Serum Malondialdehyde-Modified Low-Density Lipoprotein Is a Risk Factor for Central Arterial Stiffness in Maintenance Hemodialysis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Anthropometric Measurements
2.3. Determinations of Carotid-Femoral Pulse Wave Velocity
2.4. Biochemical Determination
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stevens, P.E.; Levin, A.; Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med. 2013, 158, 825–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karras, A.; Haymann, J.P.; Bozec, E.; Metzger, M.; Jacquot, C.; Maruani, G.; Houillier, P.; Froissart, M.; Stengel, B.; Guardiola, P.; et al. Large artery stiffening and remodeling are independently associated with all-cause mortality and cardiovascular events in chronic kidney disease. Hypertension 2012, 60, 1451–1457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharman, J.E.; Davies, J.E.; Jenkins, C.; Marwick, T.H. Augmentation index, left ventricular contractility, and wave reflection. Hypertension 2009, 54, 1099–1105. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, G.F.; Conlin, P.R.; Dunlap, M.E.; Lacourciere, Y.; Arnold, J.M.; Ogilvie, R.I.; Neutel, J.; Izzo, J.L., Jr.; Pfeffer, M.A. Aortic diameter, wall stiffness, and wave reflection in systolic hypertension. Hypertension 2008, 51, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Blacher, J.; Guerin, A.P.; Pannier, B.; Marchais, S.J.; Safar, M.E.; London, G.M. Impact of aortic stiffness on survival in end-stage renal disease. Circulation 1999, 99, 2434–2439. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Yoo, H.J.; Kim, M.; Ahn, H.Y.; Park, J.; Lee, S.H.; Lee, J.H. Associations among oxidative stress, Lp-PLA2 activity and arterial stiffness according to blood pressure status at a 3.5-year follow-up in subjects with prehypertension. Atherosclerosis 2017, 257, 179–185. [Google Scholar] [CrossRef]
- Yeo, H.Y.; Kim, O.Y.; Lim, H.H.; Kim, J.Y.; Lee, J.H. Association of serum lycopene and brachial-ankle pulse wave velocity with metabolic syndrome. Metabolism 2011, 60, 537–543. [Google Scholar] [CrossRef]
- Tornvall, P.; Waeg, G.; Nilsson, J.; Hamsten, A.; Regnstrom, J. Autoantibodies against modified low-density lipoproteins in coronary artery disease. Atherosclerosis 2003, 167, 347–353. [Google Scholar] [CrossRef]
- Van den Berg, V.J.; Vroegindewey, M.M.; Kardys, I.; Boersma, E.; Haskard, D.; Hartley, A.; Khamis, R. Anti-oxidized LDL antibodies and coronary artery disease: A systematic review. Antioxidants 2019, 8, 484. [Google Scholar] [CrossRef] [Green Version]
- Holvoet, P.; Perez, G.; Zhao, Z.; Brouwers, E.; Bernar, H.; Collen, D. Malondialdehyde-modified low density lipoproteins in patients with atherosclerotic disease. J. Clin. Investig. 1995, 95, 2611–2619. [Google Scholar] [CrossRef] [Green Version]
- Tanaga, K.; Bujo, H.; Inoue, M.; Mikami, K.; Kotani, K.; Takahashi, K.; Kanno, T.; Saito, Y. Increased circulating malondialdehyde-modified LDL levels in patients with coronary artery diseases and their association with peak sizes of LDL particles. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 662–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, T.; Fujita, H.; Tani, T.; Ohte, N. Malondialdehyde-modified low-density lipoprotein is a predictor of cardiac events in patients with stable angina on lipid-lowering therapy after percutaneous coronary intervention using drug-eluting stent. Atherosclerosis 2015, 239, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Ichihashi, T.; Fujita, H.; Sugiura, T.; Ohte, N. Impact of malondialdehyde-modified low-density lipoprotein on coronary plaque vulnerability in patients not receiving lipid-lowering therapy: A whole coronary analysis with multislice-computed tomography. Heart Vessel. 2018, 33, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Kotani, K.; Tashiro, J.; Yamazaki, K.; Nakamura, Y.; Miyazaki, A.; Bujo, H.; Saito, Y.; Kanno, T.; Maekawa, M. Investigation of MDA-LDL (malondialdehyde-modified low-density lipoprotein) as a prognostic marker for coronary artery disease in patients with type 2 diabetes mellitus. Clin. Chim. Acta 2015, 450, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, T.; Iwade, K.; Hirata, N.; Yamashita, M.; Ikegami, H.; Tanaka, N.; Aosaki, M.; Kasanuki, H. Improvement of arterial stiffness by the antioxidant and anti-inflammatory effects of short-term statin therapy in patients with hypercholesterolemia. Heart Vessel. 2005, 20, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Kurobe, H.; Aihara, K.; Higashida, M.; Hirata, Y.; Nishiya, M.; Matsuoka, Y.; Kanbara, T.; Nakayama, T.; Kinoshita, H.; Sugano, M.; et al. Ezetimibe monotherapy ameliorates vascular function in patients with hypercholesterolemia through decreasing oxidative stress. J. Atheroscler. Thromb. 2011, 18, 1080–1089. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, T.; Shimada, K.; Sato, O.; Kotani, K.; Kume, A.; Sumiyoshi, K.; Sato, Y.; Ohmura, H.; Watanabe, Y.; Mokuno, H.; et al. Circulating malondialdehyde-modified LDL and atherogenic lipoprotein profiles measured by nuclear magnetic resonance spectroscopy in patients with coronary artery disease. Atherosclerosis 2005, 179, 139–145. [Google Scholar] [CrossRef]
- Asamiya, Y.; Yajima, A.; Tsuruta, Y.; Otsubo, S.; Nitta, K. Oxidised LDL/LDL-cholesterol ratio and coronary artery calcification in haemodialysis patients. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 619–627. [Google Scholar] [CrossRef]
- Wang, J.H.; Lee, C.J.; Chen, M.L.; Yang, C.F.; Chen, Y.C.; Hsu, B.G. Association of serum osteoprotegerin levels with carotid-femoral pulse wave velocity in hypertensive patients. J. Clin. Hypertens. 2014, 16, 301–308. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed]
- Vasan, R.S.; Short, M.I.; Niiranen, T.J.; Xanthakis, V.; DeCarli, C.; Cheng, S.; Seshadri, S.; Mitchell, G.F. Interrelations between arterial stiffness, target organ damage, and cardiovascular disease outcomes. J. Am. Heart Assoc. 2019, 8, e012141. [Google Scholar] [CrossRef] [Green Version]
- London, G.M.; Safar, M.E.; Pannier, B. Aortic aging in esrd: Structural, hemodynamic, and mortality implications. J. Am. Soc. Nephrol. 2016, 27, 1837–1846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurent, S.; Boutouyrie, P. Arterial stiffness: A new surrogate end point for cardiovascular disease? J. Nephrol. 2007, 20 (Suppl. 12), S45–S50. [Google Scholar]
- Ramirez, A.J.; Christen, A.I.; Sanchez, R.A. Serum uric acid elevation is associated to arterial stiffness in hypertensive patients with metabolic disturbances. Curr. Hypertens. Rev. 2018, 14, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Levisianou, D.; Melidonis, A.; Adamopoulou, E.; Skopelitis, E.; Koutsovasilis, A.; Protopsaltis, I.; Zairis, M.; Kougialis, S.; Skoularigis, I.; Koukoulis, G.; et al. Impact of the metabolic syndrome and its components combinations on arterial stiffness in type 2 diabetic men. Int. Angiol. 2009, 28, 490–495. [Google Scholar]
- Cecelja, M.; Chowienczyk, P. Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: A systematic review. Hypertension 2009, 54, 1328–1336. [Google Scholar] [CrossRef] [Green Version]
- Schram, M.T.; Henry, R.M.; van Dijk, R.A.; Kostense, P.J.; Dekker, J.M.; Nijpels, G.; Heine, R.J.; Bouter, L.M.; Westerhof, N.; Stehouwer, C.D. Increased central artery stiffness in impaired glucose metabolism and type 2 diabetes: The Hoorn study. Hypertension 2004, 43, 176–181. [Google Scholar] [CrossRef]
- Semba, R.D.; Najjar, S.S.; Sun, K.; Lakatta, E.G.; Ferrucci, L. Serum carboxymethyl-lysine, an advanced glycation end product, is associated with increased aortic pulse wave velocity in adults. Am. J. Hypertens. 2009, 22, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Agnoletti, D.; Mansour, A.S.; Zhang, Y.; Protogerou, A.D.; Ouerdane, S.; Blacher, J.; Safar, M.E. Clinical interaction between diabetes duration and aortic stiffness in type 2 diabetes mellitus. J. Hum. Hypertens. 2017, 31, 189–194. [Google Scholar] [CrossRef]
- Chen, Y.C.; Hsu, B.G.; Wang, J.H.; Lee, C.J.; Tsai, J.P. Metabolic syndrome with aortic arterial stiffness and first hospitalization or mortality in coronary artery disease patients. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 2065–2073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yapei, Y.; Xiaoyan, R.; Sha, Z.; Li, P.; Xiao, M.; Shuangfeng, C.; Lexin, W.; Lianqun, C. Clinical significance of arterial stiffness and thickness biomarkers in type 2 diabetes mellitus: An up-to-date meta-analysis. Med. Sci. Monit. 2015, 21, 2467–2475. [Google Scholar]
- Hopkins, P.N. Molecular biology of atherosclerosis. Physiol. Rev. 2013, 93, 1317–1542. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Mohamed, A.S.; Zhou, S.H. Oxidized low density lipoprotein, stem cells, and atherosclerosis. Lipids Health Dis. 2012, 11, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, C.M.; Mao, S.J.; Huang, G.S.; Yang, P.C.; Chu, R.M. Stimulation of smooth muscle cell proliferation by ox-LDL- and acetyl LDL-induced macrophage-derived foam cells. Life Sci. 2001, 70, 443–452. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Kuwabara, M.; Johnson, R.; Bove, M.; Fogacci, F.; Rosticci, M.; Giovannini, M.; D’Addato, S.; Borghi, C.; Brisighella Heart Study group. LDL-oxidation, serum uric acid, kidney function and pulse-wave velocity: Data from the brisighella heart study cohort. Int. J. Cardiol. 2018, 261, 204–208. [Google Scholar] [CrossRef]
- Holvoet, P.; Collen, D.; Van de Werf, F. Malondialdehyde-modified LDL as a marker of acute coronary syndromes. JAMA 1999, 281, 1718–1721. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, S.; Suzuki, H.; Fujihara, K.; Kobayashi, K.; Iwasaki, H.; Sugano, Y.; Yatoh, S.; Sekiya, M.; Yahagi, N.; Shimano, H. Malondialdehyde-modified LDL-related variables are associated with diabetic kidney disease in type 2 diabetes. Diabetes Res. Clin. Pract. 2018, 141, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, K.; Kobayashi, N.; Kutsuna, T.; Ishii, A.; Matsumoto, T.; Hara, M.; Aiba, N.; Tabata, M.; Takahira, N.; Masuda, T. Excessive fall of blood pressure during maintenance hemodialysis in patients with chronic renal failure is induced by vascular malfunction and imbalance of autonomic nervous activity. Ther. Apher. Dial. 2012, 16, 219–225. [Google Scholar] [CrossRef]
Characteristics | All Patients (N = 155) | Control Group (N = 87) | Aortic Stiffness Group (N = 68) | p-Value |
---|---|---|---|---|
Age (years) | 63.15 ± 13.19 | 61.22 ± 13.69 | 65.63 ± 12.17 | 0.038 * |
Hemodialysis duration (months) | 56.16 (23.04–117.84) | 69.84 (21.72–134.40) | 51.84 (24.99–87.24) | 0.241 |
Height (cm) | 159.84 ± 8.54 | 159.06 ± 8.89 | 160.85 ± 8.04 | 0.195 |
Body weight (Kg) | 64.24 ± 15.37 | 62.94 ± 15.68 | 65.93 ± 14.91 | 0.233 |
Body mass index (Kg/m2) | 24.95 ± 5.03 | 24.73 ± 5.23 | 25.23 ± 4.78 | 0.544 |
Carotid-femoral PWV (m/s) | 9.88 ± 2.78 | 7.82 ± 1.22 | 12.52 ± 1.81 | <0.001 * |
Systolic blood pressure (mmHg) | 143.62 ± 26.64 | 138.72 ± 27.11 | 149.88 ± 24.84 | 0.009 * |
Diastolic blood pressure (mmHg) | 77.74 ± 16.53 | 77.46 ± 16.19 | 78.09 ± 17.08 | 0.815 |
Total cholesterol (mg/dL) | 144.97 ± 33.82 | 147.08 ± 37.64 | 142.26 ± 28.22 | 0.381 |
Triglyceride (mg/dL) | 117.00 (84.00–187.00) | 112.00 (84.00–200.00) | 122.50 (87.00–175.75) | 0.832 |
MDA-LDL (mg/dL) | 89.15 (60.80–146.24) | 72.65 (57.34–112.37) | 120.63 (82.75–191.74) | <0.001 * |
Albumin (mg/dL) | 4.10 (3.90–4.40) | 4.10 (3.90–4.40) | 4.10 (3.90–4.30) | 0.696 |
Glucose (mg/dL) | 131.00 (110.00–169.00) | 128.00 (104.00–156.00) | 136.00 (114.00–184.00) | 0.081 |
Blood urea nitrogen (mg/dL) | 61.30 ± 14.90 | 61.13 ± 14.20 | 61.51 ± 15.86 | 0.873 |
Creatinine (mg/dL) | 9.37 ± 2.08 | 9.43 ± 2.07 | 9.30 ± 2.10 | 0.703 |
Total calcium (mg/dL) | 9.05 ± 0.73 | 8.98 ± 0.68 | 9.14 ± 0.79 | 0.190 |
Phosphorus (mg/dL) | 4.74 ± 1.29 | 4.73 ± 1.32 | 4.74 ± 1.26 | 0.976 |
Intact parathyroid hormone (pg/mL) | 198.00 (69.30–453.80) | 244.40 (98.50–453.80) | 158.95 (47.83–448.50) | 0.129 |
Urea reduction rate | 0.73 ± 0.04 | 0.74 ± 0.05 | 0.73 ± 0.04 | 0.437 |
Kt/V (Gotch) | 1.34 ± 0.17 | 1.35 ± 0.18 | 1.32 ± 0.16 | 0.382 |
Female, n (%) | 77 (49.7) | 47 (54.0) | 30 (44.1) | 0.221 |
Diabetes mellitus, n (%) | 66 (42.6) | 25 (28.7) | 41 (60.3) | <0.001 * |
Hypertension, n (%) | 79 (51.0) | 37 (42.5) | 42 (61.8) | 0.017 * |
Angiotensin receptor blocker, n (%) | 44 (28.4) | 22 (25.3) | 22 (32.4) | 0.333 |
β-blocker, n (%) | 47 (30.3) | 25 (28.7) | 22 (32.4) | 0.625 |
Calcium channel blocker, n (%) | 59 (38.1) | 35 (40.2) | 24 (35.3) | 0.530 |
Statin, n (%) | 27 (17.4) | 12 (13.8) | 15 (22.1) | 0.178 |
Fibrate, n (%) | 23 (14.8) | 13 (14.9) | 10 (14.7) | 0.967 |
Variables | Odds Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
MDA-LDL, 1 mg/dL | 1.014 | 1.007–1.021 | <0.001 * |
Diabetes mellitus, present | 2.893 | 1.300–6.437 | 0.009 * |
Hypertension, present | 2.408 | 1.066–5.436 | 0.034 * |
Age, 1 year | 1.024 | 0.993–1.055 | 0.131 |
Systolic blood pressure, 1 mmHg | 1.003 | 0.988–1.020 | 0.674 |
Variables | Central PWV (m/s) | ||||
---|---|---|---|---|---|
Univariate | Multivariate | ||||
r | p-Value | Standardized Beta | Adjusted R2 Change | p-Value | |
Diabetes mellitus | 0.351 | <0.001 * | 0.233 | 0.055 | 0.001 * |
Hypertension | 0.177 | 0.028 * | 0.132 | 0.014 | 0.048 * |
Age (years) | 0.199 | 0.013 * | – | – | – |
Log-HD duration (months) | −0.122 | 0.131 | – | – | – |
Height (cm) | 0.171 | 0.033 * | – | – | – |
Body weight (Kg) | 0.178 | 0.027 * | – | – | – |
Body mass index (Kg/m2) | 0.111 | 0.167 | – | – | – |
Systolic blood pressure (mmHg) | 0.260 | 0.001 * | – | – | – |
Diastolic blood pressure (mmHg) | 0.079 | 0.332 | – | – | – |
Total cholesterol (mg/dL) | −0.045 | 0.567 | – | – | – |
Log-Triglyceride (mg/dL) | 0.108 | 0.180 | – | – | – |
Log-MDA-LDL (mg/dL) | 0.520 | <0.001 * | 0.404 | 0.265 | <0.001 * |
Log-Albumin (mg/dL) | 0.099 | 0.220 | – | – | – |
Log-Glucose (mg/dL) | 0.164 | 0.042 * | – | – | – |
Blood urea nitrogen (mg/dL) | 0.042 | 0.600 | – | – | – |
Creatinine (mg/dL) | 0.076 | 0.345 | – | – | – |
Total calcium (mg/dL) | 0.103 | 0.204 | – | – | – |
Phosphorus (mg/dL) | 0.030 | 0.715 | – | – | – |
Log-iPTH (pg/mL) | −0.118 | 0.143 | – | – | – |
Urea reduction rate | −0.088 | 0.276 | – | – | – |
Kt/V (Gotch) | −0.092 | 0.256 | – | – | – |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.-S.; Wang, C.-H.; Lai, Y.-H.; Kuo, C.-H.; Lin, Y.-L.; Hsu, B.-G.; Tsai, J.-P. Serum Malondialdehyde-Modified Low-Density Lipoprotein Is a Risk Factor for Central Arterial Stiffness in Maintenance Hemodialysis Patients. Nutrients 2020, 12, 2160. https://doi.org/10.3390/nu12072160
Hou J-S, Wang C-H, Lai Y-H, Kuo C-H, Lin Y-L, Hsu B-G, Tsai J-P. Serum Malondialdehyde-Modified Low-Density Lipoprotein Is a Risk Factor for Central Arterial Stiffness in Maintenance Hemodialysis Patients. Nutrients. 2020; 12(7):2160. https://doi.org/10.3390/nu12072160
Chicago/Turabian StyleHou, Jia-Sian, Chih-Hsien Wang, Yu-Hsien Lai, Chiu-Huang Kuo, Yu-Li Lin, Bang-Gee Hsu, and Jen-Pi Tsai. 2020. "Serum Malondialdehyde-Modified Low-Density Lipoprotein Is a Risk Factor for Central Arterial Stiffness in Maintenance Hemodialysis Patients" Nutrients 12, no. 7: 2160. https://doi.org/10.3390/nu12072160
APA StyleHou, J. -S., Wang, C. -H., Lai, Y. -H., Kuo, C. -H., Lin, Y. -L., Hsu, B. -G., & Tsai, J. -P. (2020). Serum Malondialdehyde-Modified Low-Density Lipoprotein Is a Risk Factor for Central Arterial Stiffness in Maintenance Hemodialysis Patients. Nutrients, 12(7), 2160. https://doi.org/10.3390/nu12072160