Perinatal Docosahexaenoic Acid Supplementation Improves Cognition and Alters Brain Functional Organization in Piglets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Study Design
2.2. Dietary Treatment
2.3. Colostrum Fatty Acid Composition
2.4. Behavior Testing
2.4.1. Open Field Test
2.4.2. Object Recognition Test
2.5. MRI Acquisition
2.6. MRI Analysis
2.6.1. Anatomical and DTI Analysis
2.6.2. Functional Connectivity Analysis
2.7. Animal Sacrifice and Tissue Collection
2.8. HPLC-ECD
2.9. Statistical Analysis
3. Results
3.1. Colostrum Fatty Acids Composition
3.2. Piglet Bodyweight and Brain Weight
3.3. Behavior Testing
3.3.1. Open Field Test
3.3.2. Object Recognition Test
3.4. Structural MRI Analysis
3.5. Hippocampal DTI Analysis
3.6. Functional Connectivity Analysis
3.7. Monoamine Neurotransmitters
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cusick, S.E.; Georgieff, M.K. The Role of Nutrition in Brain Development: The Golden Opportunity of the “First 1000 Days”. J. Pediatr. 2016, 175, 16–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lien, E.L.; Richard, C.; Hoffman, D.R. DHA and ARA addition to infant formula: Current status and future research directions. Prostaglandins Leukot. Essent. Fatty Acids 2018, 128, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Lauritzen, L.; Brambilla, P.; Mazzocchi, A.; Harslof, L.B.; Ciappolino, V.; Agostoni, C. DHA Effects in Brain Development and Function. Nutrients 2016, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Lacombe, R.J.S.; Chouinard-Watkins, R.; Bazinet, R.P. Brain docosahexaenoic acid uptake and metabolism. Mol. Aspects Med. 2018. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Huang, Y.; Chen, Z.Y. Distribution, depletion and recovery of docosahexaenoic acid are region-specific in rat brain. Br. J. Nutr. 2005, 94, 544–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNamara, R.K.; Carlson, S.E. Role of omega-3 fatty acids in brain development and function: Potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins Leukot. Essent. Fatty Acids 2006, 75, 329–349. [Google Scholar] [CrossRef]
- Coletta, J.M.; Bell, S.J.; Roman, A.S. Omega-3 Fatty acids and pregnancy. Rev. Obstet. Gynecol. 2010, 3, 163–171. [Google Scholar]
- Carlson, S.E. Docosahexaenoic acid supplementation in pregnancy and lactation. Am. J. Clin. Nutr. 2009, 89, 678S–684S. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.J.; Kawasawa, Y.I.; Cheng, F.; Zhu, Y.; Xu, X.; Li, M.; Sousa, A.M.; Pletikos, M.; Meyer, K.A.; Sedmak, G.; et al. Spatio-temporal transcriptome of the human brain. Nature 2011, 478, 483–489. [Google Scholar] [CrossRef] [Green Version]
- McNamara, R.K.; Able, J.; Liu, Y.; Jandacek, R.; Rider, T.; Tso, P.; Lipton, J.W. Omega-3 fatty acid deficiency during perinatal development increases serotonin turnover in the prefrontal cortex and decreases midbrain tryptophan hydroxylase-2 expression in adult female rats: Dissociation from estrogenic effects. J. Psychiatr. Res. 2009, 43, 656–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moriguchi, T.; Greiner, R.S.; Salem, N., Jr. Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J. Neurochem. 2000, 75, 2563–2573. [Google Scholar] [CrossRef] [PubMed]
- Dunstan, J.A.; Mitoulas, L.R.; Dixon, G.; Doherty, D.A.; Hartmann, P.E.; Simmer, K.; Prescott, S.L. The effects of fish oil supplementation in pregnancy on breast milk fatty acid composition over the course of lactation: A randomized controlled trial. Pediatr. Res. 2007, 62, 689–694. [Google Scholar] [CrossRef] [Green Version]
- Boucher, O.; Burden, M.J.; Muckle, G.; Saint-Amour, D.; Ayotte, P.; Dewailly, E.; Nelson, C.A.; Jacobson, S.W.; Jacobson, J.L. Neurophysiologic and neurobehavioral evidence of beneficial effects of prenatal omega-3 fatty acid intake on memory function at school age. Am. J. Clin. Nutr. 2011, 93, 1025–1037. [Google Scholar] [CrossRef] [Green Version]
- Hibbeln, J.R.; Davis, J.M.; Steer, C.; Emmett, P.; Rogers, I.; Williams, C.; Golding, J. Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): An observational cohort study. Lancet 2007, 369, 578–585. [Google Scholar] [CrossRef]
- Braarud, H.C.; Markhus, M.W.; Skotheim, S.; Stormark, K.M.; Froyland, L.; Graff, I.E.; Kjellevold, M. Maternal DHA Status during Pregnancy Has a Positive Impact on Infant Problem Solving: A Norwegian Prospective Observation Study. Nutrients 2018, 10, 529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmer, K. Long-chain polyunsaturated fatty acid supplementation in infants born at term. Cochrane Database Syst. Rev. 2001. [Google Scholar] [CrossRef]
- Cohen, J.T.; Bellinger, D.C.; Connor, W.E.; Shaywitz, B.A. A quantitative analysis of prenatal intake of n-3 polyunsaturated fatty acids and cognitive development. Am. J. Prev. Med. 2005, 29, 366–374. [Google Scholar] [CrossRef]
- Shulkin, M.; Pimpin, L.; Bellinger, D.; Kranz, S.; Fawzi, W.; Duggan, C.; Mozaffarian, D. n-3 Fatty Acid Supplementation in Mothers, Preterm Infants, and Term Infants and Childhood Psychomotor and Visual Development: A Systematic Review and Meta-Analysis. J. Nutr. 2018, 148, 409–418. [Google Scholar] [CrossRef]
- Helland, I.B.; Smith, L.; Saarem, K.; Saugstad, O.D.; Drevon, C.A. Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics 2003, 111, e39–e44. [Google Scholar] [CrossRef] [Green Version]
- Helland, I.B.; Saugstad, O.D.; Smith, L.; Saarem, K.; Solvoll, K.; Ganes, T.; Drevon, C.A. Similar effects on infants of n-3 and n-6 fatty acids supplementation to pregnant and lactating women. Pediatrics 2001, 108, E82. [Google Scholar] [CrossRef] [Green Version]
- Makrides, M.; Gibson, R.A.; McPhee, A.J.; Yelland, L.; Quinlivan, J.; Ryan, P.; The DOMInO Investigative Team. Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: A randomized controlled trial. JAMA 2010, 304, 1675–1683. [Google Scholar] [CrossRef] [Green Version]
- van Goor, S.A.; Dijck-Brouwer, D.A.; Erwich, J.J.; Schaafsma, A.; Hadders-Algra, M. The influence of supplemental docosahexaenoic and arachidonic acids during pregnancy and lactation on neurodevelopment at eighteen months. Prostaglandins Leukot. Essent. Fatty Acids 2011, 84, 139–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mudd, A.T.; Dilger, R.N. Early-Life Nutrition and Neurodevelopment: Use of the Piglet as a Translational Model. Adv. Nutr. 2017, 8, 92–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lind, N.M.; Moustgaard, A.; Jelsing, J.; Vajta, G.; Cumming, P.; Hansen, A.K. The use of pigs in neuroscience: Modeling brain disorders. Neurosci. Biobehav. Rev. 2007, 31, 728–751. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.M.; Beamer, J.L. Age-weight relationships of selected organs and body weight for miniature swine. Growth 1971, 35, 259–272. [Google Scholar] [PubMed]
- Watanabe, H.; Andersen, F.; Simonsen, C.Z.; Evans, S.M.; Gjedde, A.; Cumming, P.; DaNe, X.S.G. MR-based statistical atlas of the Gottingen minipig brain. Neuroimage 2001, 14, 1089–1096. [Google Scholar] [CrossRef]
- Sun, T.; Hevner, R.F. Growth and folding of the mammalian cerebral cortex: From molecules to malformations. Nat. Rev. Neurosci. 2014, 15, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, V.; Verlag, V.L. Comparative Anatomy of the Pig Brain—An Integrative Magnetic Resonance Imaging (MRI) Study of the Porcine Brain with Special Emphasis on the External Morphology of the Cerebral Cortex; VVB Laufersweiler Verlag: Staufenbergring, Germany, 2015. [Google Scholar]
- Nakamura, M.; Imai, H.; Konno, K.; Kubota, C.; Seki, K.; Puentes, S.; Faried, A.; Yokoo, H.; Hata, H.; Yoshimoto, Y.; et al. Experimental investigation of encephalomyosynangiosis using gyrencephalic brain of the miniature pig: Histopathological evaluation of dynamic reconstruction of vessels for functional anastomosis. Laboratory investigation. J. Neurosurg. Pediatr. 2009, 3, 488–495. [Google Scholar] [CrossRef]
- Kuluz, J.W.; Prado, R.; He, D.; Zhao, W.; Dietrich, W.D.; Watson, B. New pediatric model of ischemic stroke in infant piglets by photothrombosis: Acute changes in cerebral blood flow, microvasculature, and early histopathology. Stroke 2007, 38, 1932–1937. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, Y.; Imai, H.; Konno, K.; Miyagishima, T.; Kubota, C.; Puentes, S.; Aoki, T.; Hata, H.; Takata, K.; Yoshimoto, Y.; et al. Experimental model of lacunar infarction in the gyrencephalic brain of the miniature pig: Neurological assessment and histological, immunohistochemical, and physiological evaluation of dynamic corticospinal tract deformation. Stroke 2008, 39, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Baltan, S.; Besancon, E.F.; Mbow, B.; Ye, Z.; Hamner, M.A.; Ransom, B.R. White matter vulnerability to ischemic injury increases with age because of enhanced excitotoxicity. J. Neurosci. 2008, 28, 1479–1489. [Google Scholar] [CrossRef] [Green Version]
- Conrad, M.S.; Dilger, R.N.; Nickolls, A.; Johnson, R.W. Magnetic resonance imaging of the neonatal piglet brain. Pediatr. Res. 2012, 71, 179–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Sejnowski, T.J. A universal scaling law between gray matter and white matter of cerebral cortex. Proc. Natl. Acad. Sci. USA 2000, 97, 5621–5626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holm, I.E.; West, M.J. Hippocampus of the domestic pig: A stereological study of subdivisional volumes and neuron numbers. Hippocampus 1994, 4, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.; Bjarkam, C.R.; Ostergaard, K.; West, M.J.; Sorensen, J.C. The anatomy of the porcine subthalamic nucleus evaluated with immunohistochemistry and design-based stereology. Anat. Embryol. 2004, 208, 239–247. [Google Scholar] [CrossRef]
- Jelsing, J.; Hay-Schmidt, A.; Dyrby, T.; Hemmingsen, R.; Uylings, H.B.; Pakkenberg, B. The prefrontal cortex in the Gottingen minipig brain defined by neural projection criteria and cytoarchitecture. Brain Res. Bull. 2006, 70, 322–336. [Google Scholar] [CrossRef]
- Craner, S.L.; Ray, R.H. Somatosensory cortex of the neonatal pig: II. Topographic organization of the secondary somatosensory cortex (SII). J. Comp. Neurol. 1991, 306, 39–48. [Google Scholar] [CrossRef]
- Dobbing, J.; Sands, J. Comparative aspects of the brain growth spurt. Early Hum. Dev. 1979, 3, 79–83. [Google Scholar] [CrossRef]
- Dickerson, J.W.; Dobbing, J. Prenatal and postnatal growth and development of the central nervous system of the pig. Proc. R. Soc. Lond. B Biol. Sci. 1967, 166, 384–395. [Google Scholar] [CrossRef]
- Pond, W.G.; Boleman, S.L.; Fiorotto, M.L.; Ho, H.; Knabe, D.A.; Mersmann, H.J.; Savell, J.W.; Su, D.R. Perinatal ontogeny of brain growth in the domestic pig. Proc. Soc. Exp. Biol. Med. 2000, 223, 102–108. [Google Scholar] [CrossRef]
- Knickmeyer, R.C.; Gouttard, S.; Kang, C.; Evans, D.; Wilber, K.; Smith, J.K.; Hamer, R.M.; Lin, W.; Gerig, G.; Gilmore, J.H. A structural MRI study of human brain development from birth to 2 years. J. Neurosci. 2008, 28, 12176–12182. [Google Scholar] [CrossRef] [PubMed]
- Conrad, M.S.; Dilger, R.N.; Johnson, R.W. Brain growth of the domestic pig (Sus scrofa) from 2 to 24 weeks of age: A longitudinal MRI study. Dev. Neurosci. 2012, 34, 291–298. [Google Scholar] [CrossRef] [Green Version]
- National Research Council (US.). Committee on Nutrient Requirements of Swine. In Nutrient Requirements of Swine, 11th rev. ed.; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Kawakami, Y.; Yamanaka-Okumura, H.; Naniwa-Kuroki, Y.; Sakuma, M.; Taketani, Y.; Takeda, E. Flaxseed oil intake reduces serum small dense low-density lipoprotein concentrations in Japanese men: A randomized, double blind, crossover study. Nutr. J. 2015, 14, 39. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, C.K.; Chiba, L.I.; Brotzge, S.D.; Vieira, M.S.; Huang, C.; Bergen, W.G.; Bratcher, C.L.; Rodning, S.P.; Welles, E.G. Early dietary amino acid restrictions and flaxseed oil supplementation on the leanness of pigs and quality of pork: Growth performance, serum metabolites, carcass characteristics, and physical and sensory characteristics of pork. Livest. Sci. 2017, 198, 182–190. [Google Scholar] [CrossRef]
- Leonard, S.G.; Sweeney, T.; Bahar, B.; Lynch, B.P.; O’Doherty, J.V. Effect of maternal fish oil and seaweed extract supplementation on colostrum and milk composition, humoral immune response, and performance of suckled piglets. J. Anim. Sci. 2010, 88, 2988–2997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smit, M.N.; Patterson, J.L.; Webel, S.K.; Spencer, J.D.; Cameron, A.C.; Dyck, M.K.; Dixon, W.T.; Foxcroft, G.R. Responses to n-3 fatty acid (LCPUFA) supplementation of gestating gilts, and lactating and weaned sows. Animal 2013, 7, 784–792. [Google Scholar] [CrossRef] [Green Version]
- Orsavova, J.; Misurcova, L.; Ambrozova, J.V.; Vicha, R.; Mlcek, J. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef]
- Cromwell, G.L.; Azain, M.J.; Adeola, O.; Baidoo, S.K.; Carter, S.D.; Crenshaw, T.D.; Kim, S.W.; Mahan, D.C.; Miller, P.S.; Shannon, M.C.; et al. Corn distillers dried grains with solubles in diets for growing-finishing pigs: A cooperative study. J. Anim. Sci. 2011, 89, 2801–2811. [Google Scholar] [CrossRef] [Green Version]
- Park, P.W.; Goins, R.E. In Situ Preparation of Fatty Acid Methyl Esters for Analysis of Fatty Acid Composition in Foods. J. Food Sci. 1994, 59, 1262–1266. [Google Scholar] [CrossRef]
- Fleming, S.A.; Dilger, R.N. Young pigs exhibit differential exploratory behavior during novelty preference tasks in response to age, sex, and delay. Behav. Brain Res. 2017, 321, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Radlowski, E.C.; Conrad, M.S.; Lezmi, S.; Dilger, R.N.; Sutton, B.; Larsen, R.; Johnson, R.W. A neonatal piglet model for investigating brain and cognitive development in small for gestational age human infants. PLoS ONE 2014, 9, e91951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saikali, S.; Meurice, P.; Sauleau, P.; Eliat, P.A.; Bellaud, P.; Randuineau, G.; Verin, M.; Malbert, C.H. A three-dimensional digital segmented and deformable brain atlas of the domestic pig. J. Neurosci. Methods 2010, 192, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G. Online dictionary learning for sparse coding. In Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, Quebec, Canada, 14–18 June 2009; pp. 689–696. [Google Scholar]
- Simchick, G.; Shen, A.; Campbell, B.; Park, H.J.; West, F.D.; Zhao, Q. Pig Brains Have Homologous Resting-State Networks with Human Brains. Brain Connect. 2019, 9, 566–579. [Google Scholar] [CrossRef] [PubMed]
- Coban, A.; Filipov, N.M. Dopaminergic toxicity associated with oral exposure to the herbicide atrazine in juvenile male C57BL/6 mice. J. Neurochem. 2007, 100, 1177–1187. [Google Scholar] [CrossRef]
- Krishna, S.; Lin, Z.; de La Serre, C.B.; Wagner, J.J.; Harn, D.H.; Pepples, L.M.; Djani, D.M.; Weber, M.T.; Srivastava, L.; Filipov, N.M. Time-dependent behavioral, neurochemical, and metabolic dysregulation in female C57BL/6 mice caused by chronic high-fat diet intake. Physiol. Behav. 2016, 157, 196–208. [Google Scholar] [CrossRef] [Green Version]
- Sinanoglou, V.J.; Cavouras, D.; Boutsikou, T.; Briana, D.D.; Lantzouraki, D.Z.; Paliatsiou, S.; Volaki, P.; Bratakos, S.; Malamitsi-Puchner, A.; Zoumpoulakis, P. Factors affecting human colostrum fatty acid profile: A case study. PLoS ONE 2017, 12, e0175817. [Google Scholar] [CrossRef] [Green Version]
- Koletzko, B.; Cetin, I.; Brenna, J.T.; Perinatal Lipid Intake Working Group. Dietary fat intakes for pregnant and lactating women. Br. J. Nutr. 2007, 98, 873–877. [Google Scholar] [CrossRef] [Green Version]
- Koletzko, B.; Lien, E.; Agostoni, C.; Bohles, H.; Campoy, C.; Cetin, I.; Decsi, T.; Dudenhausen, J.W.; Dupont, C.; Forsyth, S.; et al. The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: Review of current knowledge and consensus recommendations. J. Perinat Med. 2008, 36, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Fidler, N.; Sauerwald, T.; Pohl, A.; Demmelmair, H.; Koletzko, B. Docosahexaenoic acid transfer into human milk after dietary supplementation: A randomized clinical trial. J. Lipid Res. 2000, 41, 1376–1383. [Google Scholar]
- Hawkes, J.S.; Bryan, D.L.; Makrides, M.; Neumann, M.A.; Gibson, R.A. A randomized trial of supplementation with docosahexaenoic acid-rich tuna oil and its effects on the human milk cytokines interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha. Am. J. Clin. Nutr. 2002, 75, 754–760. [Google Scholar] [CrossRef] [Green Version]
- Jensen, C.L.; Maude, M.; Anderson, R.E.; Heird, W.C. Effect of docosahexaenoic acid supplementation of lactating women on the fatty acid composition of breast milk lipids and maternal and infant plasma phospholipids. Am. J. Clin. Nutr. 2000, 71, 292S–299S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, R.A.; Neumann, M.A.; Makrides, M. Effect of increasing breast milk docosahexaenoic acid on plasma and erythrocyte phospholipid fatty acids and neural indices of exclusively breast fed infants. Eur. J. Clin. Nutr. 1997, 51, 578–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbuckle, L.D.; Innis, S.M. Docosahexaenoic acid is transferred through maternal diet to milk and to tissues of natural milk-fed piglets. J. Nutr. 1993, 123, 1668–1675. [Google Scholar] [CrossRef] [PubMed]
- Sherry, C.L.; Oliver, J.S.; Marriage, B.J. Docosahexaenoic acid supplementation in lactating women increases breast milk and plasma docosahexaenoic acid concentrations and alters infant omega 6:3 fatty acid ratio. Prostaglandins Leukot. Essent. Fatty Acids 2015, 95, 63–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donald, R.D.; Healy, S.D.; Lawrence, A.B.; Rutherford, K.M. Emotionality in growing pigs: Is the open field a valid test? Physiol. Behav. 2011, 104, 906–913. [Google Scholar] [CrossRef]
- Kouwenberg, A.-L.; Walsh, C.J.; Morgan, B.E.; Martin, G.M. Episodic-like memory in crossbred Yucatan minipigs (Sus scrofa). Appl. Anim. Behav. Sci. 2009, 117, 165–172. [Google Scholar] [CrossRef]
- Pascalis, O.; Bachevalier, J. Neonatal aspiration lesions of the hippocampal formation impair visual recognition memory when assessed by paired-comparison task but not by delayed nonmatching-to-sample task. Hippocampus 1999, 9, 609–616. [Google Scholar] [CrossRef]
- Pascalis, O.; Hunkin, N.M.; Holdstock, J.S.; Isaac, C.L.; Mayes, A.R. Visual paired comparison performance is impaired in a patient with selective hippocampal lesions and relatively intact item recognition. Neuropsychologia 2004, 42, 1293–1300. [Google Scholar] [CrossRef]
- de Haan, M.; Mishkin, M.; Baldeweg, T.; Vargha-Khadem, F. Human memory development and its dysfunction after early hippocampal injury. Trends Neurosci. 2006, 29, 374–381. [Google Scholar] [CrossRef]
- Carrie, I.; Guesnet, P.; Bourre, J.M.; Frances, H. Diets containing long-chain n-3 polyunsaturated fatty acids affect behaviour differently during development than ageing in mice. Br. J. Nutr. 2000, 83, 439–447. [Google Scholar]
- Enslen, M.; Milon, H.; Malnoe, A. Effect of low intake of n-3 fatty acids during development on brain phospholipid fatty acid composition and exploratory behavior in rats. Lipids 1991, 26, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, T.; Iwanaga, M.; Harada, E. Possible regulatory mechanism of DHA-induced anti-stress reaction in rats. Brain Res. 2003, 964, 136–143. [Google Scholar] [CrossRef]
- Harauma, A.; Moriguchi, T. Dietary n-3 fatty acid deficiency in mice enhances anxiety induced by chronic mild stress. Lipids 2011, 46, 409–416. [Google Scholar] [CrossRef]
- Ng, K.F.; Innis, S.M. Behavioral responses are altered in piglets with decreased frontal cortex docosahexaenoic acid. J. Nutr. 2003, 133, 3222–3227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buddington, R.K.; Chizhikov, V.V.; Iskusnykh, I.Y.; Sable, H.J.; Sable, J.J.; Holloway, Z.R.; Blumenfeld Katzir, T.; van der Merwe, M.; Yakimkova, T.; Buddington, K.K.; et al. A Phosphatidylserine Source of Docosahexanoic Acid Improves Neurodevelopment and Survival of Preterm Pigs. Nutrients 2018, 10, 637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stonehouse, W.; Conlon, C.A.; Podd, J.; Hill, S.R.; Minihane, A.M.; Haskell, C.; Kennedy, D. DHA supplementation improved both memory and reaction time in healthy young adults: A randomized controlled trial. Am. J. Clin. Nutr. 2013, 97, 1134–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Judge, M.P.; Harel, O.; Lammi-Keefe, C.J. Maternal consumption of a docosahexaenoic acid-containing functional food during pregnancy: Benefit for infant performance on problem-solving but not on recognition memory tasks at age 9 mo. Am. J. Clin. Nutr. 2007, 85, 1572–1577. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, D.L.; Hall, R.; Adamkin, D.; Auestad, N.; Castillo, M.; Connor, W.E.; Connor, S.L.; Fitzgerald, K.; Groh-Wargo, S.; Hartmann, E.E.; et al. Growth and development in preterm infants fed long-chain polyunsaturated fatty acids: A prospective, randomized controlled trial. Pediatrics 2001, 108, 359–371. [Google Scholar] [CrossRef] [Green Version]
- Benasich, A.A.; Bejar, I.I. The Fagan test of infant intelligence: A critical review. J. Appl. Dev. Psychol. 1992, 13, 153–171. [Google Scholar] [CrossRef]
- Hoffman, D.R.; Theuer, R.C.; Castaneda, Y.S.; Wheaton, D.H.; Bosworth, R.G.; O’Connor, A.R.; Morale, S.E.; Wiedemann, L.E.; Birch, E.E. Maturation of visual acuity is accelerated in breast-fed term infants fed baby food containing DHA-enriched egg yolk. J. Nutr. 2004, 134, 2307–2313. [Google Scholar] [CrossRef]
- Birch, E.E.; Hoffman, D.R.; Castaneda, Y.S.; Fawcett, S.L.; Birch, D.G.; Uauy, R.D. A randomized controlled trial of long-chain polyunsaturated fatty acid supplementation of formula in term infants after weaning at 6 wk of age. Am. J. Clin. Nutr. 2002, 75, 570–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNamara, R.K. Deciphering the role of docosahexaenoic acid in brain maturation and pathology with magnetic resonance imaging. Prostaglandins Leukot. Essent. Fatty Acids 2013, 88, 33–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaulieu, C. The basis of anisotropic water diffusion in the nervous system—A technical review. NMR Biomed. 2002, 15, 435–455. [Google Scholar] [CrossRef] [PubMed]
- Skranes, J.; Vangberg, T.R.; Kulseng, S.; Indredavik, M.S.; Evensen, K.A.; Martinussen, M.; Dale, A.M.; Haraldseth, O.; Brubakk, A.M. Clinical findings and white matter abnormalities seen on diffusion tensor imaging in adolescents with very low birth weight. Brain 2007, 130, 654–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feldman, H.M.; Lee, E.S.; Yeatman, J.D.; Yeom, K.W. Language and reading skills in school-aged children and adolescents born preterm are associated with white matter properties on diffusion tensor imaging. Neuropsychologia 2012, 50, 3348–3362. [Google Scholar] [CrossRef] [Green Version]
- Loe, I.M.; Lee, E.S.; Feldman, H.M. Attention and internalizing behaviors in relation to white matter in children born preterm. J. Dev. Behav. Pediatr. 2013, 34, 156–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamieson, E.C.; Farquharson, J.; Logan, R.W.; Howatson, A.G.; Patrick, W.J.; Weaver, L.T.; Cockburn, F. Infant cerebellar gray and white matter fatty acids in relation to age and diet. Lipids 1999, 34, 1065–1071. [Google Scholar] [CrossRef]
- Blesa, M.; Sullivan, G.; Anblagan, D.; Telford, E.J.; Quigley, A.J.; Sparrow, S.A.; Serag, A.; Semple, S.I.; Bastin, M.E.; Boardman, J.P. Early breast milk exposure modifies brain connectivity in preterm infants. Neuroimage 2019, 184, 431–439. [Google Scholar] [CrossRef]
- Almaas, A.N.; Tamnes, C.K.; Nakstad, B.; Henriksen, C.; Grydeland, H.; Walhovd, K.B.; Fjell, A.M.; Iversen, P.O.; Drevon, C.A. Diffusion tensor imaging and behavior in premature infants at 8 years of age, a randomized controlled trial with long-chain polyunsaturated fatty acids. Early Hum. Dev. 2016, 95, 41–46. [Google Scholar] [CrossRef]
- Mongerson, C.R.L.; Jennings, R.W.; Borsook, D.; Becerra, L.; Bajic, D. Resting-State Functional Connectivity in the Infant Brain: Methods, Pitfalls, and Potentiality. Front. Pediatr. 2017, 5, 159. [Google Scholar] [CrossRef] [Green Version]
- Stoodley, C.J.; Valera, E.M.; Schmahmann, J.D. Functional topography of the cerebellum for motor and cognitive tasks: An fMRI study. Neuroimage 2012, 59, 1560–1570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaillancourt, D.E.; Mayka, M.A.; Corcos, D.M. Intermittent visuomotor processing in the human cerebellum, parietal cortex, and premotor cortex. J. Neurophysiol. 2006, 95, 922–931. [Google Scholar] [CrossRef] [Green Version]
- Christoff, K.; Ream, J.M.; Gabrieli, J.D. Neural basis of spontaneous thought processes. Cortex 2004, 40, 623–630. [Google Scholar] [CrossRef]
- Raichle, M.E. The brain’s default mode network. Annu. Rev. Neurosci. 2015, 38, 433–447. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, D.P.; Redcay, E.; Courchesne, E. Failing to deactivate: Resting functional abnormalities in autism. Proc. Natl. Acad. Sci. USA 2006, 103, 8275–8280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartova, L.; Meyer, B.M.; Diers, K.; Rabl, U.; Scharinger, C.; Popovic, A.; Pail, G.; Kalcher, K.; Boubela, R.N.; Huemer, J.; et al. Reduced default mode network suppression during a working memory task in remitted major depression. J. Psychiatr. Res. 2015, 64, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lustig, C.; Snyder, A.Z.; Bhakta, M.; O’Brien, K.C.; McAvoy, M.; Raichle, M.E.; Morris, J.C.; Buckner, R.L. Functional deactivations: Change with age and dementia of the Alzheimer type. Proc. Natl. Acad. Sci. USA 2003, 100, 14504–14509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckner, R.L.; Snyder, A.Z.; Shannon, B.J.; LaRossa, G.; Sachs, R.; Fotenos, A.F.; Sheline, Y.I.; Klunk, W.E.; Mathis, C.A.; Morris, J.C.; et al. Molecular, structural, and functional characterization of Alzheimer’s disease: Evidence for a relationship between default activity, amyloid, and memory. J. Neurosci. 2005, 25, 7709–7717. [Google Scholar] [CrossRef] [Green Version]
- Birch, E.E.; Hoffman, D.R.; Uauy, R.; Birch, D.G.; Prestidge, C. Visual acuity and the essentiality of docosahexaenoic acid and arachidonic acid in the diet of term infants. Pediatr. Res. 1998, 44, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Alcauter, S.; Smith, J.K.; Gilmore, J.H.; Lin, W. Development of human brain cortical network architecture during infancy. Brain Struct. Funct. 2015, 220, 1173–1186. [Google Scholar] [CrossRef]
- Lin, W.; Zhu, Q.; Gao, W.; Chen, Y.; Toh, C.H.; Styner, M.; Gerig, G.; Smith, J.K.; Biswal, B.; Gilmore, J.H. Functional connectivity MR imaging reveals cortical functional connectivity in the developing brain. AJNR Am. J. Neuroradiol. 2008, 29, 1883–1889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tau, G.Z.; Peterson, B.S. Normal development of brain circuits. Neuropsychopharmacology 2010, 35, 147–168. [Google Scholar] [CrossRef] [Green Version]
- Suri, D.; Teixeira, C.M.; Cagliostro, M.K.; Mahadevia, D.; Ansorge, M.S. Monoamine-sensitive developmental periods impacting adult emotional and cognitive behaviors. Neuropsychopharmacology 2015, 40, 88–112. [Google Scholar] [CrossRef] [Green Version]
- Delion, S.; Chalon, S.; Herault, J.; Guilloteau, D.; Besnard, J.C.; Durand, G. Chronic dietary alpha-linolenic acid deficiency alters dopaminergic and serotoninergic neurotransmission in rats. J. Nutr. 1994, 124, 2466–2476. [Google Scholar] [CrossRef] [PubMed]
- de la Presa Owens, S.; Innis, S.M. Docosahexaenoic and arachidonic acid prevent a decrease in dopaminergic and serotoninergic neurotransmitters in frontal cortex caused by a linoleic and alpha-linolenic acid deficient diet in formula-fed piglets. J. Nutr. 1999, 129, 2088–2093. [Google Scholar] [CrossRef] [Green Version]
- Kuperstein, F.; Eilam, R.; Yavin, E. Altered expression of key dopaminergic regulatory proteins in the postnatal brain following perinatal n-3 fatty acid dietary deficiency. J. Neurochem. 2008, 106, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Svennerholm, L.; Vanier, M.T. Lipid and fatty acid composition of human cerebral myelin during development. Adv. Exp. Med. Biol. 1978, 100, 27–41. [Google Scholar] [CrossRef]
Ingredients, g/kg | Gestation Diet 1 | Lactation Diet 1 |
---|---|---|
Corn | 535.4 | 389.6 |
Soybean Meal | 32.3 | 172.3 |
Distillers Dried Grains with Solubles | 400.0 | 400.0 |
Fat | 4.6 | |
Dicalcium Phosphate | 2.8 | |
Limestone | 17.4 | 21.6 |
Salt | 3.5 | 3.5 |
Vitamin pre-mix 2 | 2.5 | 2.5 |
Trace Mineral pre-mix 3 | 1.5 | 1.5 |
Sow Vitamin pre-mix 4 | 2.5 | 2.5 |
L-Lysine HCl | 2.1 | 2.0 |
Total | 1000.0 | 1000.0 |
Calculated Analysis | ||
Crude Protein, % | 17.4 | 22.4 |
Metabolizable Energy, kcal/kg | 3330 | 3300 |
Crude Fiber, % | 4.18 | 5.10 |
Ether Extract, % | 6.23 | 6.14 |
Lysine, % | 0.70 | 1.10 |
TSAA, % | 0.68 | 0.86 |
Threonine, % | 0.64 | 0.92 |
Tryptophan, % | 0.15 | 0.25 |
Ca, % | 0.79 | 0.90 |
Total P, % | 0.52 | 0.57 |
Available P, % | 0.29 | 0.40 |
Compound | Control (n = 3) | DHA (n = 5) | p-Value |
---|---|---|---|
lipid | 3.90 ± 0.90 | 3.83 ± 0.55 | 0.94 |
C12:0 | 0.04 ± 0.00 | 0.09 ± 0.00 | 0.01 |
C14:0 | 1.23 ± 0.09 | 2.29 ± 0.17 | 0.004 |
C14:1 | 0.02 ± 0.00 | 0.07 ± 0.01 | 0.01 |
C15:0 | 0.11 ± 0.01 | 0.11 ± 0.01 | 0.69 |
C16:0 | 18.31 ± 0.69 | 19.50 ± 0.50 | 0.20 |
C16:1 | 3.25 ± 0.07 | 4.43 ± 0.34 | 0.04 |
C17:0 | 0.30 ± 0.01 | 0.24 ± 0.01 | 0.01 |
C17:1 | 0.23 ± 0.01 | 0.24 ± 0.02 | 0.90 |
C18:0 | 4.70 ± 0.52 | 4.30 ± 0.32 | 0.51 |
C18:1 | 29.80 ± 0.81 | 32.18 ± 1.42 | 0.19 |
C18:2 | 35.98 ± 2.03 | 27.55 ± 1.72 | 0.02 |
C18:3n-6 | 0.64 ± 0.08 | 0.39 ± 0.05 | 0.03 |
C18:3n-3 | 0.83 ± 0.03 | 0.80 ± 0.07 | 0.78 |
C20:0 | 0.18 ± 0.07 | 0.14 ± 0.03 | 0.65 |
C20:1 | 0.34 ± 0.03 | 0.37 ± 0.02 | 0.45 |
C20:2 | 0.74 ± 0.04 | 0.66 ± 0.03 | 0.14 |
C20:3 | 0.38 ± 0.05 | 0.23 ± 0.01 | 0.01 |
C20:4 | 1.16 ± 0.08 | 0.46 ± 0.01 | < 0.0001 |
C20:5 | 0.04 ± 0.02 | 0.48 ± 0.06 | 0.001 |
C22:2 | 0.59 ± 0.35 | 0.64 ± 0.04 | 0.84 |
C22:5 | 0.17 ± 0.07 | 0.36 ± 0.04 | 0.04 |
C22:6 | 0.04 ± 0.01 | 3.36 ± 0.20 | < 0.0001 |
Parameter | Control (n = 14) | DHA (n = 20) | p-Value |
---|---|---|---|
Birth weight (g) | 1539.00 ± 75.56 | 1389.00 ± 103.10 | 0.67 |
Final weight (g) | 6134.00 ± 353.60 | 5790.00 ± 436.40 | 0.73 |
Weight gain (g) | 4528.00 ± 338.00 | 4333.00 ± 308.70 | 0.78 |
Daily weight gain (g/day) | 229.30 ± 16.87 | 219.80 ± 16.28 | 0.77 |
Brain weight (g) | 49.28 ± 0.69 | 49.17 ± 0.97 | 0.77 |
Brain Region | Control (n = 7) | DHA (n = 7) | p-Value |
---|---|---|---|
Caudate | 0.860 ± 0.001 | 0.861 ± 0.001 | 0.46 |
Cerebellum | 11.389 ± 0.002 | 11.388 ± 0.001 | 0.71 |
Left Cortex | 31.262 ± 0.002 | 31.257 ± 0.002 | 0.09 |
Right Cortex | 32.143 ± 0.002 | 32.144 ± 0.001 | 0.54 |
Lateral Ventricle | 1.012 ± 0.002 | 1.014 ± 0.0001 | 0.95 |
Third Ventricle | 0.106 ± 0.0003 | 0.105 ± 0.0005 | 0.77 |
Cerebral Aqueduct | 0.074 ± 0.0003 | 0.074 ± 0.0002 | 0.63 |
Fourth Ventricle | 0.099 ± 0.0005 | 0.100 ± 0.0002 | 0.33 |
Left Hippocampus | 0.914 ± 0.0005 | 0.916 ± 0.0006 | 0.15 |
Right Hippocampus | 0.925 ± 0.001 | 0.926 ± 0.001 | 0.50 |
Medulla | 3.364 ± 0.002 | 3.3620 ± 0.001 | 0.54 |
Midbrain | 3.414 ± 0.001 | 3.412 ± 0.001 | 0.31 |
Pons | 2.154 ± 0.001 | 2.155 ± 0.001 | 0.44 |
Putamen and Globus Pallidus | 0.731 ± 0.001 | 0.731 ± 0.0004 | 0.78 |
Hypothalamus | 0.501 ± 0.001 | 0.502 ± 0.001 | 0.13 |
Thalamus | 2.771 ± 0.001 | 2.767 ± 0.001 | 0.04 |
Olfactory Bulb | 4.632 ± 0.001 | 4.634 ± 0.002 | 0.48 |
Corpus Callosum | 0.776 ± 0.002 | 0.775 ± 0.001 | 0.86 |
Internal Capsule | 2.875 ± 0.002 | 2.877 ± 0.001 | 0.55 |
Total (voxel) | 411301 ± 11.94 | 411342 ± 25.47 | 0.23 |
Resting-State Network | Locations of Regions of Interest |
---|---|
Executive control network (ECN) | Primary somatosensory cortex |
Dorsolateral prefrontal cortex | |
Anterior prefrontal cortex | |
Orbitofrontal cortex | |
Insular cortex | |
Ventral anterior cingulate cortex | |
Dorsal anterior cingulate cortex | |
Cerebellar network (CERE) | Cerebellum |
Visual network (VIS) | Primary visual cortex |
Secondary visual cortex | |
Associative visual cortex | |
Sensorimotor network (SMN) | Primary motor cortex |
Somatosensory association cortex | |
Premotor cortex | |
Auditory network (AUD) | Superior temporal gyrus |
Auditory cortex | |
Default mode network (DMN) | Hippocampus |
Anterior prefrontal cortex | |
Orbitofrontal cortex | |
Inferior temporal gyrus | |
Ventral posterior cingulate cortex | |
Retrosplenial cingular cortex | |
Dorsal posterior cingular cortex | |
Anterior entorhinal cortex | |
Parahippocampal cortex |
Brain Regions | Neurochemicals | Control (n = 7) | DHA (n = 7) | p-Value |
---|---|---|---|---|
PFC | DA | 3.463 ± 0.390 | 3.551 ± 0.454 | 0.85 |
DOPAC | 0.090 ± 0.012 | 0.078 ± 0.015 | 0.64 | |
HVA | 0.121 ± 0.015 | 0.092 ± 0.009 | 0.61 | |
5-HT | 0.174 ± 0.022 | 0.124 ± 0.030 | 0.08 | |
5-HIAA | 0.067 ± 0.010 | 0.050 ± 0.010 | 0.25 | |
NE | 0.168 ± 0.022 | 0.163 ± 0.039 | 0.89 | |
HC | DA | 2.459 ± 0.181 | 3.269 ± 0.371 | 0.14 |
HVA | 0.170 ± 0.035 | 0.155 ± 0.024 | 0.99 | |
5-HT | 0.105 ± 0.017 | 0.137 ± 0.024 | 0.26 | |
5-HIAA | 0.096 ± 0.004 | 0.113 ± 0.019 | 0.36 | |
NE | 0.072 ± 0.008 | 0.105 ± 0.014 | 0.11 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, X.; Sun, W.; Jeon, J.; Azain, M.; Kinder, H.; Ahn, J.; Chung, H.C.; Mote, R.S.; Filipov, N.M.; Zhao, Q.; et al. Perinatal Docosahexaenoic Acid Supplementation Improves Cognition and Alters Brain Functional Organization in Piglets. Nutrients 2020, 12, 2090. https://doi.org/10.3390/nu12072090
Fang X, Sun W, Jeon J, Azain M, Kinder H, Ahn J, Chung HC, Mote RS, Filipov NM, Zhao Q, et al. Perinatal Docosahexaenoic Acid Supplementation Improves Cognition and Alters Brain Functional Organization in Piglets. Nutrients. 2020; 12(7):2090. https://doi.org/10.3390/nu12072090
Chicago/Turabian StyleFang, Xi, Wenwu Sun, Julie Jeon, Michael Azain, Holly Kinder, Jeongyoun Ahn, Hee Cheol Chung, Ryan S. Mote, Nikolay M. Filipov, Qun Zhao, and et al. 2020. "Perinatal Docosahexaenoic Acid Supplementation Improves Cognition and Alters Brain Functional Organization in Piglets" Nutrients 12, no. 7: 2090. https://doi.org/10.3390/nu12072090
APA StyleFang, X., Sun, W., Jeon, J., Azain, M., Kinder, H., Ahn, J., Chung, H. C., Mote, R. S., Filipov, N. M., Zhao, Q., Rayalam, S., & Park, H. J. (2020). Perinatal Docosahexaenoic Acid Supplementation Improves Cognition and Alters Brain Functional Organization in Piglets. Nutrients, 12(7), 2090. https://doi.org/10.3390/nu12072090