Impaired Daytime Urinary Sodium Excretion Impacts Nighttime Blood Pressure and Nocturnal Dipping at Older Ages in the General Population
Abstract
:1. Introduction
2. Methods
2.1. Study Participants
2.2. Sodium Excretion
2.3. Twenty-Four Hour Ambulatory Blood Pressure Monitoring
2.4. Assessment of Other Study Variables
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SBP | Systolic Blood Pressure |
DBP | Diastolic Blood Pressure |
MBP | Mean Blood Pressure |
PP | Pulse Pressure |
ABPM | Ambulatory Blood Pressure Monitoring |
BP | Blood Pressure |
CVD | Cardio Vascular Diseases |
References
- Grillo, A.; Salvi, L.; Coruzzi, P.; Salvi, P.; Parati, G. Sodium Intake and Hypertension. Nutrients 2019, 11, 1970. [Google Scholar] [CrossRef] [Green Version]
- WHO/PAHO Regional Expert Group for Cardiovascular Disease Prevention through Population-wide Dietary Salt Reduction. Protocol for Population Level Sodium Determination in 24-Hour Urine Samples. Available online: http://new.paho.org/hq/dmdocuments/2010/pahosaltprotocol.pdf (accessed on 30 March 2020).
- Cogswell, M.E.; Maalouf, J.; Elliott, P.; Loria, C.M.; Patel, S.; Bowman, B.A. Use of Urine Biomarkers to Assess Sodium Intake: Challenges and Opportunities. Annu. Rev. Nutr. 2015, 35, 349–387. [Google Scholar] [CrossRef] [Green Version]
- Obarzanek, E.; Proschan, M.A.; Vollmer, W.M.; Moore, T.J.; Sacks, F.M.; Appel, L.J.; Svetkey, L.P.; Most-Windhauser, M.M.; Cutler, J.A. Individual Blood Pressure Responses to Changes in Salt Intake. Hypertension 2003, 42, 459–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Q.; Gu, N.; Chen, J.; Bazzano, L.A.; Rao, D.C.; Hixson, J.; Jaquish, C.E.; Cao, J.; Chen, J.; Li, J.; et al. Correlation Between Blood Pressure Responses to Dietary Sodium and Potassium Intervention in a Chinese Population. Am. J. Hypertens. 2009, 22, 1281–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachdeva, A.; Weder, A.B. Nocturnal Sodium Excretion, Blood Pressure Dipping, and Sodium Sensitivity. Hypertension 2006, 48, 527–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manchester, R.C. The diurnal rhythm in water and mineral exchange. J. Clin. Investig. 1933, 12, 995–1008. [Google Scholar] [CrossRef] [Green Version]
- Weinberger, M.H. Salt sensitivity and blood pressure in humans. Hypertension 1996, 27, 481–490. [Google Scholar] [CrossRef]
- Uzu, T.; Kimura, G.; Yamauchi, A.; Kanasaki, M.; Isshiki, K.; Araki, S.-I.; Sugiomoto, T.; Nishio, Y.; Maegawa, H.; Koya, D.; et al. Enhanced sodium sensitivity and disturbed circadian rhythm of blood pressure in essential hypertension. J. Hypertens. 2006, 24, 1627–1632. [Google Scholar] [CrossRef]
- Dyer, A.R.; Stamler, R.; Grimm, R.; Stamler, J.; Berman, R.; Gosch, F.C.; Emidy, L.A.; Elmer, P.; Fishman, J.; Van Heel, N. Do hypertensive patients have a different diurnal pattern of electrolyte excretion? Hypertension 1987, 10, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Bankir, L.; Bochud, M.; Maillard, M.; Bovet, P.; Gabriel, A.; Burnier, M. Nighttime Blood Pressure and Nocturnal Dipping Are Associated with Daytime Urinary Sodium Excretion in African Subjects. Hypertension 2008, 51, 891–898. [Google Scholar] [CrossRef] [Green Version]
- Uzu, T.; Nishimura, M.; Fujii, T.; Takeji, M.; Kuroda, S.; Nakamura, S.; Inenaga, T.; Kimura, G. Changes in the circadian rhythm of blood pressure in primary aldosteronism in response to dietary sodium restriction and adrenalectomy. J. Hypertens. 1998, 16, 1745–1748. [Google Scholar] [CrossRef]
- Bengele, H.H.; Mathias, R.S.; Alexander, E.A. Impaired Natriuresis after Volume Expansion in the Aged Rat. Kidney Blood Press. Res. 1981, 4, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Luft, F.C.; Fineberg, N.S.; Miller, J.Z.; Rankin, L.I.; Grim, C.E.; Weinberger, M.H. The effects of age, race and heredity on glomerular filtration rate following volume expansion and contraction in normal man. Am. J. Med. Sci. 1980, 279, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Luft, F.C.; Weinberger, M.H.; Fineberg, N.S.; Miller, J.Z.; Grim, C.E. Effects of age on renal sodium homeostasis and its relevance to sodium sensitivity. Am. J. Med. 1987, 82, 9–15. [Google Scholar] [CrossRef]
- Routledge, F.; McFetridge-Durdle, J. Nondipping blood pressure patterns among individuals with essential hypertension: A review of the literature. Eur. J. Cardiovasc. Nurs. 2006, 6, 9–26. [Google Scholar] [CrossRef]
- He, F.J.; Li, J.; MacGregor, G.A. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ 2013, 346, f1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binia, A.; Jaeger, J.; Hu, Y.; Singh, A.; Zimmermann, D. Daily potassium intake and sodium-to-potassium ratio in the reduction of blood pressure: A meta-analysis of randomized controlled trials. J. Hypertens. 2015, 33, 1509–1520. [Google Scholar] [CrossRef]
- Elliott, P.; Stamler, J.; Nichols, R.; Dyer, A.R.; Stamler, R.; Kesteloot, H.; Marmot, M. Intersalt revisited: Further analyses of 24 hour sodium excretion and blood pressure within and across populations. BMJ 1996, 312, 1249–1253. [Google Scholar] [CrossRef]
- Del Giorno, R.; Gabutti, S.; Troiani, C.; Stefanelli, K.; Falciano, R.; Graziano, E.; Negro, T.R.; Gabutti, L. Association Between HDL Cholesterol and QTc Interval: A Population-Based Epidemiological Study. J. Clin. Med. 2019, 8, 1527. [Google Scholar] [CrossRef] [Green Version]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. PLoS Med. 2007, 4, e297. [Google Scholar] [CrossRef] [Green Version]
- Glatz, N.; Chappuis, A.; Conen, D.; Erne, P.; Pechère-Bertschi, A.; Guessous, I.; Forni, V.; Gabutti, L.; Muggli, F.; Gallino, A.; et al. Associations of sodium, potassium and protein intake with blood pressure and hypertension in Switzerland. Swiss Med. Wkly. 2017, 147, w14411. [Google Scholar] [PubMed] [Green Version]
- Mente, A.; O’Donnell, M.; Rangarajan, S.; McQueen, M.J.; Poirier, P.; Wielgosz, A.; Morrison, H.; Li, W.; Wang, X.; Di, C.; et al. Association of Urinary Sodium and Potassium Excretion with Blood Pressure. N. Engl. J. Med. 2014, 371, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Van der Stouwe, J.G.; Carmeli, C.; Aeschbacher, S.; Schoen, T.; Krisai, P.; Wenger, G.; Ehret, G.; Ponte, B.; Pruijm, M.; Ackermann, D.; et al. Association of 24-Hour Blood Pressure With Urinary Sodium Excretion in Healthy Adults. Am. J. Hypertens. 2018, 31, 784–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaaks, R.; Ferrari, P.; Ciampi, A.; Plummer, M.T.; Riboli, E. Uses and limitations of statistical accounting for random error correlations, in the validation of dietary questionnaire assessments. Public Health Nutr. 2002, 5, 969–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, H.E.; Johansson, L.; Eggen, A.E.; Johansen, H.; Holvik, K. Sodium and Potassium Intake Assessed by Spot and 24-h Urine in the Population-Based Tromsø Study 2015–2016. Nutrients 2019, 11, 1619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cogswell, M.E.; Wang, C.Y.; Chen, T.C.; Pfeiffer, C.M.; Elliott, P.; Gillespie, C.D.; Carriquiry, A.L.; Sempos, C.T.; Liu, K.; Perrine, C.G. Validity of predictive equations for 24-h urinary sodium excretion in adults aged 18–39 y. Am. J. Clin. Nutr. 2013, 98, 1502–1513. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Li, W.; Wang, Y.; Chen, H.; Bo, J.; Wang, X.; Liu, L. Validation and Assessment of Three Methods to Estimate 24-h Urinary Sodium Excretion from Spot Urine Samples in Chinese Adults. PLoS ONE 2016, 11, e0149655. [Google Scholar] [CrossRef]
- Mercado, C.; Cogswell, M.E.; Loria, C.M.; Liu, K.; Allen, N.; Gillespie, C.; Wang, C.-Y.; De Boer, I.H.; Wright, J. Validity of predictive equations for 24-h urinary potassium excretion based on timing of spot urine collection among adults: The MESA and CARDIA Urinary Sodium Study and NHANES Urinary Sodium Calibration Study. Am. J. Clin. Nutr. 2018, 108, 532–547. [Google Scholar] [CrossRef]
- Williams, G.H.; Hollenberg, N.K. Sodium-sensitive essential hypertension: emerging insights into an old entity. J. Am. Coll. Nutr. 1989, 8, 490–494. [Google Scholar] [CrossRef]
- Uzu, T.; Ishikawa, K.; Fujii, T.; Nakamura, S.; Inenaga, T.; Kimura, G. Sodium restriction shifts circadian rhythm of blood pressure from nondipper to dipper in essential hypertension. Circulation 1997, 96, 1859–1862. [Google Scholar] [CrossRef]
- Uzu, T.; Kimura, G. Diuretics shift circadian rhythm of blood pressure from nondipper to dipper in essential hypertension. Circulation 1999, 100, 1635–1638. [Google Scholar] [CrossRef] [Green Version]
- Morimoto, A.; Uzu, T.; Fujii, T.; Nishimura, M.; Kuroda, S.; Nakamura, S.; Inenaga, T.; Kimura, G. Sodium sensitivity and cardiovascular events in patients with essential hypertension. Lancet 1997, 350, 1734–1737. [Google Scholar] [CrossRef]
- Kimura, G. Sodium sensitivity of blood pressure: A new prognostic factor in hypertension. Nephron 1999, 83, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Khaw, K.-T.; Barrett-Connor, E. Increasing Sensitivity of Blood Pressure to Dietary Sodium and Potassium With Increasing Age: A Population Study Using Casual Urine Specimens. Am. J. Hypertens. 1990, 3, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Gordon, R.; Doran, F.; Thomas, M.; Thomas, F.; Cheras, P. Solitary Kidney and Ageing as Causes of Low Renin and Aldosterone Concentrations: Relevance to ‘Low-Renin’ Essential Hypertension. Clin. Sci. Mol. Med. Suppl. 1976, 51, 177s–180s. [Google Scholar] [CrossRef]
- Meneton, P.; Loffing, J.; Warnock, D.G. Sodium and potassium handling by the aldosterone-sensitive distal nephron: The pivotal role of the distal and connecting tubule. Am. J. Physiol. Physiol. 2004, 287, F593–F601. [Google Scholar] [CrossRef]
- Cugini, P.; Scavo, D.; Comelissen, G.; Lee, J.; Meucci, T.; Halberg, F. Circadian Rhythms of Plasma Renin, Aldosterone and Cortisol on Habitual and Low Dietary Sodium Intake. Horm. Res. 1981, 15, 7–27. [Google Scholar] [CrossRef]
- Schwartz, G.L.; Bailey, K.; Chapman, A.B.; Boerwinkle, E.; Turner, S.T. The Role of Plasma Renin Activity, Age, and Race in Selecting Effective Initial Drug Therapy for Hypertension. Am. J. Hypertens. 2013, 26, 957–964. [Google Scholar] [CrossRef] [Green Version]
- Berg, R.L.; Cassells, J.S. The Second Fifty Years: Promoting Health and Preventing Disability; National Academies Press: Washington, DC, USA, 1992. [Google Scholar]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr.; et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: The JNC 7 report. JAMA 2003, 289, 2560–2572. [Google Scholar]
- Franklin, S.S.; Gustin, W.; Wong, N.D.; Larson, M.G.; Weber, M.A.; Kannel, W.B.; Levy, D. Hemodynamic Patterns of Age-Related Changes in Blood Pressure: The Framingham Heart Study. Circulation 1997, 96, 308–315. [Google Scholar] [CrossRef] [Green Version]
- Burnier, M.; Wuerzner, G.; Bochud, M. Salt, blood pressure and cardiovascular risk: What is the most adequate preventive strategy? A Swiss perspective. Front. Physiol. 2015, 6, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahimi, K.; Emdin, C.; MacMahon, S. The Epidemiology of Blood Pressure and Its Worldwide Management. Circ. Res. 2015, 116, 925–936. [Google Scholar] [CrossRef] [Green Version]
- McGuire, S. Institute of Medicine. 2010. Strategies to Reduce Sodium. Adv. Nutr. 2010, 1, 49–50. [Google Scholar] [CrossRef] [PubMed]
- Resnick, L.M.; Laragh, J.H.; Sealey, J.E.; Alderman, M.H. Divalent Cations in Essential Hypertension. N. Engl. J. Med. 1983, 309, 888–891. [Google Scholar] [CrossRef] [PubMed]
- Ichihara, A.; Suzuki, H.; Saruta, T. Effects of magnesium on the renin-angiotensin-aldosterone system in human subjects. J. Lab. Clin. Med. 1993, 122, 432–440. [Google Scholar] [PubMed]
- DiNicolantonio, J.J.; O’Keefe, J.H.; Wilson, W. Subclinical magnesium deficiency: A principal driver of cardiovascular disease and a public health crisis. Open Hear. 2018, 5, e000668. [Google Scholar] [CrossRef]
- Wu, J.; Xun, P.; Tang, Q.; Cai, W.; He, K. Circulating magnesium levels and incidence of coronary heart diseases, hypertension, and type 2 diabetes mellitus: A meta-analysis of prospective cohort studies. Nutr. J. 2017, 16, 60. [Google Scholar] [CrossRef]
- Hatzistavri, L.S.; Sarafidis, P.; Georgianos, P.I.; Tziolas, I.M.; Aroditis, C.P.; Zebekakis, P.; Pikilidou, M.I.; Lasaridis, A.N. Oral Magnesium Supplementation Reduces Ambulatory Blood Pressure in Patients with Mild Hypertension. Am. J. Hypertens. 2009, 22, 1070–1075. [Google Scholar] [CrossRef] [Green Version]
- Schutten, J.; Joosten, M.; Borst, M.; Bakker, S. Magnesium and Blood Pressure: A Physiology-Based Approach. Adv. Chronic Kidney Dis. 2018, 25, 244–250. [Google Scholar] [CrossRef]
All Subjects | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | p-Value | |
---|---|---|---|---|---|---|
Demographics Characteristics | ||||||
Age, Years | 52 (43–60) | 55 (46–67) | 52 (43–61) | 52 (43–60) | 47 (39–55) | ≤0.001 |
Females, n (%) | 591 (55.7) | 139 (52.3) | 149 (56.02) | 146 (55.30) | 157 (59.02) | 0.479 |
Body Mass Index, kg/m2 | 24.4 (22.1–27.4) | 24.5 (22.0–27.8) | 24.6 (22.2–27.7) | 24.5 (22.7–27.4) | 23.7 (21.5–26.5) | 0.187 |
Current Smoking, n (%) | 192 (18.2) | 40 (15.2) | 31 (11.7) | 54 (20.6) | 67 (25.3) | ≤0.001 |
Waist/Hip, cm | 0.91 (0.86–0.96) | 0.91 (0.86–0.96) | 0.91 (0.86–0.96) | 0.91 (0.87–0.96) | 0.89 (0.84–0.95) | 0.075 |
Hypertension, n (%) | 163 (15.5) | 54 (20.5) | 41 (15.5) | 37 (14.2) | 31 (11.7) | 0.043 |
Diabetes, n (%) | 22 (2.0) | 6 (2.3) | 6 (2.3) | 6 (2.3) | 4 (1.5) | 0.910 |
Hypercolesterolemia, n (%) | 148 (14.0) | 47 (17.8) | 40 (15.2) | 34 (13.0) | 27 (10.2) | 0.080 |
History of CVD, n (%) | 32 (3.0) | 11(4.2) | 11 (4.2) | 4 (1.5) | 6 (2.3) | 0.184 |
Glycemia, mmol/L, n (%) | 5.8 (5.5–6.2) | 5.8 (5.5–6.2) | 5.8 (5.5–6.2) | 5.8 (5.5–6.2) | 5.7 (5.4–6.2) | 0.114 |
Cystatin C, mg/L | 0.81 (0.73–0.90) | 0.84 (0.75–0.94) | 0.81 (0.72–0.88) | 0.80 (0.73–0.90) | 0.79 (0.71–0.86) | 0.023 |
Creatinine, µmol/L | 74 (64–85) | 77(67–90) | 76 (65–86) | 72 (62–84) | 71 (62–81) | ≤0.001 |
Creatinine urine 24 h, µmol | 16.4 (11.2–23.4) | 15.6 (11.2–21.2) | 15.5 (10.9–24.4) | 16 (10.7–22.8) | 17.9 (12.6–24.8) | 0.050 |
Self-reported duration of nocturnal urine collection, hours | 7.8 (7.0–8.5) | 8 (7.0–8.8) | 7.8 (7.0–8.5) | 7.6 (7.0–8.5) | 8 (7.0–8.8) | 0.260 |
Day/night ratio of urinary sodium excretion, mmol | 1.15 (0.85–1.57) | 0.68 (0.56–0.77) | 0.99 (0.93–1.08) | 1.33 (1.24–1.44) | 2.05 (1.77–2.47) | <0.001 |
24-h Urinary sodium excretion, mmol | 163.5 (114–228) | 133.2 (92.6–173.8) | 134.6 (96.5–177.1) | 131.5 (95.8–169.3) | 125.6 (92.1–163.5) | 0.627 |
Daytime Urinary sodium excretion, mmol | 57.6 (40.7–83.2) | 51.8 (35.6–67.6) | 67.2 (48.6–88.9) | 75.9 (54.6–97.4) | 87.5 (63.4–111.3) | ≤0.001 |
Nighttime Urinary sodium excretion, mmol | 67.7 (48.7–92.6) | 81.2 (56.6–104.9) | 68 (48.8–90.2) | 55.1 (41.6–72.4) | 38.9 (27.8–55.3) | ≤0.001 |
24-Hours ABPM | ||||||
24-h SBP, mmHg | 117 (111–126) | 119 (112–129) | 117 (111–126) | 119 (112–126) | 116 (110–123) | ≤0.001 |
24 h DBP, mmHg | 73 (68–80) | 74 (69–81) | 73 (68–79) | 74 (69–80) | 72 (67–79) | 0.051 |
Heart Rate 24 h | 70 (64–75) | 70 (63–75) | 70 (65–75) | 71 (64–75) | 70 (65–75) | 0.561 |
24-PP, mmHg | 44 (39–49) | 44 (39–51) | 44 (40–49) | 44 (40–49) | 43 (39–47) | 0.240 |
Daytime ABPM | ||||||
Daytime SBP, mmHg | 121 (114–128) | 122 (114–130) | 120 (113–128) | 122 (114–130) | 119 (113–126) | 0.224 |
Daytime DBP, mmHg | 76 (70–83) | 77 (71–84) | 75 (70–82) | 77 (72–83) | 75 (69–82) | 0.200 |
Heart Rate day-time | 73 (67–79) | 72 (65–79) | 73 (67–78) | 73 (67–79) | 73 (68–78) | 0.780 |
Daytime PP, mmHg | 44 (39–50) | 44 (39–50) | 44 (40–50) | 44 (39–49) | 43 (39–48) | 0.406 |
Nighttime ABPM | ||||||
Nighttime SBP, mmHg | 110 (103–118) | 114 (104–124) | 110 (103–119) | 110 (103–117) | 108 (101–115) | ≤0.001 |
Nighttime DBP, mmHg | 66 (61–73) | 68 (61–77) | 67 (62–74) | 66 (60–72) | 65 (59–71) | 0.013 |
Heart Rate night-time | 62 (56–68) | 61 (56–67) | 62 (57–67) | 63 (57–68) | 62 (56–68) | 0.758 |
Nighttime PP, mmHg | 43 (39–48) | 43 (39–51) | 43(38–48) | 44 (40–48) | 42 (38–47) | ≤0.001 |
Nocturnal BP Change | ||||||
Difference SBP day-night, mmHg | 10 (5–16) | 8 (3–13) | 10 (5–15) | 12 (6–18) | 12 (6–17) | ≤0.001 |
Difference DBP day-night, mmHg | 10 (5–14) | 8 (5–12) | 9 (4–12) | 11 (7–15) | 10 (7–15) | ≤0.001 |
Difference PP day-night, mmHg | 1 (−3–5) | 0 (−3–4) | 1 (−2–5) | 1 (−3–5) | 1 (−2–4.5) | 0.474 |
Overall Population | ||||
---|---|---|---|---|
Urinary Sodium Excretion Ratio | SBP, mmHg (95%CI) | p-Value | DBP, mmHg (95%CI) | p-Value |
24 Hours ABPM | ||||
Q1 | 113.5 (94.3–132.7) | 0.206 | 66.7 (53.0–80.4) | 0.583 |
Q2 | 112.1 (95.1–129.1) | 0.492 | 66.3 (54.1–78.4) | 0.736 |
Q3 | 111.4 (96.4–126.3) | 0.897 | 66.0 (55.3–76.7) | 0.965 |
Q4 | Reference | Reference | ||
Daytime ABPM | ||||
Q1 | 116.9 (96.7–137.1) | 0.841 | 68.8 (54.2–83.4) | 0.484 |
Q2 | 116.6 (98.6–134.2) | 0.974 | 69.4 (56.5–82.3) | 0.530 |
Q3 | 116.7 (100.9–132.4) | 0.952 | 69.9 (58.5–81.2) | 0.903 |
Q4 | Reference | Reference | ||
Nighttime ABPM | ||||
Q1 | 106.0 (86.2–125.9) | ≤0.001 | 63.2 (48.6–77.7) | <0.001 |
Q2 | 101.6 (84.1–119.2) | 0.021 | 60.5 (47.6–73.3) | 0.018 |
Q3 | 99.0 (83.7–114.4) | 0.547 | 58.5 (47.8–69.8) | 0.889 |
Q4 | Reference | Reference | ||
Nocturnal BP change | ||||
Q1 | 4.1 (−11.9, −20.1) | ≤0.001 | 3.6 (−9.7–16.8) | ≤0.001 |
Q2 | 8.3 (−5.9,−22.5) | ≤0.001 | −4.9 (−4.8–18.7) | ≤0.001 |
Q3 | 10.6 (−1.9–23.1) | 0.498 | 9.25 (−1.1–19.6) | 0.710 |
Q4 | Reference | Reference |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Giorno, R.; Troiani, C.; Gabutti, S.; Stefanelli, K.; Puggelli, S.; Gabutti, L. Impaired Daytime Urinary Sodium Excretion Impacts Nighttime Blood Pressure and Nocturnal Dipping at Older Ages in the General Population. Nutrients 2020, 12, 2013. https://doi.org/10.3390/nu12072013
Del Giorno R, Troiani C, Gabutti S, Stefanelli K, Puggelli S, Gabutti L. Impaired Daytime Urinary Sodium Excretion Impacts Nighttime Blood Pressure and Nocturnal Dipping at Older Ages in the General Population. Nutrients. 2020; 12(7):2013. https://doi.org/10.3390/nu12072013
Chicago/Turabian StyleDel Giorno, Rosaria, Chiara Troiani, Sofia Gabutti, Kevyn Stefanelli, Sandro Puggelli, and Luca Gabutti. 2020. "Impaired Daytime Urinary Sodium Excretion Impacts Nighttime Blood Pressure and Nocturnal Dipping at Older Ages in the General Population" Nutrients 12, no. 7: 2013. https://doi.org/10.3390/nu12072013
APA StyleDel Giorno, R., Troiani, C., Gabutti, S., Stefanelli, K., Puggelli, S., & Gabutti, L. (2020). Impaired Daytime Urinary Sodium Excretion Impacts Nighttime Blood Pressure and Nocturnal Dipping at Older Ages in the General Population. Nutrients, 12(7), 2013. https://doi.org/10.3390/nu12072013