Effects of Exercise Combined with a Healthy Diet or Calanus finmarchicus Oil Supplementation on Body Composition and Metabolic Markers—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Design
2.3. Exercise Training
2.4. Monitoring of Dietary Intake and Physical Activity
2.5. Bodyweight and Body Composition
2.6. Blood Sampling and Biochemical Indices Measurement
2.7. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Physical Activity and Training Sessions
3.3. Dietary Intake
3.4. Body Composition
3.5. Markers of Glucose Metabolism
3.6. Blood Lipids
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- JafariNasabian, P.; Inglis, J.E.; Reilly, W.; Kelly, O.J.; Ilich, J.Z. Aging human body: Changes in bone, muscle and body fat with consequent changes in nutrient intake. J. Endocrinol. 2017, 234, R37–R51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chia, C.W.; Egan, J.M.; Ferrucci, L. Age-Related Changes in Glucose Metabolism, Hyperglycemia, and Cardiovascular Risk. Circ. Res. 2018, 123, 886–904. [Google Scholar] [CrossRef] [PubMed]
- Michaud, M.; Balardy, L.; Moulis, G.; Gaudin, C.; Peyrot, C.; Vellas, B.; Cesari, M.; Nourhashemi, F. Proinflammatory Cytokines, Aging, and Age-Related Diseases. J. Am. Med. Dir. Assoc. 2013, 14, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Stehr, M.D.; von Lengerke, T. Preventing weight gain through exercise and physical activity in the elderly: A systematic review. Maturitas 2012, 72, 13–22. [Google Scholar] [CrossRef]
- Garatachea, N.; Pareja-Galeano, H.; Sanchis-Gomar, F.; Santos-Lozano, A.; Fiuza-Luces, C.; Morán, M.; Emanuele, E.; Joyner, M.J.; Lucia, A. Exercise Attenuates the Major Hallmarks of Aging. Rejuvenation Res. 2015, 18, 57–89. [Google Scholar] [CrossRef] [Green Version]
- Nocon, M.; Hiemann, T.; Müller-Riemenschneider, F.; Thalau, F.; Roll, S.; Willich, S.N. Association of physical activity with all-cause and cardiovascular mortality: A systematic review and meta-analysis. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 239–246. [Google Scholar] [CrossRef]
- Stanford, K.I.; Goodyear, L.J. Exercise regulation of adipose tissue. Adipocyte 2016, 5, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Richter, E.A.; Hargreaves, M. Exercise, GLUT4, and Skeletal Muscle Glucose Uptake. Physiol. Rev. 2013, 93, 993–1017. [Google Scholar] [CrossRef] [Green Version]
- Cartee, G.D.; Hepple, R.T.; Bamman, M.M.; Zierath, J.R. Exercise Promotes Healthy Aging of Skeletal Muscle. Cell Metab. 2016, 23, 1034–1047. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.S.; Katan, M.B. Diet, nutrition and the prevention of hypertension and cardiovascular diseases. Public Health Nutr. 2004, 7, 167–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livesey, G.; Taylor, R.; Hulshof, T.; Howlett, J. Glycemic response and health—A systematic review and meta-analysis: Relations between dietary glycemic properties and health outcomes. Am. J. Clin. Nutr. 2008, 87, 258S–268S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polidori, M.C. Antioxidant micronutrients in the prevention of age-related diseases. J. Postgrad. Med. 2003, 49, 229–235. [Google Scholar] [PubMed]
- Foscolou, A.; D’Cunha, N.M.; Naumovski, N.; Tyrovolas, S.; Chrysohoou, C.; Rallidis, L.; Matalas, A.-L.; Sidossis, L.S.; Panagiotakos, D. The Association between Whole Grain Products Consumption and Successful Aging: A Combined Analysis of MEDIS and ATTICA Epidemiological Studies. Nutrients 2019, 11, 1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Everitt, A.V.; Hilmer, S.N.; Brand-Miller, J.C.; Jamieson, H.A.; Truswell, A.S.; Sharma, A.P.; Mason, R.S.; Morris, B.J.; Couteur, D.G.L. Dietary approaches that delay age-related diseases. Clin. Interv. Aging 2006, 1, 11–31. [Google Scholar] [CrossRef] [PubMed]
- Wahlqvist, M.; Savige, G. Interventions aimed at dietary and lifestyle changes to promote healthy aging. Eur. J. Clin. Nutr. 2000, 54, S148–S156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Bussel, B.C.; Henry, R.M.; Ferreira, I.; van Greevenbroek, M.M.; van der Kallen, C.J.; Twisk, J.W.; Feskens, E.J.; Schalkwijk, C.G.; Stehouwer, C.D. A Healthy Diet Is Associated with Less Endothelial Dysfunction and Less Low-Grade Inflammation over a 7-Year Period in Adults at Risk of Cardiovascular Disease. J. Nutr. 2015, 145, 532–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bechthold, A.; Breidenassel, C.; Egert, S.; Gahl, A.; Michel, M.; Oberritter, H.; Virmani, K. Vollwertig Essen und Trinken Nach den 10 Regeln der DGE.; Deutschen Gesellschaft für Ernährung: Bonn, Germany, 2018. [Google Scholar]
- Chen, C.; Yu, X.; Shao, S. Effects of Omega-3 Fatty Acid Supplementation on Glucose Control and Lipid Levels in Type 2 Diabetes: A Meta-Analysis. PLoS ONE 2015, 10, e0139565. [Google Scholar] [CrossRef] [Green Version]
- Hartweg, J.; Perera, R.; Montori, V.; Dinneen, S.; Neil, H.a.W.; Farmer, A. Omega-3 polyunsaturated fatty acids (PUFA) for type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2008, 1, CD003205. [Google Scholar] [CrossRef]
- Smith, G.I.; Julliand, S.; Reeds, D.N.; Sinacore, D.R.; Klein, S.; Mittendorfer, B. Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. Am. J. Clin. Nutr. 2015, 102, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Bender, N.; Portmann, M.; Heg, Z.; Hofmann, K.; Zwahlen, M.; Egger, M. Fish or n3-PUFA intake and body composition: A systematic review and meta-analysis: Fish and body composition. Obes. Rev. 2014, 15, 657–665. [Google Scholar] [CrossRef]
- Höper, A.C.; Salma, W.; Khalid, A.M.; Hafstad, A.D.; Sollie, S.J.; Raa, J.; Larsen, T.S.; Aasum, E. Oil from the marine zooplankton Calanus finmarchicus improves the cardiometabolic phenotype of diet-induced obese mice. Br. J. Nutr. 2013, 110, 2186–2193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Höper, A.C.; Salma, W.; Sollie, S.J.; Hafstad, A.D.; Lund, J.; Khalid, A.M.; Raa, J.; Aasum, E.; Larsen, T.S. Wax Esters from the Marine Copepod Calanus finmarchicus Reduce Diet-Induced Obesity and Obesity-Related Metabolic Disorders in Mice. J. Nutr. 2014, 144, 164–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mounien, L.; Tourniaire, F.; Landrier, J.-F. Anti-Obesity Effect of Carotenoids: Direct Impact on Adipose Tissue and Adipose Tissue-Driven Indirect Effects. Nutrients 2019, 11, 1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguiar, E.J.; Morgan, P.J.; Collins, C.E.; Plotnikoff, R.C.; Callister, R. Efficacy of interventions that include diet, aerobic and resistance training components for type 2 diabetes prevention: A systematic review with meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, L.; Wu, J.; Wang, G.; Persuitte, G.; Ma, Y.; Zou, L.; Zhang, L.; Zhao, M.; Wang, J.; Lan, Q.; et al. Comparison of control fasting plasma glucose of exercise-only versus exercise-diet among a pre-diabetic population: A meta-analysis. Eur. J. Clin. Nutr. 2016, 70, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Verreijen, A.M.; Engberink, M.F.; Memelink, R.G.; van der Plas, S.E.; Visser, M.; Weijs, P.J.M. Effect of a high protein diet and/or resistance exercise on the preservation of fat free mass during weight loss in overweight and obese older adults: A randomized controlled trial. Nutr. J. 2017, 16, 10. [Google Scholar] [CrossRef] [Green Version]
- Frey, I.; Berg, A.; Grathwohl, D.; Keul, J. Freiburger Fragebogen zur körperlichen Aktivität-Entwicklung, Prüfung und Anwendung. Soz. Präv. Soc. Prev. Med. 1999, 44, 55–64. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.R.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C.; Research Laboratories, D. Homeostasis model assessment: Insulin resistance and fl-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.E.; Parnell, W.R.; Howe, A.S.; Lubransky, A.C.; Black, K.E.; Skidmore, P.M. Diet quality is associated with measures of body fat in adolescents from Otago, New Zealand. Public Health Nutr. 2015, 18, 1453–1460. [Google Scholar] [CrossRef] [Green Version]
- Strandberg, E.; Edholm, P.; Ponsot, E.; Wåhlin-Larsson, B.; Hellmén, E.; Nilsson, A.; Engfeldt, P.; Cederholm, T.; Risérus, U.; Kadi, F. Influence of combined resistance training and healthy diet on muscle mass in healthy elderly women: A randomized controlled trial. J. Appl. Physiol. 2015, 119, 918–925. [Google Scholar] [CrossRef] [Green Version]
- Strandberg, E.; Ponsot, E.; Piehl-Aulin, K.; Falk, G.; Kadi, F. Resistance Training Alone or Combined With N-3 PUFA-Rich Diet in Older Women: Effects on Muscle Fiber Hypertrophy. J. Gerontol. A. Biol. Sci. Med. Sci. 2019, 74, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.M.; Buckley, J.D.; Murphy, K.J.; Howe, P.R. Combining fish-oil supplements with regular aerobic exercise improves body composition and cardiovascular disease risk factors. Am. J. Clin. Nutr. 2007, 85, 1267–1274. [Google Scholar] [CrossRef] [Green Version]
- Noreen, E.E.; Sass, M.J.; Crowe, M.L.; Pabon, V.A.; Brandauer, J.; Averill, L.K. Effects of supplemental fish oil on resting metabolic rate, body composition, and salivary cortisol in healthy adults. J. Int. Soc. Sports Nutr. 2010, 7, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeFina, L.F.; Marcoux, L.G.; Devers, S.M.; Cleaver, J.P.; Willis, B.L. Effects of omega-3 supplementation in combination with diet and exercise on weight loss and body composition. Am. J. Clin. Nutr. 2011, 93, 455–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornish, S.M.; Chilibeck, P.D. Alpha-linolenic acid supplementation and resistance training in older adults. Appl. Physiol. Nutr. Metab. 2009, 34, 49–59. [Google Scholar] [CrossRef]
- Cornish, S.M.; Myrie, S.B.; Bugera, E.M.; Chase, J.E.; Turczyn, D.; Pinder, M. Omega-3 supplementation with resistance training does not improve body composition or lower biomarkers of inflammation more so than resistance training alone in older men. Nutr. Res. 2018, 60, 87–95. [Google Scholar] [CrossRef]
- Daďová, K.; Petr, M.; Šteffl, M.; Sontáková, L.; Chlumský, M.; Matouš, M.; Štich, V.; Štěpán, M.; Šiklová, M. Effect of Calanus Oil Supplementation and 16 Week Exercise Program on Selected Fitness Parameters in Older Women. Nutrients 2020, 12, 481. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women. Clin. Sci. 2011, 121, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Rossato, L.T.; Schoenfeld, B.J.; de Oliveira, E.P. Is there sufficient evidence to supplement omega-3 fatty acids to increase muscle mass and strength in young and older adults? Clin. Nutr. 2020, 39, 23–32. [Google Scholar] [CrossRef]
- Schuchardt, J.P.; Hahn, A. Bioavailability of long-chain omega-3 fatty acids. Prostaglandins Essent. Fat. Acids 2013, 89, 1–8. [Google Scholar] [CrossRef]
- Place, A.R. Comparative aspects of lipid digestion and absorption: Physiological correlates of wax ester digestion. Am. J. Physiol. 1992, 263, R464–R471. [Google Scholar] [CrossRef] [PubMed]
- Gorreta, F.; Bernasconi, R.; Galliani, G.; Salmona, M.; Tacconi, M.T.; Bianchi, R. Wax Esters of n-3 Polyunsaturated Fatty Acids: A New Stable Formulation as a Potential Food Supplement. 1—Digestion and Absorption in Rats. LWT Food Sci. Technol. 2002, 35, 458–465. [Google Scholar] [CrossRef]
- Cook, C.M.; Larsen, T.S.; Derrig, L.D.; Kelly, K.M.; Tande, K.S. Wax Ester Rich Oil From The Marine Crustacean, Calanus finmarchicus, is a Bioavailable Source of EPA and DHA for Human Consumption. Lipids 2016, 51, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Albracht-Schulte, K.; Kalupahana, N.S.; Ramalingam, L.; Wang, S.; Rahman, S.M.; Robert-McComb, J.; Moustaid-Moussa, N. Omega-3 fatty acids in obesity and metabolic syndrome: A mechanistic update. J. Nutr. Biochem. 2018, 58, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kopecky, J.; Rossmeisl, M.; Flachs, P.; Kuda, O.; Brauner, P.; Jilkova, Z.; Stankova, B.; Tvrzicka, E.; Bryhn, M. n-3 PUFA: Bioavailability and modulation of adipose tissue function: Symposium on “Frontiers in adipose tissue biology”. Proc. Nutr. Soc. 2009, 68, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Flachs, P.; Rossmeisl, M.; Bryhn, M.; Kopecky, J. Cellular and molecular effects of n−3 polyunsaturated fatty acids on adipose tissue biology and metabolism. Clin. Sci. 2009, 116, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Flachs, P.; Horakova, O.; Brauner, P.; Rossmeisl, M.; Pecina, P.; Franssen-van Hal, N.; Ruzickova, J.; Sponarova, J.; Drahota, Z.; Vlcek, C.; et al. Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce β-oxidation in white fat. Diabetologia 2005, 48, 2365–2375. [Google Scholar] [CrossRef] [Green Version]
- Todorčević, M.; Hodson, L. The Effect of Marine Derived n-3 Fatty Acids on Adipose Tissue Metabolism and Function. J. Clin. Med. 2016, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Cunnane, S.C.; Drevon, C.A.; Harris, B.; Sinclair, A.J.; Spector, A. Report of the Sub-Committee on Recommendations for Intake of Polyunsaturated Fatty Acids in Healthy Adults. Int. Soc. Study Fatty Acids Lipids Retrieved Dec. 2004, 9, 2015. [Google Scholar]
- Ikeuchi, M.; Koyama, T.; Takahashi, J.; Yazawa, K. Effects of astaxanthin in obese mice fed a high-fat diet. Biosci. Biotechnol. Biochem. 2007, 71, 893–899. [Google Scholar] [CrossRef] [Green Version]
- Canas, J.A.; Lochrie, A.; McGowan, A.G.; Hossain, J.; Schettino, C.; Balagopal, P.B. Effects of Mixed Carotenoids on Adipokines and Abdominal Adiposity in Children: A Pilot Study. J. Clin. Endocrinol. Metab. 2017, 102, 1983–1990. [Google Scholar] [CrossRef] [Green Version]
- Kakutani, R.; Hokari, S.; Nishino, A.; Ichihara, T.; Sugimoto, K.; Takaha, T.; Kuriki, T.; Maoka, T. Effect of Oral Paprika Xanthophyll Intake on Abdominal Fat in Healthy Overweight Humans: A Randomized, Double-blind, Placebo-controlled Study. J. Oleo Sci. 2018, 67, 1149–1162. [Google Scholar] [CrossRef] [Green Version]
- Kelley, G.A.; Kelley, K.S.; Tran, Z.V. Exercise, lipids, and lipoproteins in older adults: A meta-analysis. Prev. Cardiol. 2005, 8, 206–214. [Google Scholar] [CrossRef]
- Forbes, S.C.; Little, J.P.; Candow, D.G. Exercise and nutritional interventions for improving aging muscle health. Endocrine 2012, 42, 29–38. [Google Scholar] [CrossRef]
- Weber, P.; Raederstorff, D. Triglyceride-lowering effect of omega-3 LC-polyunsaturated fatty acids-a review. Nutr. Metab. Cardiovasc. Dis. 2000, 10, 28–37. [Google Scholar]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Manuel Gómez, J.; Lilienthal Heitmann, B.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M.; et al. Bioelectrical impedance analysis—part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef]
- Verdich, C.; Barbe, P.; Petersen, M.; Grau, K.; Ward, L.; Macdonald, I.; Sørensen, T.I.; Oppert, J.-M. Changes in body composition during weight loss in obese subjects in the NUGENOB study: Comparison of bioelectrical impedance vs. dual-energy X-ray absorptiometry. Diabetes Metab. 2011, 37, 222–229. [Google Scholar] [CrossRef]
- Thomson, R.; Brinkworth, G.D.; Buckley, J.D.; Noakes, M.; Clifton, P.M. Good agreement between bioelectrical impedance and dual-energy X-ray absorptiometry for estimating changes in body composition during weight loss in overweight young women. Clin. Nutr. 2007, 26, 771–777. [Google Scholar] [CrossRef]
- Tinsley, G.M.; Morales, E.; Forsse, J.S.; Grandjean, P.W. Impact of Acute Dietary Manipulations on DXA and BIA Body Composition Estimates. Med. Sci. Sports Exerc. 2017, 49, 823–832. [Google Scholar] [CrossRef]
- Thompson, D.L.; Thompson, W.R.; Prestridge, T.J.; Bailey, J.G.; Bean, M.H.; Brown, S.P.; McDaniel, J.B. Effects of hydration and dehydration on body composition analysis: A comparative study of bioelectric impedance analysis and hydrodensitometry. J. Sports Med. Phys. Fit. 1991, 31, 565–570. [Google Scholar]
Components | mg/100 g CO | mg/2 g CO | ||
---|---|---|---|---|
SFA | 12,428 | 249 | ||
MUFA | 11,452 | 229 | ||
PUFA | Omega-3 | 18,181 | 364 | |
ALA | 1149 | 23 | ||
SDA | 6186 | 124 | ||
EPA | 5439 | 109 | ||
DHA | 4342 | 87 | ||
Omega-6 | 981 | 20 | ||
LA | 552 | 11 | ||
ARA | 169 | 3 | ||
Fatty alcohols | 33,017 | 660 | ||
Astaxanthin | 180 | 3.6 |
Parameter | CON (n = 28) | EX (n = 36) | EXDC (n = 34) | EXCO (n = 36) | p |
---|---|---|---|---|---|
Sex (f/m) | 21/7 | 24/12 | 26/8 | 25/11 | 0.797 |
Age (years) | 59.3 ± 5.07 | 59.7 ± 6.39 | 60.2 ± 5.11 | 58.5 ± 5.69 | 0.563 |
Height (m) | 169.1 ± 8.05 | 170.9 ± 8.73 | 171.0 ± 8.37 | 171.3 ± 8.74 | 0.774 |
Body weight (kg) | 84.8 ± 22.6 | 81.9 ± 18.6 | 85.0 ± 20.3 | 80.7 ± 20.3 | 0.771 |
BMI (kg/m2) | 29.5 ± 6.80 | 28.0 ± 5.51 | 28.95 ± 5.80 | 27.28 ± 5.26 | 0.427 |
SBP (mmHg) | 138.0 ± 20.4 | 129.4 ± 14.7 | 133.8 ± 16.9 | 134.1 ± 20.1 | 0.332 |
DBP (mmHg) | 81.1 ± 10.5 | 76.2 ± 6.16 | 79.2 ± 10.6 | 78.6 ± 7.91 | 0.327 |
Pulse | 71.4 ± 8.57 | 74.6 ± 9.58 | 72.6 ± 9.23 | 73.8 ± 8.25 | 0.513 |
Parameter | CON | EX | EXDC | EXCO | p | |||||
---|---|---|---|---|---|---|---|---|---|---|
t | Δ | Δ | Δ | Δ | ||||||
Energy intake (kcal) | 0 | 1873.7 ± 354.0 | −21.0 ± 51.6 | 2023.5 ± 408.5 | −217.3 ± 455.0 | 1887.4 ± 539.5 | −227.5 ± 453.8 | 1923.5 ± 436.8 | −146.8 ± 476.3 | 0.334 |
12 | 1852.7 ± 476.0 | 1806.1 ± 365.4 | 1659.9 ± 470.9 | 1776.8 ± 413.5 | ||||||
Protein (%E) | 0 | 16.7 ± 2.5 | −0.08 ± 2.40 | 16.1 ± 3.42 | 0.86 ± 3.84 | 17.6 ± 3.66 | −0.02 ± 4.05 | 15.6 ± 2.99 | 1.05 ± 3.68 | 0.772 |
12 | 16.7 ± 2.0 | 16.9 ± 3.37 | 17.6 ± 2.93 | 16.7 ± 3.26 | ||||||
Fat (%E) | 0 | 36.1 ± 7.39 | 4.32 ± 8.17 | 36.2 ± 7.47 | 0.69 ± 7.97 | 37.2 ± 7.01 | −0.60 ± 7.04 | 38.1 ± 6.69 | −2.51 ± 9.04 | 0.016 |
12 | 40.4 ± 6.24 † | 36.9 ± 6.00 | 36.6 ± 7.93 | 35.6 ± 7.48 | ||||||
CHO (%E) | 0 | 41.66 ± 6.23 | −5.11 ± 6.65 | 42.6 ± 9.45 | −2.76 ± 8.36 | 39.0 ± 6.16 | 0.66 ± 8.08 | 41.92 ± 6.09 | 0.47 ± 8.72 | 0.015 |
12 | 36.56 ± 5.93 † | 39.8 ± 6.45 * | 39.6 ± 7.76 | 42.39 ± 7.86 | ||||||
Fiber (g) | 0 | 20.80 ± 7.44 | −0.76 ± 7.11 | 23.4 ± 7.79 | −4.08 ± 6.79 | 19.0 ± 5.97 | 3.00 ± 8.39 | 22.0 ± 6.47 | −0.78 ± 8.03 | 0.004 |
12 | 20.04 ± 9.51 | 19.3 ± 6.08 † | 22.0 ± 6.43 * | 21.2 ± 8.80 | ||||||
SFA (g) | 0 | 34.3 ± 14.2 | 2.90 ± 15.5 | 35.7 ± 13.6 | −4.67 ± 15.7 | 33.8 ± 14.1 | −3.61± 9.34 | 36.9 ± 15.5 | −6.93 ± 15.2 | 0.060 |
12 | 37.2 ± 13.6 | 31.0 ± 11.2 | 30.2 ±12.7 | 29.9 ± 11.1 | ||||||
MUFA(g) | 0 | 25.1 ± 8.53 | 3.51 ± 13.2 | 28.9 ± 12.5 | −2.99 ± 11.9 | 27.3 ± 11.6 | −4.80 ± 9.17 | 27.3 ± 9.61 | −3.41 ± 12.0 | 0.030 |
12 | 28.6 ± 11.8 | 26.0 ± 11.2 | 22.5 ± 11.5 * | 23.9 ± 9.29 * | ||||||
PUFA (g) | 0 | 10.6 ± 5.16 | 1.58 ± 6.83 | 11.9 ± 3.96 | 0.21± 5.01 | 12.4 ± 7.30 | −2.13 ± 6.86 | 11.8 ± 5.64 | −1.26 ± 4.07 | 0.088 |
12 | 12.1 ± 7.69 | 12.1 ± 5.75 | 10.3 ± 5.35 | 10.5 ± 5.26 | ||||||
DHA (g) | 0 | 0.19 ± 0.26 | −0.02 ± 0.42 | 0.29 ± 0.34 | 0.11 ± 0.46 | 0.26 ± 0.21 | 0.15 ± 0.37 | 0.23 ± 0.30 | −0.4 ± 0.35 | 0.728 |
12 | 0.18 ± 0.32 | 0.39 ± 0.47 | 0.40 ± 0.43 | 0.19 ± 0.19 | ||||||
EPA (g) | 0 | 0.14 ± 0.42 | −0.03 ± 0.56 | 0.27 ± 0.54 | −0.01 ± 0.37 | 0.12 ± 0.17 | 0.25 ± 0.33 | 0.18 ± 0.41 | 0.09 ± 0.23 | 0.095 |
12 | 0.12 ± 0.30 | 0.30 ± 0.41 | 0.38 ± 0.42 | 0.14 ± 0.19 |
Parameter | CON | EX | EXDC | EXCO | p | |||||
---|---|---|---|---|---|---|---|---|---|---|
t | Δ | Δ | Δ | Δ | ||||||
Weight (kg) | 0 | 84.9 ± 23.0 | −0.28 ± 1.97 | 81.0 ± 18.5 | −1.12 ± 1.84 | 84.8 ± 20.8 | −1.26 ± 2.34 | 82.2 ± 20.0 | −1.16 ± 2.49 | 0.236 |
12 | 84.6 ± 22.2 | 79.9 ± 18.0 | 83.6 ± 20.7 | 81.0 ± 19.0 | ||||||
BMI (kg/m2) | 0 | 29.5 ± 6.93 | −0.09 ± 0.69 | 27.8 ± 5.39 | −0.38 ± 0.64 | 28.7 ± 5.86 | −0.43 ± 0.86 | 27.6 ± 5.25 | −0.37 ± 0.81 | 0.229 |
12 | 29.4 ± 6.66 | 27.4 ± 5.26 | 28.3 ± 5.78 | 27.2 ± 5.01 | ||||||
Phase angle | 0 | 5.44 ± 0.77 | −0.04 ± 0.26 | 5.47 ± 0.87 | 0.16 ± 0.57 | 5.23 ± 0.50 | 0.10 ± 0.30 | 5.51 ± 0.81 | 0.11 ± 0.33 | 0.279 |
12 | 5.39 ± 0.83 | 5.61 ± 0.65 | 5.33 ± 0.57 | 5.62 ± 0.79 | ||||||
TBW (L) | 0 | 39.1 ± 7.86 | 0.59 ± 1.28 | 40.2 ± 9.17 | −0.72 ± 2.71 | 40.4 ± 9.54 | 0.07 ± 1.21 | 40.5 ± 9.91 | 0.57 ± 2.03 | 0.028 |
12 | 39.7 ± 7.51 * | 39.4 ± 7.61 | 40.5 ± 9.47 | 41.3 ± 9.36 * | ||||||
LBM (kg) | 0 | 53.3 ± 10.7 | 0.76 ± 1.74 | 54.8 ± 11.9 | −0.87 ± 3.53 | 55.3 ± 13.0 | 0.09 ± 1.67 | 55.3 ± 13.5 | 0.79 ± 2.79 | 0.031 |
12 | 54.0 ± 10.1 * | 53.7 ± 10.1 | 55.3 ± 12.9 | 56.4 ± 12.6 † | ||||||
BCM (kg) | 0 | 26.3 ± 6.07 | 0.12 ± 1.32 | 27.0 ± 7.99 | −0.03 ± 3.16 | 26.6 ± 7.24 | 0.35 ± 1.46 | 27.3 ± 7.63 | 0.71 ± 1.74 | 0.388 |
12 | 26.4 ± 5.83 | 26.9 ± 6.08 | 27.0 ± 7.30 | 28.1 ± 7.18 | ||||||
FM (kg) | 0 | 31.6 ± 17.0 | −0.35 ± 2.00 | 26.2 ± 11.2 | −0.22 ± 3.03 | 29.6 ± 12.1 | −1.41 ± 2.13 | 27.0 ± 11.3 | −1.70 ± 2.45 | 0.039 |
12 | 31.3 ± 16.5 | 26.2 ± 11.5 | 28.2 ± 12.1 † | 24.7 ± 11.1 ‡ |
Parameter | CON | EX | EXDC | EXCO | p | |||||
---|---|---|---|---|---|---|---|---|---|---|
t | Δ | Δ | Δ | Δ | ||||||
Fasting Glucose (mg/dL) | 0 | 92.9 ± 8.98 | 0.27 ± 12.46 | 94.0 ± 17.5 | −1.40 ± 14.25 | 97.9 ± 26.5 | +0.07 ± 10.63 | 88.6 ± 8.29 | 3.42 ± 15.97 | 0.668 |
12 | 93.2 ± 14.3 | 92.6 ± 8.76 | 98.0 ± 25.5 | 92.1 ± 14.29 | ||||||
HbA1c (%) | 0 | 5.47 ± 0.34 | −0.08 ± 0.15 | 5.39 ± 0.28 | −0.08 ± 0.17 | 5.58 ± 0.72 | −0.05 ± 0.17 | 5.38 ± 0.36 | −0.07 ± 0.22 | 0.954 |
12 | 5.39 ± 0.33 | 5.30 ± 0.25 | 5.52 ± 0.72 | 5.31 ± 0.35 | ||||||
HbA1c (mol/molHB) | 0 | 36.3 ± 3.75 | −0.84 ± 1.65 | 35.4 ± 3.06 | −0.90 ± 1.85 | 37.5 ± 7.88 | −0.58 ± 1.84 | 35.3 ± 3.96 | −0.80 ± 2.38 | 0.954 |
12 | 35.4 ± 3.65 | 34.4 ± 2.76 | 36.8 ± 7.92 | 34.5 ± 3.79 | ||||||
Insulin (µE/mL) | 0 | 13.4 ± 11.1 | −0.74 ± 4.52 | 9.80 ± 4.20 | −0.48 ± 4.24 | 12.7 ± 8.48 | −2.14 ± 4.59 | 10.2 ± 7.16 | −1.42 ± 2.86 | 0.457 |
12 | 12.7 ± 10.2 | 9.32 ± 3.88 | 10.5 ± 7.21 | 8.81 ± 5.45 | ||||||
HOMA−Index | 0 | 3.24 ± 3.19 | −0.16 ± 1.19 | 2.40 ± 1.52 | −0.23 ± 1.51 | 3.11 ± 2.36 | −0.56 ± 1.25 | 2.31 ± 1.83 | −0.27 ± 0.72 | 0.640 |
12 | 3.08 ± 2.95 | 2.17 ± 1.00 | 2.56 ± 2.02 | 2.04 ± 1.41 |
Parameter | CON | EX | EXDC | EXCO | p | |||||
---|---|---|---|---|---|---|---|---|---|---|
t | Δ | Δ | Δ | Δ | ||||||
TG (mg/dL) | 0 | 141.9 ± 104.1 | −6.46 ± 43.2 | 115.0 ± 55.1 | −3.40 ± 33.6 | 113.7 ± 44.3 | 3.22 ± 46.5 | 107.3 ± 34.4 | −10.5 ± 23.6 | 0.470 |
12 | 135.5 ± 89.2 | 111.6 ± 49.7 | 116.9 ± 68.9 | 96.9 ± 28.5 | ||||||
TC (mg/dL) | 0 | 258.3 ± 54.7 | −2.08 ± 33.5 | 237.7 ± 39.2 | −5.37 ± 20.9 | 244.3 ± 51.6 | −1.59 ± 25.8 | 242.2 ± 37.2 | 0.70 ± 25.3 | 0.816 |
12 | 256.2 ± 59.6 | 232.4 ± 37.9 | 242.7 ± 49.7 | 242.9 ± 38.2 | ||||||
HDL (mg/dL) | 0 | 62.8 ± 14.0 | −0.08 ± 6.33 | 67.5 ± 15.4 | 0.03 ± 7.45 | 61.1 ± 14.9 | 1.22 ± 6.38 | 68.0 ± 18.2 | 2.61 ± 7.54 | 0.410 |
12 | 62.7 ± 14.1 | 67.5 ± 15.2 | 62.3 ± 13.8 | 70.6 ± 19.3 | ||||||
LDL (mg/dL) | 0 | 167.8 ± 39.6 | 1.00 ± 25.2 | 150.3 ± 31.7 | −2.67 ± 14.8 | 157.7 ± 42.6 | 2.30 ± 19.19 | 152.0 ± 29.2 | 2.55 ± 18.2 | 0.710 |
12 | 168.8 ± 47.3 | 147.6 ± 27.4 | 160.0 ± 40.6 | 154.6 ± 29.1 | ||||||
LDL/HDL Ratio (mg/dL) | 0 | 2.77 ± 0.80 | 0.04 ± 0.45 | 2.37 ± 0.88 | −0.07 ± 0.31 | 2.75 ± 1.03 | −0.07 ± 0.32 | 2.39 ± 0.71 | −0.08 ± 0.30 | 0.694 |
12 | 2.81 ± 0.98 | 2.31 ± 0.72 | 2.68 ± 0.88 | 2.32 ± 0.68 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wasserfurth, P.; Nebl, J.; Schuchardt, J.P.; Müller, M.; Boßlau, T.K.; Krüger, K.; Hahn, A. Effects of Exercise Combined with a Healthy Diet or Calanus finmarchicus Oil Supplementation on Body Composition and Metabolic Markers—A Pilot Study. Nutrients 2020, 12, 2139. https://doi.org/10.3390/nu12072139
Wasserfurth P, Nebl J, Schuchardt JP, Müller M, Boßlau TK, Krüger K, Hahn A. Effects of Exercise Combined with a Healthy Diet or Calanus finmarchicus Oil Supplementation on Body Composition and Metabolic Markers—A Pilot Study. Nutrients. 2020; 12(7):2139. https://doi.org/10.3390/nu12072139
Chicago/Turabian StyleWasserfurth, Paulina, Josefine Nebl, Jan Philipp Schuchardt, Mattea Müller, Tim Konstantin Boßlau, Karsten Krüger, and Andreas Hahn. 2020. "Effects of Exercise Combined with a Healthy Diet or Calanus finmarchicus Oil Supplementation on Body Composition and Metabolic Markers—A Pilot Study" Nutrients 12, no. 7: 2139. https://doi.org/10.3390/nu12072139
APA StyleWasserfurth, P., Nebl, J., Schuchardt, J. P., Müller, M., Boßlau, T. K., Krüger, K., & Hahn, A. (2020). Effects of Exercise Combined with a Healthy Diet or Calanus finmarchicus Oil Supplementation on Body Composition and Metabolic Markers—A Pilot Study. Nutrients, 12(7), 2139. https://doi.org/10.3390/nu12072139