [Google Scholar] [CrossRef] [Green Version]
- Bishop, D.J. Dietary Supplements and Team-Sport Performance. Sports Med. 2014, 40. [Google Scholar] [CrossRef] [PubMed]
- Junge, A.; Feddermann-Demont, N. Prevalence of Depression and Anxiety in Top-Level Male and Female Football Players. BMJ Open Sport Exerc. Med. 2016, 2, e000087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, N.P.; Pyne, D.B.; Peake, J.M.; Cripps, A.W. Probiotics, Immunity and Exercise: A Review. Exerc. Immunol. Rev. 2009, 15, 107–126. [Google Scholar] [PubMed]
- Bushra, R.; Aslam, N.; Khan, A.Y. Food-Drug Interactions. Oman Med. J. 2011, 26, 77–83. [Google Scholar] [CrossRef]
- Amadi, C.N.; Mgbahurike, A.A. Selected Food/Herb-Drug Interactions: Mechanisms and Clinical Relevance. Am. J. Ther. 2018, 25, e423–e433. [Google Scholar] [CrossRef]
- Resnik, D.B. Proportionality in Public Health Regulation: The Case of Dietary Supplements. Food Ethics 2018, 2, 1–16. [Google Scholar] [CrossRef]
- Misra, S.; Mohanty, D. Psychobiotics: A New Approach for Treating Mental Illness? Crit. Rev. Food Sci. Nutr. 2017, 59, 1230–1236. [Google Scholar] [CrossRef]
- Kato-Kataoka, A.; Nishida, K.; Takada, M.; Suda, K.; Kawai, M.; Shimizu, K.; Kushiro, A.; Hoshi, R.; Watanabe, O.; Igarashi, T.; et al. Fermented Milk Containing Lactobacillus Casei Strain Shirota Prevents the Onset of Physical Symptoms in Medical Students under Academic Examination Stress. Benef. Microbes 2016, 7, 153–156. [Google Scholar] [CrossRef]
- Takada, M.; Nishida, K.; Kataoka-Kato, A.; Gondo, Y.; Ishikawa, H.; Suda, K.; Kawai, M.; Hoshi, R.; Watanabe, O.; Igarashi, T.; et al. Probiotic Lactobacillus Casei Strain Shirota Relieves Stress-Associated Symptoms by Modulating the Gut-Brain Interaction in Human and Animal Models. Neurogastroenterol. Motil. 2016, 28, 1027–1036. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, A.A.; Jazayeri, S.; Khosravi-Darani, K.; Solati, Z.; Mohammadpour, N.; Asemi, Z.; Adab, Z.; Djalali, M.; Tehrani-Doost, M.; Hosseini, M.; et al. The Effects of Probiotics on Mental Health and Hypothalamic–Pituitary–Adrenal Axis: A Randomized, Double-Blind, Placebo-Controlled Trial in Petrochemical Workers. Nutr. Neurosci. 2016, 19, 387–395. [Google Scholar] [CrossRef]
- Kouchaki, E.; Tamtaji, O.R.; Salami, M.; Bahmani, F.; Daneshvar Kakhaki, R.; Akbari, E.; Tajabadi-Ebrahimi, M.; Jafari, P.; Asemi, Z. Clinical and Metabolic Response to Probiotic Supplementation in Patients with Multiple Sclerosis: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Nutr. 2017, 36, 1245–1249. [Google Scholar] [CrossRef]
- Simrén, M.; Öhman, L.; Olsson, J.; Svensson, U.; Ohlson, K.; Posserud, I.; Strid, H. Clinical Trial: The Effects of a Fermented Milk Containing Three Probiotic Bacteria in Patients with Irritable Bowel Syndrome—A Randomized, Double-Blind, Controlled Study. Aliment. Pharmacol. Ther. 2010, 31, 218–227. [Google Scholar] [CrossRef]
- Akkasheh, G.; Kashani-Poor, Z.; Tajabadi-Ebrahimi, M.; Jafari, P.; Akbari, H.; Taghizadeh, M.; Memarzadeh, M.R.; Asemi, Z.; Esmaillzadeh, A. Clinical and Metabolic Response to Probiotic Administration in Patients with Major Depressive Disorder: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrition 2016, 32, 315–320. [Google Scholar] [CrossRef]
- Messaoudi, M.; Violle, N.; Bisson, J.F.; Desor, D.; Javelot, H.; Rougeot, C. Beneficial Psychological Effects of a Probiotic Formulation (Lactobacillus Helveticus R0052 and Bifidobacterium Longum R0175) in Healthy Human Volunteers. Gut Microbes 2011, 2, 256–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, K.; Cowen, P.J.; Harmer, C.J.; Tzortzis, G.; Errington, S.; Burnet, P.W.J. Prebiotic Intake Reduces the Waking Cortisol Response and Alters Emotional Bias in Healthy Volunteers. Psychopharmacology 2015, 232, 1793–1801. [Google Scholar] [CrossRef] [Green Version]
- Diop, L.; Guillou, S.; Durand, H. Probiotic Food Supplement Reduces Stress-Induced Gastrointestinal Symptoms in Volunteers: A Double-Blind, Placebo-Controlled, Randomized Trial. Nutr. Res. 2008, 28, 1–5. [Google Scholar] [CrossRef]
- Sawada, D.; Kuwano, Y.; Tanaka, H.; Hara, S.; Uchiyama, Y.; Sugawara, T.; Fujiwara, S.; Rokutan, K.; Nishida, K. Daily Intake of Lactobacillus Gasseri CP2305 Relieves Fatigue and Stress-Related Symptoms in Male University Ekiden Runners: A Double-Blind, Randomized, and Placebo-Controlled Clinical Trial. J. Funct. Foods 2019, 57, 465–476. [Google Scholar] [CrossRef]
- Kelly, J.R.; Allen, A.P.; Temko, A.; Hutch, W.; Kennedy, P.J.; Farid, N.; Murphy, E.; Boylan, G.; Bienenstock, J.; Cryan, J.F.; et al. Lost in Translation? The Potential Psychobiotic Lactobacillus Rhamnosus (JB-1) Fails to Modulate Stress or Cognitive Performance in Healthy Male Subjects. Brain. Behav. Immun. 2017, 61, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Braun, C.; Murphy, E.F.; Enck, P. Bifidobacterium Longum 1714TM Strain Modulates Brain Activity of Healthy Volunteers during Social Stress. Am. J. Gastroenterol. 2019, 114, 1152–1162. [Google Scholar] [CrossRef]
- Allen, A.P.; Hutch, W.; Borre, Y.E.; Kennedy, P.J.; Temko, A.; Boylan, G.; Murphy, E.; Cryan, J.F.; Dinan, T.G.; Clarke, G. Bifidobacterium Longum 1714 as a Translational Psychobiotic: Modulation of Stress, Electrophysiology and Neurocognition in Healthy Volunteers. Transl. Psychiatry 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Nishida, K.; Sawada, D.; Kuwano, Y.; Tanaka, H.; Rokutan, K. Health Benefits of Lactobacillus Gasseri Cp2305 Tablets in Young Adults Exposed to Chronic Stress: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2019, 11, 1859. [Google Scholar] [CrossRef] [Green Version]
- Romijn, A.R.; Rucklidge, J.J.; Kuijer, R.G.; Frampton, C.A. Double-Blind, Randomized, Placebo-Controlled Trial of Lactobacillus Helveticus and Bifidobacterium Longum for the Symptoms of Depression. Aust. N. Z. J. Psychiatry 2017, 51, 810–821. [Google Scholar] [CrossRef] [Green Version]
- Sashihara, T.; Nagata, M.; Mori, T.; Ikegami, S.; Gotoh, M.; Okubo, K.; Uchida, M.; Itoh, H. Effects of Lactobacillus Gasseri OLL2809 and α-Lactalbumin on University-Student Athletes: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Appl. Physiol. Nutr. Metab. 2013, 38, 1228–1235. [Google Scholar] [CrossRef] [PubMed]
- Luckow, T.; Sheehan, V.; Fitzgerald, G.; Delahunty, C. Exposure, Health Information and Flavour-Masking Strategies for Improving the Sensory Quality of Probiotic Juice. Appetite 2006, 47, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Luckow, T.; Delahunty, C. Consumer Acceptance of Orange Juice Containing Functional Ingredients. Food Res. Int. 2004, 37, 805–814. [Google Scholar] [CrossRef]
- Krigolson, O.E.; Williams, C.C.; Colino, F.L. Using Portable EEG to Assess Human Visual Attention. In Proceedings of the 11th International Conference on Augmented Cognition. Neurocognition and Machine Learning, AC 2017, Vancouver, BC, Canada, 9–14 July 2017; p. 10284. [Google Scholar] [CrossRef]
- Pluta, A.; Williams, C.C.; Binsted, G.; Hecker, K.G.; Krigolson, O.E. Chasing the Zone: Reduced Beta Power Predicts Baseball Batting Performance. Neurosci. Lett. 2018, 686, 150–154. [Google Scholar] [CrossRef]
- Walsh, J.J.; Colino, F.L.; Krigolson, O.E.; Luehr, S.; Gurd, B.J.; Tschakovsky, M.E. Physiology & Behavior High-Intensity Interval Exercise Impairs Neuroelectric Indices Of. Physiol. Behav. 2019, 198, 18–26. [Google Scholar] [CrossRef]
- Plested, J.F.; Gedeon, T.D.; Zhu, X.Y.; Dhall, A.; Geocke, R. Detection of Universal Cross-Cultural Depression Indicators from the Physiological Signals of Observers. In Proceedings of the 2017 7th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), San Antonio, TX, USA, 23–26 October 2017; pp. 185–192. [Google Scholar] [CrossRef]
- Raza, Q.; Li Yin Ong, M.; Kuan, G. Effects of Using EEG Neurofeedback Device to Enhance Elite Bowlers’ Performance; Springer: Singapore, 2020; Volume 2, pp. 503–510. [Google Scholar] [CrossRef]
- Chow, C.; Gedeon, T. Classifying Document Categories Based on Physiological Measures of Analyst Responses. In Proceedings of the 6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Gyor, Hungary, 19–21 October 2015; pp. 421–425. [Google Scholar] [CrossRef]
- Kelland, D.Z.; Lewis, R.F. The Digit Vigilance Test: Reliability, Validity, and Sensitivity to Diazepam. Arch. Clin. Neuropsychol. 1996, 11, 339–344. [Google Scholar] [CrossRef]
- Hashim, H.A.; Zainol, N.A. Changes in Emotional Distress, Short Term Memory, and Sustained Attention Following 6 and 12 Sessions of Progressive Muscle Relaxation Training in 10–11 Years Old Primary School Children. Psychol. Health Med. 2015, 20, 623–628. [Google Scholar] [CrossRef]
- Vaney, N.; Dixit, A.; Thawani, R.; Goyal, A. Psychomotor Performance of Medical Students: Effect of 24 Hours of Sleep Deprivation. Indian J. Psychol. Med. 2012, 34, 129. [Google Scholar] [CrossRef] [Green Version]
- Gaskin, P.S.; Chami, P.; Ward, J.; Solari, O.G.B.; Sing, B.; Jackson, M.D.; Broome, H. A Practical Model for Identification of Children at Risk of Excess Energy Intake in the Developing World. Public Health Nutr. 2019, 1979–1989. [Google Scholar] [CrossRef]
- Provencher, M.T.; Chahla, J.; Sanchez, G.; Cinque, M.E.; Kennedy, N.I.; Whalen, J.; Price, M.D.; Moatshe, G.; Laprade, R.F. Body Mass Index versus Body Fat Percentage in Prospective National Football League Athletes: Overestimation of Obesity Rate in Athletes at the National Football League Scouting Combine. J. Strength Cond. Res. 2018, 32, 1013–1019. [Google Scholar] [CrossRef]
- Grier, T.; Canham-Chervak, M.; Sharp, M.; Jones, B.H. Does Body Mass Index Misclassify Physically Active Young Men. Prev. Med. Rep. 2015, 2, 483–487. [Google Scholar] [CrossRef] [Green Version]
- Kruschitz, R.; Wallner-Liebmann, S.J.; Hamlin, M.J.; Moser, M.; Ludvik, B.; Schnedl, W.J.; Tafeit, E. Detecting Body Fat-A Weighty Problem BMI versus Subcutaneous Fat Patterns in Athletes and Non-Athletes. PLoS ONE 2013, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruschitz, R.; Wallner-Liebmann, S.; Hübler, K.; Hamlin, M.; Schnedl, W.; Moser, M.; Tafeit, E.A. Measure of Obesity: BMI Versus Subcutaneous Fat Patterns. Aktuel. Ernahr. 2009, 34. [Google Scholar] [CrossRef] [Green Version]
- Kontogianni, M.D.; Farmaki, A.E.; Vidra, N.; Sofrona, S.; Magkanari, F.; Yannakoulia, M. Associations between Lifestyle Patterns and Body Mass Index in a Sample of Greek Children and Adolescents. YJADA 2010, 110, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Hejazi, N.; Soo Lee, M.H.; Lin, K.G.; Kwok Choong, C.L. Factors Associated with Abdominal Obesity among HIV-Infected Adults on Antiretroviral Therapy in Malaysia. Glob. J. Health Sci. 2010, 2. [Google Scholar] [CrossRef] [Green Version]
- Coqueiro, A.Y.; Garcia, A.B.d.O.; Rogero, M.M.; Tirapegui, J. Probiotic Supplementation in Sports and Physical Exercise: Does It Present Any Ergogenic Effect? Nutr. Health 2017, 23, 239–249. [Google Scholar] [CrossRef]
- Amirtham, N.; Saraladevi, K. Analysis of Attention Factors and EEG Brain Waves of Attention Deficit and Hyperactivity Disorder (ADHD)-A Case Study Report. Int. J. Sci. Res. Publ. 2013, 3, 2250–3153. [Google Scholar]
- Jacobs, G.D.; Friedman, R. EEG Spectral Analysis of Relaxation Techniques. Appl. Psychophysiol. Biofeedback 2004, 29, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Aftanas, L.I.; Golocheikine, S.A. Non-Linear Dynamic Complexity of the Human EEG during Meditation. Neurosci. Lett. 2002, 330, 143–146. [Google Scholar] [CrossRef]
- Schacter, D.L. EEG Theta Waves and Psychological Phenomena: A Review and Analysis. Biol. Psychol. 1977, 5, 47–82. [Google Scholar] [CrossRef]
- Güntekin, B.; Başar, E. Review of Evoked and Event-Related Delta Responses in the Human Brain. Int. J. Psychophysiol. 2016, 103, 43–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knyazev, G.G. Motivation, Emotion, and Their Inhibitory Control Mirrored in Brain Oscillations. Neurosci. Biobehav. Rev. 2007, 31, 377–395. [Google Scholar] [CrossRef] [PubMed]
- Zafar, R.; Malik, A.S.; Amin, H.U.; Kamel, N.; Dass, S.; Ahmad, R.F. EEG Spectral Analysis during Complex Cognitive Task at Occipital. In Proceedings of the IECBES 2014, IEEE Conference Biomedical Engineering Science, Sarawak, Malaysia, 8–10 December 2014; pp. 907–910. [Google Scholar] [CrossRef]
- Başar, E.; Başar-Eroglu, C.; Karakaş, S.; Schürmann, M. Gamma, Alpha, Delta, and Theta Oscillations Govern Cognitive Processes. Int. J. Psychophysiol. 2001, 39, 241–248. [Google Scholar] [CrossRef]
- Kubota, Y.; Murai, T.; Okada, T.; Hayashi, A.; Sengoku, A.; Sato, W.; Toichi, M. Frontal Midline Theta Rhythm Is Correlated with Cardiac Autonomic Activities during the Performance of an Attention Demanding Meditation Procedure. Cogn. Brain Res. 2001, 11, 281–287. [Google Scholar] [CrossRef]
- Domingues, C.A.; Machado, S.; Cavaleiro, E.G.; Furtado, V.; Cagy, M.; Ribeiro, P.; Piedade, R. Alpha Absolute Power: Motor Learning of Practical Pistol Shooting. Arq. Neuropsiquiatr. 2008, 66, 336–340. [Google Scholar] [CrossRef] [Green Version]
- Haufler, A.J.; Spalding, T.W.; Santa Maria, D.L.; Hatfield, B.D. Neuro-Cognitive Activity during a Self-Paced Visuospatial Task: Comparative EEG Profiles in Marksmen and Novice Shooters. Biol. Psychol. 2000, 53, 131–160. [Google Scholar] [CrossRef]
- Kerick, S.E.; McDowell, K.; Hung, T.M.; Santa Maria, D.L.; Spalding, T.W.; Hatfield, B.D. The Role of the Left Temporal Region under the Cognitive Motor Demands of Shooting in Skilled Marksmen. Biol. Psychol. 2001, 58, 263–277. [Google Scholar] [CrossRef]
- Smith, M.E.; McEvoy, L.K.; Gevins, A. Neurophysiological Indices of Strategy Development and Skill Acquisition. Cogn. Brain Res. 1999, 7, 389–404. [Google Scholar] [CrossRef]
- Lei, J.; Sala, J.; Jasra, S.K. Identifying Correlation between Facial Expression and Heart Rate and Skin Conductance with IMotions Biometric Platform. J. Emerg. Forensic Sci. Res. 2017, 2, 53–83. [Google Scholar]
- Baggish, A.L.; Wood, M.J. Athlete’s Heart and Cardiovascular Care of the Athlete. Circulation 2011, 123, 2723–2735. [Google Scholar] [CrossRef] [Green Version]
- Civitello, D.; Finn, D.; Flood, M.; Salievski, E.; Schwarz, M.; Storck, Z. How Do Physiological Responses Such as Respiratory Frequency, Heart Rate, and Galvanic Skin Response (GSR) Change under Emotional Stress? J. Adv. Stud. Sci. 2014, 1, 1–20. [Google Scholar]
- Sharma, R.; Goel, D.; Srivastav, M.; Dhasmana, R. Differences in Heart Rate and Galvanic Skin Response among Nurses Working in Critical and Non-Critical Care Units. J. Clin. Diagn. Res. 2018, 12, 9–12. [Google Scholar] [CrossRef]
- Yavuz, H.U.; Oktem, F. The Relationship between Depression, Anxiety and Visual Reaction Times in Athletes. Biol. Sport 2012, 29, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.C.; Jin, H.-M.; Cui, Y.; Kim, D.S.; Jung, J.M.; Park, J.-I.; Jung, E.-S.; Choi, E.-K.; Chae, S.-W. Fermented Milk of Lactobacillus Helveticus IDCC3801 Improves Cognitive Functioning during Cognitive Fatigue Tests in Healthy Older Adults. J. Funct. Foods 2014, 10, 465–474. [Google Scholar] [CrossRef]
- Rijken, N.H.; Soer, R.; de Maar, E.; Prins, H.; Teeuw, W.B.; Peuscher, J.; Oosterveld, F.G.J. Increasing Performance of Professional Soccer Players and Elite Track and Field Athletes with Peak Performance Training and Biofeedback: A Pilot Study. Appl. Psychophysiol. Biofeedback 2016, 41, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Rusciano, A.; Corradini, G.; Stoianov, I. Neuroplus Biofeedback Improves Attention, Resilience, and Injury Prevention in Elite Soccer Players. Psychophysiology 2017, 54, 916–926. [Google Scholar] [CrossRef] [PubMed]
- Adikari, A.M.G.C.P.; Appukutty, M.; Kuan, G. Psychotropic Properties of Probiotics: A Systematic Review. Int. J. Public Health Clin. Sci. 2019, 6, 18–34. [Google Scholar] [CrossRef]
Parameter | Probiotic Group (n = 10) | Placebo Group (n = 9) |
---|---|---|
Age (years) | 19 ± 0.81 | 19 ± 0.66 |
Training (years) | 7.9 ± 2.99 | 7.5 ± 2.67 |
Height (cm) | 169.86 ± 5.74 | 169.05 ± 4.87 |
Weight (kg) | 62.03 ± 5.31 | 65.82 ± 7.22 |
BMI (kg/m2) | 21.59 ± 2.45 | 22.58 ± 2.20 |
Time | Time*Group | |||||||
---|---|---|---|---|---|---|---|---|
Wilks’ Lambda | F | p- Value | Partial Eta2 | Wilks’ Lambda | F | p- Value | Partial Eta2 | |
Delta | 0.51 | 7.67 | 0.00 * | 0.48 | 0.83 | 1.62 | 0.22 | 0.16 |
Theta | 0.93 | 0.52 | 0.60 | 0.06 | 0.96 | 0.27 | 0.76 | 0.03 |
Alpha | 0.75 | 2.59 | 0.10 | 0.24 | 0.97 | 0.18 | 0.83 | 0.02 |
Beta | 0.54 | 6.79 | 0.00 * | 0.45 | 0.97 | 0.23 | 0.79 | 0.02 |
Gamma | 0.43 | 10.52 | 0.00 * | 0.56 | 0.90 | 0.81 | 0.46 | 0.09 |
HR | 0.53 | 7.10 | 0.00 * | 0.47 | 0.97 | 0.24 | 0.78 | 0.03 |
EDR | 0.25 | 23.39 | 0.00 * | 0.74 | 0.97 | 0.18 | 0.83 | 0.02 |
DVT RT | 0.42 | 10.81 | 0.00 * | 0.57 | 0.88 | 1.05 | 0.37 | 0.11 |
DVT AP | 0.98 | 0.12 | 0.88 | 0.01 | 0.91 | 0.76 | 0.48 | 0.08 |
Week 0 | p | Week 4 | p | Week 8 | p | ||||
---|---|---|---|---|---|---|---|---|---|
Probiotic | Placebo | Probiotic | Placebo | Probiotic | Placebo | ||||
Alpha | 0.38 ± 0.12 | 0.45 ± 0.14 | 0.32 | 0.35 ± 0.08 | 0.38 ± 0.06 | 0.40 | 0.41 ± 0.13 | 0.47 ± 0.14 | 0.33 |
Beta | 0.29 ± 0.18 | 0.34 ± 0.20 | 0.62 | 0.21 ± 0.11 | 0.29 ± 0.16 | 0.26 | 0.30 ± 0.11 | 0.41 ± 0.19 | 0.14 |
Gamma | 0.04 ± 0.27 | 0.04 ± 0.21 | 0.98 | −0.11 ± 0.18 | −0.01 ± 0.19 | 0.27 | 0.09 ± 0.15 | 0.12 ± 0.24 | 0.69 |
Theta | 0.27 ± 0.15 | 0.21 ± 0.20 | 0.50 | 0.33 ± 0.06 | 0.22 ± 0.13 | 0.02 * | 0.28 ± 0.16 | 0.21 ± 0.21 | 0.43 |
Delta | 0.60 ± 0.16 | 0.60 ± 0.25 | 0.95 | 0.80 ± 0.08 | 0.64 ± 0.21 | 0.04 * | 0.46 ± 0.17 | 0.44 ± 0.25 | 0.80 |
EDR | 1.12 ± 0.57 | 1.15 ± 0.40 | 0.93 | 0.36 ± 0.32 | 0.53 ± 0.23 | 0.20 | 0.27 ± 0.19 | 0.41 ± 0.12 | 0.07 |
HR | 76.00 ± 16.14 | 77.78 ± 12.23 | 0.79 | 65.30 ± 8.93 | 69.00 ± 9.18 | 0.38 | 61.90 ± 5.84 | 67.67 ± 8.42 | 0.09 |
DVT RT | 3.66 ± 0.83 | 3.69 ± 0.56 | 0.93 | 2.80 ± 0.47 | 3.18 ± 0.65 | 0.16 | 2.71 ± 0.41 | 3.24 ± 0.59 | 0.03* |
DVT AP | 97.00 ± 2.98 | 96.55 ± 2.00 | 0.71 | 97.60 ± 1.65 | 96.00 ± 3.04 | 0.16 | 98.10 ± 1.10 | 96.22 ± 3.59 | 0.16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adikari, A.M.G.C.P.; Appukutty, M.; Kuan, G. Effects of Daily Probiotics Supplementation on Anxiety Induced Physiological Parameters among Competitive Football Players. Nutrients 2020, 12, 1920. https://doi.org/10.3390/nu12071920
Adikari AMGCP, Appukutty M, Kuan G. Effects of Daily Probiotics Supplementation on Anxiety Induced Physiological Parameters among Competitive Football Players. Nutrients. 2020; 12(7):1920. https://doi.org/10.3390/nu12071920
Chicago/Turabian StyleAdikari, A.M.G.C.P., Mahenderan Appukutty, and Garry Kuan. 2020. "Effects of Daily Probiotics Supplementation on Anxiety Induced Physiological Parameters among Competitive Football Players" Nutrients 12, no. 7: 1920. https://doi.org/10.3390/nu12071920
APA StyleAdikari, A. M. G. C. P., Appukutty, M., & Kuan, G. (2020). Effects of Daily Probiotics Supplementation on Anxiety Induced Physiological Parameters among Competitive Football Players. Nutrients, 12(7), 1920. https://doi.org/10.3390/nu12071920