The Performance Effect of Scheduled Carbohydrate and Caffeine Intake during Simulated Team Sport Match-Play
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Preliminary Measurements
2.3. Experimental Protocol
2.4. Supplement Administration
2.5. Statistical Analysis
3. Results
3.1. Physiological Variables
3.2. Performance Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Malone, S.; Doran, D.; Akubat, I.; Collins, K. The integration of internal and external training load metrics in hurling. J. Hum. Kinet. 2016, 53, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Collins, K.; McRobert, A.; Morton, J.P.; Sullivan, D.O.; Doran, D.A.; Collins, D.K.; McRobert, A.; Morton, J.P.; O’Sullivan, D.; Doran, D.A. The Work-Rate of Elite Hurling Match-Play. J. Strength Cond. Res. 2017, 32, 1. [Google Scholar] [CrossRef] [PubMed]
- Young, D.; Malone, S.; Beato, M.; Mourot, L.; Coratella, G. Identification of maximal running intensities during elite hurling match-play. J Strength Cond Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Young, D.; Coratella, G.; Malone, S.; Collins, K.; Mourot, L.; Beato, M. The match-play sprint performance of elite senior hurlers during competitive games. PLoS ONE 2019, 14, e0215156. [Google Scholar] [CrossRef] [Green Version]
- Collins, D.K.; Reilly, T.; Morton, J.P.; McRobert, A.; Doran, D.A. Anthropometric and Performance Characteristics of Elite Hurling Players. J. Athl. Enhanc. 2014, 3. [Google Scholar] [CrossRef] [Green Version]
- Russell, M.; West, D.J.; Harper, L.D.; Cook, C.J.; Kilduff, L.P. Half-Time Strategies to Enhance Second-Half Performance in Team-Sports Players: A Review and Recommendations. Sports Med. 2015, 45, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E.; Rollo, I.; Carter, J.M. Carbohydrate mouth rinse: Performance effects and mechanisms. Sports Sci. Exch. 2013, 26, 1–8. [Google Scholar]
- Cureton, K.J.; Warren, G.L.; Millard-Stafford, M.L.; Wingo, J.E.; Trilk, J.; Buyckx, M. Caffeinated Sports Drink: Ergogenic Effects and Possible Mechanisms. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 35–55. [Google Scholar] [CrossRef]
- Clarke, J.S.; Highton, J.M.; Close, G.L.; Twist, C. Carbohydrate and Caffeine Improves High-Intensity Running of Elite Rugby League Interchange Players During Simulated Match Play. J. Strength Cond. Res. 2019, 33, 1320–1327. [Google Scholar] [CrossRef]
- Kingsley, M.; Penas-Ruiz, C.; Terry, C.; Russell, M. Effects of carbohydrate-hydration strategies on glucose metabolism, sprint performance and hydration during a soccer match simulation in recreational players. J. Sci. Med. Sport 2014, 17, 239–243. [Google Scholar] [CrossRef]
- Goedecke, J.; White, N.; Chicktay, W.; Mahomed, H.; Durandt, J.; Lambert, M. The Effect of Carbohydrate Ingestion on Performance during a Simulated Soccer Match. Nutrients 2013, 5, 5193–5204. [Google Scholar] [CrossRef] [PubMed]
- Rivers, W.H.R.; Webber, H.N. The action of caffeine on the capacity for muscular work. J. Physiol. 1907, 36, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Renda, G.; De Caterina, R. Caffeine. In Principles of Nutrigenetics and Nutrigenomics: Fundamentals of Individualized Nutrition; Elsevier: Amsterdam, The Netherlands, 2019; pp. 335–340. [Google Scholar]
- Ferré, S. An update on the mechanisms of the psychostimulant effects of caffeine. J. Nuerochem. 2008, 105, 1067–1079. [Google Scholar] [CrossRef]
- Fulton, J.; Dinas, P.; Carrillo, A.; Edsall, J.; Ryan, E.; Ryan, E. Impact of Genetic Variability on Physiological Responses to Caffeine in Humans: A Systematic Review. Nutrients 2018, 10, 1373. [Google Scholar] [CrossRef] [Green Version]
- Pickering, C.; Kiely, J. Are the Current Guidelines on Caffeine Use in Sport Optimal for Everyone? Inter-individual Variation in Caffeine Ergogenicity, and a Move Towards Personalised Sports Nutrition. Sports Med. 2018, 48, 7–16. [Google Scholar] [CrossRef]
- Pickering, C.; Grgic, J. Caffeine and Exercise: What Next? Sports Med. 2019, 49, 1007–1030. [Google Scholar] [CrossRef] [Green Version]
- Guest, N.; Corey, P.; Vescovi, J.; El-Sohemy, A. Caffeine, CYP1A2 genotype, and endurance performance in athletes. Med. Sci. Sports Exerc. 2018, 50, 1570–1578. [Google Scholar] [CrossRef]
- Sachse, C.; Brockmöller, J.; Bauer, S.; Roots, I. Functional significance of a C→A polymorphism in intron I of the cytochrome P450 CYP1A2 gene tested with caffeine. Br. J. Clin. Pharmacol. 1999, 47, 445–449. [Google Scholar] [CrossRef] [Green Version]
- Pöchmüller, M.; Schwingshackl, L.; Colombani, P.C.; Hoffmann, G. A systematic review and meta-analysis of carbohydrate benefits associated with randomized controlled competition-based performance trials. J. Int. Soc. Sports Nutr. 2016, 13, 27. [Google Scholar] [CrossRef] [Green Version]
- Devenney, S.; Collins, K.; Shortall, M. Effects of various concentrations of carbohydrate mouth rinse on cycling performance in a fed state. Eur. J. Sport Sci. 2016, 16, 1073–1078. [Google Scholar] [CrossRef]
- Burke, L.M.; Hawley, J.A.; Wong, S.H.S.; Jeukendrup, A.E. Carbohydrates for training and competition. J. Sports Sci. 2011, 29, S17–S27. [Google Scholar] [CrossRef] [PubMed]
- Lane, S.C.; Bird, S.R.; Burke, L.M.; Hawley, J.A. Effect of a carbohydrate mouth rinse on simulated cycling time-trial performance commenced in a fed or fasted state. Appl. Physiol. Nutr. Metab. 2013, 38, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.; Doust, J.H. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J. Sports Sci. 1996, 14, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Lucia, A.; Hoyos, J.; Pérez, M.; Santalla, A.; Earnest, C.P.; Chicharro, J.L. Which laboratory variable is related with time trial performance time in the Tour de France? Br. J. Sports Med. 2004, 38, 636–640. [Google Scholar] [CrossRef] [PubMed]
- Drust, B.; Waterhouse, J.; Atkinson, G.; Edwards, B.; Reilly, T. Circadian Rhythms in Sports Performance—An Update. Chronobiol. Int. 2005, 22, 21–44. [Google Scholar] [CrossRef]
- Collins, K.; Doran, D.; Morton, J.; McRobert, A. The reliability of a multidirectional hurling simulation protocol. In Proceedings of the 12th Annual Conference of the Faculty of Sport and Exercise Medicine, Royal College of Surgeons Ireland, Dublin, Ireland, 17–19 September 2015. [Google Scholar]
- Birol, A.; Kılınç, F.N.; Deliceoğlu, G.; Keskin, E.D. The effect of acute L-arginine supplementation on repeated sprint ability performance. Prog. Nutr. 2019, 21, 5–11. [Google Scholar] [CrossRef]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Stellingwerff, T.; Cox, G.R. Systematic review: Carbohydrate supplementation on exercise performance or capacity of varying durations. Appl. Physiol. Nutr. Metab. 2014, 39, 998–1011. [Google Scholar] [CrossRef]
- Graham, T.E. Caffeine and Exercise. Sports Med. 2001, 31, 785–807. [Google Scholar] [CrossRef]
- Beasley, K.J. Nutrition and Gaelic Football: Review, Recommendations, and Future Considerations. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 1–13. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press Inc: London, UK, 2013. [Google Scholar]
- Scott, A.T.; O’Leary, T.; Walker, S.; Owen, R.; Scott, A. Caffeinated Carbohydrate Gel Ingestion Improves 2000 Metre Rowing Performance. Int. J. Sports Physiol. Perform. 2014, 10, 464–468. [Google Scholar] [CrossRef]
- Ramos-Jiménez, A.; Hernández-Torres, R.P.; Torres-Durán, P.V.; Romero-Gonzalez, J.; Mascher, D.; Posadas-Romero, C.; Juárez-Oropeza, M.A. The Respiratory Exchange Ratio is Associated with Fitness Indicators Both in Trained and Untrained Men: A Possible Application for People with Reduced Exercise Tolerance. Clin. Med. Circ. Respirat. Pulm. Med. 2008, 2, CCRPM.S449. [Google Scholar] [CrossRef] [PubMed]
- Bradley, W.J.; Morehen, J.C.; Haigh, J.; Clarke, J.; Donovan, T.F.; Twist, C.; Cotton, C.; Shepherd, S.; Cocks, M.; Sharma, A.; et al. Muscle glycogen utilisation during Rugby match play: Effects of pre-game carbohydrate. J. Sci. Med. Sport 2016, 19, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Killen, L.G.; Green, J.M.; O’Neal, E.K.; McIntosh, J.R.; Hornsby, J.; Coates, T.E. Effects of caffeine on session ratings of perceived exertion. Eur. J. Appl. Physiol. 2013, 113, 721–727. [Google Scholar] [CrossRef]
- Gant, N.; Ali, A.; Foskett, A. The Influence of Caffeine and Carbohydrate Coingestion on Simulated Soccer Performance. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Kenttä, G.; Hassmén, P. Overtraining and Recovery. Sports Med. 1998, 26, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Halson, S.L. Monitoring Training Load to Understand Fatigue in Athletes. Sports Med. 2014, 44, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Bangsbo, J.; Mohr, M.; Krustrup, P. Physical and metabolic demands of training and match-play in the elite football player. J. Sports Sci. 2006, 24, 665–674. [Google Scholar] [CrossRef]
- Faude, O.; Koch, T.; Meyer, T. Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef]
- Harper, L.D.; Briggs, M.A.; McNamee, G.; West, D.J.; Kilduff, L.P.; Stevenson, E.; Russell, M. Physiological and performance effects of carbohydrate gels consumed prior to the extra-time period of prolonged simulated soccer match-play. J. Sci. Med. Sport 2016, 19, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Wellington, B.M.; Leveritt, M.D.; Kelly, V.G. The Effect of Caffeine on Repeat-High-Intensity-Effort Performance in Rugby League Players. Int. J. Sports Physiol. Perform. 2017, 12, 206–210. [Google Scholar] [CrossRef]
- Lara, B.; Ruiz-Moreno, C.; Salineroid, J.J.; Del Cosoid, J. Time course of tolerance to the performance benefits of caffeine. PLoS ONE 2019, 14, e0210275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangan, S.; Ryan, M.; Shovlin, A.; McGahan, J.; Malone, S.; OʼNeill, C.; Burns, C.; Collins, K. Seasonal Changes in Gaelic Football Match-Play Running Performance. J. Strength Cond. Res. 2017, 1. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Lara, B.; Ruiz-Moreno, C.; Salinero, J. Challenging the Myth of Non-Response to the Ergogenic Effects of Caffeine Ingestion on Exercise Performance. Nutrients 2019, 11, 732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Trial | 1st Half | 2nd Half | Trial (p), η2 | Time Effect (p), η2 |
---|---|---|---|---|---|
%VO2max | CHO | 76 ± 7 (71–80) | 76 ± 8 (71–81) | ||
CHO + CAF | 75 ± 7 (71–80) | 75 ± 7 (70–80) | 0.985, 0.001, small | 0.621, 0.009, small | |
PLA | 76 ± 7 (72–81) | 75 ± 6 (70–79) | |||
%VO2mean | CHO | 73 ± 8 (69–78) | 73 ± 7 (69–78) | ||
CHO + CAF | 73 ± 7 (68–77) | 73 ± 6 (68–77) | 0.949, 0.004, small | 0.856, 0.001, small | |
PLA | 72 ± 6 (68–77) | 72 ± 7 (68–77) | |||
%HRmax | CHO | 89 ± 6 (85–94) | 87 ± 5 (83–90) | ||
CHO + CAF | 89 ± 6 (85–93) | 86 ± 7 (82–90) | 0.912, 0.007, small | 0.014 *, 0.202, medium | |
PLA | 90 ± 6 (85–93) | 87 ± 5 (84–91) | |||
%HRmean | CHO | 79 ±5 (76–82) | 78 ± 5 (76–81) | ||
CHO + CAF | 79 ± 5 (77–82) | 77 ± 5 (75–80) | 0.787, 0.018, small | 0.001 *, 0.408, large | |
PLA | 79 ± 4 (76–82) | 76 ± 4 (74–83) | |||
RER | CHO | 0.86 ± 0.10 (0.79–0.93) | 0.79 ± 0.11 (0.72–0.87) | ||
CHO + CAF | 0.85 ± 0.12 (0.78–0.92) | 0.79 ± 0.12 (0.72–0.87) | 0.933, 0.005, small | 0.001 *, 0.554, large | |
PLA | 0.85 ± 0.12 (0.77–0.92) | 0.77 ± 0.13 (0.69–0.85) |
Variable | Trial | Pre | HT | FT | Trial (p), η2 | Time Effect (p), η2 |
---|---|---|---|---|---|---|
BLA (mmoL L−1) | CHO | 1.4 ± 0.7 (1.0–1.8) | 5.5 ± 1.8 (4.0–6.3) | 7.8 ± 2.2 (6.5–9.1) | ||
CHO + CAF | 1.5 ± 0.6 (1.1–1.9) | 5.0 ± 1.4 (3.9–6.1) | 7.9 ± 1.9 (6.6–9.2) | 0.981, 0.001, small | 0.001 *, 0.884, large | |
PLA | 1.5 ± 0.3 (1.1–1.8) | 4.7 ± 1.4 (3.6–5.9) | 8.0 ± 1.8 (6.7–9.3) | |||
RSAmean(s) | CHO | 3.80 ± 0.21 (3.76–3.84) | 3.95 ± 0.21 (3.91–4.00) | 3.99 ± 0.20 (3.95–4.04) | ||
CHO + CAF | 3.82 ± 0.18 (3.78–3.87) | 3.89 ± 0.19 (3.85–3.94) | 3.84 ± 0.21 (3.79–3.89) | 0.002 *, 0.033, small | 0.001 *, 0.135, medium | |
PLA | 3.91 ± 0.15 (3.87–3.96) | 3.96 ± 0.17 (3.92–4.00) | 3.98 ± 0.21 (3.93–4.02) | |||
RSAbest (s) | CHO | 3.58 ± 0.22 (3.46–3.70) | 3.68 ± 0.18 (3.57–3.78) | 3.73 ± 0.28 (3.58–3.87) | ||
CHO + CAF | 3.60 ± 0.17 (3.48–3.72) | 3.63 ± 0.15 (3.53–3.74) | 3.55 ± 0.17 (3.41–3.70) | 0.502, 0.050, small | 0.220, 0.055, small | |
PLA | 3.67 ± 0.16 (3.55–3.79) | 3.68 ± 0.16 (3.57–3.78) | 3.70 ± 0.22 (3.55–3.85) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keane, J.; Shovlin, A.; Devenney, S.; Malone, S.; Young, D.; Coratella, G.; Collins, K.; Shortall, M. The Performance Effect of Scheduled Carbohydrate and Caffeine Intake during Simulated Team Sport Match-Play. Nutrients 2020, 12, 1926. https://doi.org/10.3390/nu12071926
Keane J, Shovlin A, Devenney S, Malone S, Young D, Coratella G, Collins K, Shortall M. The Performance Effect of Scheduled Carbohydrate and Caffeine Intake during Simulated Team Sport Match-Play. Nutrients. 2020; 12(7):1926. https://doi.org/10.3390/nu12071926
Chicago/Turabian StyleKeane, John, Aidan Shovlin, Simon Devenney, Shane Malone, Damien Young, Giuseppe Coratella, Kieran Collins, and Marcus Shortall. 2020. "The Performance Effect of Scheduled Carbohydrate and Caffeine Intake during Simulated Team Sport Match-Play" Nutrients 12, no. 7: 1926. https://doi.org/10.3390/nu12071926
APA StyleKeane, J., Shovlin, A., Devenney, S., Malone, S., Young, D., Coratella, G., Collins, K., & Shortall, M. (2020). The Performance Effect of Scheduled Carbohydrate and Caffeine Intake during Simulated Team Sport Match-Play. Nutrients, 12(7), 1926. https://doi.org/10.3390/nu12071926