Interactions of Habitual Coffee Consumption by Genetic Polymorphisms with the Risk of Prediabetes and Type 2 Diabetes Combined
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment
2.3. Ascertainment of Cases
2.4. Genotyping and Quality Control
2.5. GWAS on Coffee Consumption
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Genetic Polymorphisms Associated with Coffee Consumption
3.3. Coffee Consumption and the Risk of Prediabetes and Type 2 Diabetes Combined
3.4. Associations Modified by Genetic Risk Scores
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, B.; Lim, J.; Kim, Y.Z.; Park, H.S. Trends in type 2 diabetes prevalence according to income levels in Korea (1998–2012). Diabetes Res. Clin. Pract. 2016, 115, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.-Y. Trends in the prevalence and management of diabetes in Korea: 2007–2017. Epidemiol. Health 2019, 41, e2019029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Statistics Korea. Causes of Death Statistics in 2018; Statistics Korea: Daejeon, Korea, 2019.
- Ding, M.; Bhupathiraju, S.N.; Chen, M.; van Dam, R.M.; Hu, F.B. Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: A systematic review and a dose-response meta-analysis. Diabetes Care 2014, 37, 569–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, F.; Li, X.; Jiang, X. Coffee consumption and risk of the metabolic syndrome: A meta-analysis. Diabetes Metab. 2016, 42, 80–87. [Google Scholar] [CrossRef]
- Wu, J.-N.; Ho, S.C.; Zhou, C.; Ling, W.-H.; Chen, W.-Q.; Wang, C.-L.; Chen, Y.-M. Coffee consumption and risk of coronary heart diseases: A meta-analysis of 21 prospective cohort studies. Int. J. Cardiol. 2009, 137, 216–225. [Google Scholar] [CrossRef]
- Saab, S.; Mallam, D.; Cox Ii, G.A.; Tong, M.J. Impact of coffee on liver diseases: A systematic review. Liver Int. 2014, 34, 495–504. [Google Scholar] [CrossRef]
- Arab, L. Epidemiologic Evidence on Coffee and Cancer. Nutr. Cancer 2010, 62, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Acheson, K.J.; Zahorska-Markiewicz, B.; Pittet, P.; Anantharaman, K.; Jéquier, E. Caffeine and coffee: Their influence on metabolic rate and substrate utilization in normal weight and obese individuals. Am. J. Clin. Nutr. 1980, 33, 989–997. [Google Scholar] [CrossRef]
- Astrup, A.; Toubro, S.; Cannon, S.; Hein, P.; Breum, L.; Madsen, J. Caffeine: A double-blind, placebo-controlled study of its thermogenic, metabolic, and cardiovascular effects in healthy volunteers. Am. J. Clin. Nutr. 1990, 51, 759–767. [Google Scholar] [CrossRef]
- Liang, N.; Kitts, D.D. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients 2015, 8, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, I.A.; Clifford, M.N.; Lean, M.E.J.; Ashihara, H.; Crozier, A. Coffee: Biochemistry and potential impact on health. Food Funct. 2014, 5, 1695–1717. [Google Scholar] [CrossRef] [PubMed]
- Ceriello, A.; Testa, R.; Genovese, S. Clinical implications of oxidative stress and potential role of natural antioxidants in diabetic vascular complications. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Palmer, A.A.; de Wit, H. Genetics of caffeine consumption and responses to caffeine. Psychopharmacology 2010, 211, 245–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornelis, M.C.; Monda, K.L.; Yu, K.; Paynter, N.; Azzato, E.M.; Bennett, S.N.; Berndt, S.I.; Boerwinkle, E.; Chanock, S.; Chatterjee, N.; et al. Genome-wide meta-analysis identifies regions on 7p21 (AHR) and 15q24 (CYP1A2) as determinants of habitual caffeine consumption. PLoS Genet. 2011, 7, e1002033. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, M.C.; Byrne, E.M.; Esko, T.; Nalls, M.A.; Ganna, A.; Paynter, N.; Monda, K.L.; Amin, N.; Fischer, K.; Renstrom, F.; et al. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption. Mol. Psychiatry 2015, 20, 647–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amin, N.; Byrne, E.; Johnson, J.; Chenevix-Trench, G.; Walter, S.; Nolte, I.M.; kConFab, I.; Vink, J.M.; Rawal, R.; Mangino, M.; et al. Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM. Mol. Psychiatry 2012, 17, 1116–1129. [Google Scholar] [CrossRef]
- Nakagawa-Senda, H.; Hachiya, T.; Shimizu, A.; Hosono, S.; Oze, I.; Watanabe, M.; Matsuo, K.; Ito, H.; Hara, M.; Nishida, Y.; et al. A genome-wide association study in the Japanese population identifies the 12q24 locus for habitual coffee consumption: The J-MICC Study. Sci. Rep. 2018, 8, 1493. [Google Scholar] [CrossRef]
- Jia, H.; Nogawa, S.; Kawafune, K.; Hachiya, T.; Takahashi, S.; Igarashi, M.; Saito, K.; Kato, H. GWAS of habitual coffee consumption reveals a sex difference in the genetic effect of the 12q24 locus in the Japanese population. BMC Genet. 2019, 20, 61. [Google Scholar] [CrossRef]
- Carlström, M.; Larsson, S.C. Coffee consumption and reduced risk of developing type 2 diabetes: A systematic review with meta-analysis. Nutr. Rev. 2018, 76, 395–417. [Google Scholar] [CrossRef]
- Kim, Y.; Han, B.-G.; KoGES Group. Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 2017, 46, e20. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Kwon, E.; Shim, J.E.; Park, M.K.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, Y.; Ahn, Y.O.; Paik, H.Y.; Ahn, Y.; Tokudome, Y.; Hamajima, N.; Inoue, M.; Tajima, K. Development of a food frequency questionnaire in Koreans. Asia Pac. J. Clin. Nutr. 2003, 12, 243–250. [Google Scholar] [PubMed]
- Ministry of Food and Drug Safety (KR). Food Composition Database. Available online: http://www.foodsafetykorea.go.kr/fcdb/ (accessed on 5 March 2020).
- United States Department of Agriculture (USDA), A.R.S. Abridged List Ordered by Nutrient Content in Household Measure, Nutrients: Caffeine(mg). Available online: https://www.nal.usda.gov/sites/www.nal.usda.gov/files/caffeine.pdf (accessed on 17 February 2020).
- American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2014, 37, S81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabbee, N.; Speed, T.P. A genotype calling algorithm for affymetrix SNP arrays. Bioinformatics 2005, 22, 7–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, Y.S.; Go, M.J.; Kim, Y.J.; Heo, J.Y.; Oh, J.H.; Ban, H.J.; Yoon, D.; Lee, M.H.; Kim, D.J.; Park, M.; et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat. Genet. 2009, 41, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Huang, T.; Heianza, Y.; Sun, D.; Zheng, Y.; Ma, W.; Jensen, M.K.; Kang, J.H.; Wiggs, J.L.; Pasquale, L.R.; et al. Genetic Susceptibility, Change in Physical Activity, and Long-term Weight Gain. Diabetes 2017, 66, 2704–2712. [Google Scholar] [CrossRef] [Green Version]
- Zeng, P.; Zhao, Y.; Qian, C.; Zhang, L.; Zhang, R.; Gou, J.; Liu, J.; Liu, L.; Chen, F. Statistical analysis for genome-wide association study. J. Biomed. Res. 2015, 29, 285–297. [Google Scholar] [CrossRef] [Green Version]
- Shaul, O. How introns enhance gene expression. Int. J. Biochem. Cell Biol. 2017, 91, 145–155. [Google Scholar] [CrossRef]
- Go, M.J.; Hwang, J.Y.; Kim, Y.J.; Hee Oh, J.; Kim, Y.J.; Heon Kwak, S.; Soo Park, K.; Lee, J.; Kim, B.J.; Han, B.G.; et al. New susceptibility loci in MYL2, C12orf51 and OAS1 associated with 1-h plasma glucose as predisposing risk factors for type 2 diabetes in the Korean population. J. Hum. Genet. 2013, 58, 362–365. [Google Scholar] [CrossRef] [PubMed]
- Go, M.J.; Hwang, J.Y.; Park, T.J.; Kim, Y.J.; Oh, J.H.; Kim, Y.J.; Han, B.G.; Kim, B.J. Genome-wide association study identifies two novel Loci with sex-specific effects for type 2 diabetes mellitus and glycemic traits in a korean population. Diabetes Metab. J. 2014, 38, 375–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, Y.; Sakuma, J.; Takeuchi, I.; Yasukochi, Y.; Kato, K.; Oguri, M.; Fujimaki, T.; Horibe, H.; Muramatsu, M.; Sawabe, M.; et al. Identification of polymorphisms in 12q24.1, ACAD10, and BRAP as novel genetic determinants of blood pressure in Japanese by exome-wide association studies. Oncotarget 2017, 8, 43068–43079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, W.; Zheng, W.; Okada, Y.; Takeuchi, F.; Tabara, Y.; Hwang, J.Y.; Dorajoo, R.; Li, H.; Tsai, F.J.; Yang, X.; et al. Meta-analysis of genome-wide association studies in East Asian-ancestry populations identifies four new loci for body mass index. Hum. Mol. Genet. 2014, 23, 5492–5504. [Google Scholar] [CrossRef] [Green Version]
- Arion, W.J.; Canfield, W.K.; Ramos, F.C.; Schindler, P.W.; Burger, H.J.; Hemmerle, H.; Schubert, G.; Below, P.; Herling, A.W. Chlorogenic acid and hydroxynitrobenzaldehyde: New inhibitors of hepatic glucose 6-phosphatase. Arch. Biochem. Biophys. 1997, 339, 315–322. [Google Scholar] [CrossRef]
- Sato, Y.; Itagaki, S.; Kurokawa, T.; Ogura, J.; Kobayashi, M.; Hirano, T.; Sugawara, M.; Iseki, K. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharm. 2011, 403, 136–138. [Google Scholar] [CrossRef]
- Keijzers, G.B.; De Galan, B.E.; Tack, C.J.; Smits, P. Caffeine Can Decrease Insulin Sensitivity in Humans. Diabetes Care 2002, 25, 364. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, J.A.; Boozer, C.N.; Geliebter, A. Coffee, diabetes, and weight control. Am. J. Clin. Nutr. 2006, 84, 682–693. [Google Scholar] [CrossRef] [Green Version]
- Schulze, M.B.; Schulz, M.; Heidemann, C.; Schienkiewitz, A.; Hoffmann, K.; Boeing, H. Fiber and Magnesium Intake and Incidence of Type 2 Diabetes: A Prospective Study and Meta-analysis. Arch. Intern. Med. 2007, 167, 956–965. [Google Scholar] [CrossRef] [Green Version]
- Balon, T.W.; Gu, J.L.; Tokuyama, Y.; Jasman, A.P.; Nadler, J.L. Magnesium supplementation reduces development of diabetes in a rat model of spontaneous NIDDM. Am. J. Physiol.-Endocrinol. Metab. 1995, 269, E745–E752. [Google Scholar] [CrossRef]
- Larsson, S.C.; Wolk, A. Magnesium intake and risk of type 2 diabetes: A meta-analysis. J. Intern. Med. 2007, 262, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Drouin-Chartier, J.P.; Zheng, Y.; Li, Y.; Malik, V.; Pan, A.; Bhupathiraju, S.N.; Tobias, D.K.; Manson, J.E.; Willett, W.C.; Hu, F.B. Changes in Consumption of Sugary Beverages and Artificially Sweetened Beverages and Subsequent Risk of Type 2 Diabetes: Results from Three Large Prospective U.S. Cohorts of Women and Men. Diabetes Care 2019, 42, 2181–2189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulze, M.B.; Manson, J.E.; Ludwig, D.S.; Colditz, G.A.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Sugar-Sweetened Beverages, Weight Gain, and Incidence of Type 2 Diabetes in Young and Middle-Aged Women. JAMA 2004, 292, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Sartorelli, D.S.; Fagherazzi, G.; Balkau, B.; Touillaud, M.S.; Boutron-Ruault, M.-C.; de Lauzon-Guillain, B.; Clavel-Chapelon, F. Differential effects of coffee on the risk of type 2 diabetes according to meal consumption in a French cohort of women: The E3N/EPIC cohort study. Am. J. Clin. Nutr. 2010, 91, 1002–1012. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. Postprandial Blood Glucose. Diabetes Care 2001, 24, 775. [Google Scholar] [CrossRef] [Green Version]
- Louie, J.C.; Atkinson, F.; Petocz, P.; Brand-Miller, J.C. Delayed effects of coffee, tea and sucrose on postprandial glycemia in lean, young, healthy adults. Asia Pac. J. Clin. Nutr. 2008, 17, 657–662. [Google Scholar]
- Tuomilehto, J.; Hu, G.; Bidel, S.; Lindström, J.; Jousilahti, P. Coffee Consumption and Risk of Type 2 Diabetes Mellitus Among Middle-aged Finnish Men and Women. JAMA 2004, 291, 1213–1219. [Google Scholar] [CrossRef] [Green Version]
Non-Coffee Consumers (n = 864) | Black-Coffee Consumers | |||
---|---|---|---|---|
<1 Cup/Day (n = 100) | 1 to <2 Cups/Day (n = 70) | ≥2 Cups/Day (n = 105) | ||
Age, mean ± SD (years) | 53.3 ± 8.7 | 49.7 ± 7.5 | 47.4 ± 6.9 | 46.9 ± 5.7 |
Sex, n (%) | ||||
Men | 299 (34.6) | 32 (32.0) | 21 (30.0) | 47 (44.8) |
Women | 565 (65.4) | 68 (68.0) | 49 (70.0) | 58 (55.2) |
BMI, mean ± SD (kg/m2) | 23.8 ± 3.0 | 24.3 ± 2.8 | 24.6 ± 3.1 | 24.7 ± 3.1 |
Smoking status, n (%) | ||||
Never smokers | 638 (73.8) | 76 (76.0) | 49 (70.0) | 57 (54.3) |
Past smokers | 103 (11.9) | 9 (9.0) | 11 (15.7) | 14 (13.3) |
Current smokers | 123 (14.2) | 15 (15.0) | 10 (14.3) | 34 (32.4) |
Alcohol consumption, n (%) | ||||
Never drinkers | 588 (68.1) | 55 (55.0) | 44 (62.9) | 46 (43.8) |
≤5 g/day | 104 (12.0) | 15 (15.0) | 12 (17.1) | 23 (21.9) |
5 to ≤10 g/day | 36 (4.2) | 8 (8.0) | 4 (5.7) | 8 (7.6) |
10 to ≤20 g/day | 46 (5.3) | 10 (10.0) | 6 (8.6) | 11 (10.5) |
>20 g/day | 90 (10.4) | 12 (12.0) | 4 (5.7) | 17 (16.2) |
Family history of type 2 diabetes, n (%) | ||||
Yes | 65 (7.5) | 11 (11.0) | 5 (7.1) | 14 (13.3) |
No | 799 (92.5) | 89 (89.0) | 65 (92.9) | 91 (86.7) |
Sugar added in coffee, mean ± SD (g/day) | 0.1 ± 0.9 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
Total energy intake, mean ± SD (kcal/day) | 1882.1 ± 762.5 | 1981.1 ± 747.6 | 1863.9 ± 718.0 | 2143.7 ± 1121.4 |
Non-Coffee Consumers (n = 864) | Sugared-coffee Consumers | |||
<1 Cup/Day (n = 892) | 1 to <2 Cups/Day (n = 986) | ≥2 Cups/Day (n = 1037) | ||
Age, mean ± SD (years) | 53.3 ± 8.7 | 51.4 ± 8.5 | 50.0 ± 8.4 | 49.2 ± 8.0 |
Sex, n (%) | ||||
Men | 299 (34.6) | 442 (49.6) | 425 (43.1) | 638 (61.5) |
Women | 565 (65.4) | 450 (50.5) | 561 (56.9) | 399 (38.5) |
BMI, mean ± SD (kg/m2) | 23.8 ± 3.0 | 24.4 ± 2.9 | 24.3 ± 2.9 | 24.3 ± 3.0 |
Smoking status, n (%) | ||||
Never smokers | 638 (73.8) | 555 (62.2) | 626 (63.5) | 458 (44.2) |
Past smokers | 103 (11.9) | 147 (16.5) | 129 (13.1) | 188 (18.1) |
Current smokers | 123 (14.2) | 190 (21.3) | 231 (23.4) | 391 (37.7) |
Alcohol consumption, n (%) | ||||
Never drinkers | 588 (68.1) | 435 (48.8) | 488 (49.5) | 459 (44.3) |
≤5 g/day | 104 (12.0) | 166 (18.6) | 196 (19.9) | 204 (19.7) |
5 to ≤10 g/day | 36 (4.2) | 77 (8.6) | 59 (6.0) | 85 (8.2) |
10 to ≤20 g/day | 46 (5.3) | 90 (10.1) | 88 (8.9) | 91 (8.8) |
>20 g/day | 90 (10.4) | 124 (13.9) | 155 (15.7) | 198 (19.1) |
Family history of type 2 diabetes, n (%) | ||||
Yes | 65 (7.5) | 104 (11.7) | 91 (9.2) | 96 (9.3) |
No | 799 (92.5) | 788 (88.3) | 895 (90.8) | 941 (90.7) |
Sugar added in coffee, mean ± SD (g/day) | 0.1 ± 0.9 | 1.6 ± 1.5 | 4.9 ± 1.2 | 11.9 ± 4.4 |
Total energy intake, mean ± SD (kcal/day) | 1882.1 ± 762.5 | 1881.2 ± 638.6 | 1969.5 ± 596.2 | 2115.8 ± 749.4 |
Chr | SNP | Position | Gene | Alleles 1 | MAF 2 | MAF 3 | Beta 4 | p-Value 5 |
---|---|---|---|---|---|---|---|---|
12 | rs2074356 | 112,645,401 | HECTD4 | A/G | 0.149 | 0.129 | 0.3185 | 6.62 × 10−8 |
12 | rs11066015 | 112,168,009 | ACAD10 | A/G | 0.172 | 0.176 | 0.2469 | 7.79 × 10−6 |
12 | rs12229654 | 111,414,461 | MYL2 | G/T | 0.143 | 0.159 | 0.2867 | 1.49 × 10−6 |
12 | rs11065828 | 111,629,389 | CUX2 | A/C | 0.172 | 0.214 | 0.2654 | 1.26 × 10−6 |
12 | rs79105258 | 111,718,231 | CUX2 | A/C | 0.156 | 0.216 | 0.2912 | 3.89 × 10−7 |
Non-Black-Coffee Consumers 1 | Black-Coffee Consumers | p for Trend | |||
---|---|---|---|---|---|
<1 Cup/Day | 1 to <2 Cups/Day | ≥2 Cups/Day | |||
Men and women combined | 0.023 | ||||
Case/total | 2759/3779 | 73/100 | 47/70 | 69/105 | |
ORs (95% CIs) 2 | Reference | 0.96 (0.59, 1.55) | 0.75 (0.44, 1.28) | 0.61 (0.38, 0.95) | |
Men | 0.026 | ||||
Case/total | 1394/1804 | 26/32 | 15/21 | 32/47 | |
ORs (95% CIs) 2 | Reference | 1.18 (0.45, 3.15) | 0.69 (0.25, 1.93) | 0.46 (0.23, 0.94) | |
Women | 0.271 | ||||
Case/total | 1365/1975 | 47/68 | 32/49 | 37/58 | |
ORs (95% CIs) 2 | Reference | 0.91 (0.52, 1.59) | 0.78 (0.41, 1.47) | 0.74 (0.41, 1.34) |
Non-Sugared-Coffee Consumers 1 | Sugared-Coffee Consumers | p for Trend | |||
---|---|---|---|---|---|
<1 Cup/Day | 1 to <2 Cups/Day | ≥2 Cups/Day | |||
Men and women combined | 0.005 | ||||
Case/total | 834/1139 | 644/892 | 749/986 | 721/1037 | |
ORs (95% CIs) 2 | Reference | 0.84 (0.68, 1.03) | 1.11 (0.90, 1.35) | 0.73 (0.60, 0.89) | |
Men | 0.015 | ||||
Case/total | 310/399 | 335/442 | 357/425 | 465/638 | |
ORs (95% CIs) 2 | Reference | 0.83 (0.59, 1.15) | 1.45 (1.01, 2.08) | 0.71 (0.52, 0.97) | |
Women | 0.080 | ||||
Case/total | 524/740 | 309/450 | 392/561 | 256/399 | |
ORs (95% CIs) 2 | Reference | 0.84 (0.64, 1.09) | 0.96 (0.75, 1.23) | 0.75 (0.57, 0.99) |
Genetic Risk Scores 1 | Non-Black-Coffee Consumers 2 | Black-Coffee Consumers | p for Interaction | ||
---|---|---|---|---|---|
<1 Cup/Day | 1 to <2 Cups/Day | ≥2 Cups/Day | |||
0 point | 0.261 | ||||
Case/total | 1639/2204 | 47/61 | 25/39 | 46/61 | |
ORs (95% CIs) 3 | Reference | 1.03 (0.54, 1.97) | 0.67 (0.33, 1.35) | 0.87 (0.46, 1.66) | |
0.1 to <5 points | |||||
Case/total | 524/721 | 12/18 | 8/11 | 9/17 | |
ORs (95% CIs) 3 | Reference | 1.00 (0.33, 3.06) | 0.90 (0.21, 3.94) | 0.49 (0.17, 1.44) | |
5 to 10 points | |||||
Case/total | 596/854 | 14/21 | 14/20 | 14/27 | |
ORs (95% CIs) 3 | Reference | 0.78 (0.28, 2.15) | 0.89 (0.31, 2.58) | 0.36 (0.15, 0.88) |
Genetic Risk Scores 1 | Non-Sugared-Coffee Consumers 2 | Sugared-Coffee Consumers | p for Interaction | ||
---|---|---|---|---|---|
<1 Cup/Day | 1 to <2 Cups/Day | ≥2 Cups/Day | |||
0 point | 0.608 | ||||
Case/total | 521/698 | 397/544 | 442/571 | 397/552 | |
ORs (95% CIs) 3 | Reference | 0.79 (0.61, 1.04) | 1.11 (0.85, 1.46) | 0.74 (0.56, 0.97) | |
0.1 to <5 points | |||||
Case/total | 139/196 | 121/162 | 151/196 | 142/213 | |
ORs (95% CIs) 3 | Reference | 1.02 (0.62, 1.67) | 1.28 (0.79, 2.07) | 0.71 (0.45, 1.12) | |
5 to 10 points | |||||
Case/total | 174/245 | 126/186 | 156/219 | 182/272 | |
ORs (95% CIs) 3 | Reference | 0.79 (0.51, 1.22) | 1.03 (0.68, 1.57) | 0.74 (0.49, 1.12) |
Non-Black-Coffee Consumers 1 | Black-Coffee Consumers | p for Interaction | |||
---|---|---|---|---|---|
<1 Cup/Day | 1 to <2 Cups/Day | ≥2 Cups/Day | |||
rs2074356 | 0.171 | ||||
GG | |||||
Case/total | 1989/2694 | 54/71 | 33/48 | 52/73 | |
ORs (95% CIs) 2 | Reference | 1.07 (0.59, 1.94) | 0.83 (0.43, 1.61) | 0.77 (0.44, 1.35) | |
GA+AA | |||||
Case/total | 770/1085 | 19/29 | 14/22 | 17/32 | |
ORs (95% CIs) 2 | Reference | 0.72 (0.31, 1.71) | 0.65 (0.25, 1.70) | 0.37 (0.16, 0.84) | |
rs11066015 | 0.143 | ||||
GG | |||||
Case/total | 1894/2557 | 54/69 | 29/43 | 51/70 | |
ORs (95% CIs) 2 | Reference | 1.24 (0.67, 2.30) | 0.81 (0.41, 1.62) | 0.84 (0.47, 1.51) | |
GA+AA | |||||
Case/total | 865/1222 | 19/31 | 18/27 | 18/35 | |
ORs (95% CIs) 2 | Reference | 0.56 (0.25, 1.27) | 0.68 (0.28, 1.65) | 0.35 (0.16, 0.75) | |
rs12229654 | 0.366 | ||||
TT | |||||
Case/total | 2049/2765 | 55/73 | 31/47 | 52/72 | |
ORs (95% CIs) 2 | Reference | 1.02 (0.57, 1.83) | 0.69 (0.36, 1.32) | 0.75 (0.42, 1.33) | |
TG+GG | |||||
Case/total | 710/1014 | 18/27 | 16/23 | 17/33 | |
ORs (95% CIs) 2 | Reference | 0.82 (0.33, 2.01) | 0.94 (0.35, 2.52) | 0.42 (0.19, 0.93) | |
rs11065828 | 0.460 | ||||
CC | |||||
Case/total | 1909/2575 | 51/70 | 26/42 | 52/71 | |
ORs (95% CIs) 2 | Reference | 0.88 (0.49, 1.56) | 0.60 (0.31, 1.18) | 0.81 (0.45, 1.45) | |
CA+AA | |||||
Case/total | 850/1204 | 22/30 | 21/28 | 17/34 | |
ORs (95% CIs) 2 | Reference | 1.17 (0.48, 2.87) | 1.19 (0.46, 3.06) | 0.36 (0.17, 0.80) | |
rs79105258 | 0.395 | ||||
CC | |||||
Case/total | 1986/2672 | 52/70 | 31/48 | 51/70 | |
ORs (95% CIs) 2 | Reference | 0.98 (0.55, 1.77) | 0.66 (0.35, 1.25) | 0.79 (0.44, 1.42) | |
CA+AA | |||||
Case/total | 773/1107 | 21/30 | 16/22 | 18/35 | |
ORs (95% CIs) 2 | Reference | 0.91 (0.38, 2.17) | 1.04 (0.37, 2.92) | 0.40 (0.18, 0.87) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, T.; Youn, J.; Kim, A.N.; Kang, M.; Kim, K.; Sung, J.; Lee, J.E. Interactions of Habitual Coffee Consumption by Genetic Polymorphisms with the Risk of Prediabetes and Type 2 Diabetes Combined. Nutrients 2020, 12, 2228. https://doi.org/10.3390/nu12082228
Jin T, Youn J, Kim AN, Kang M, Kim K, Sung J, Lee JE. Interactions of Habitual Coffee Consumption by Genetic Polymorphisms with the Risk of Prediabetes and Type 2 Diabetes Combined. Nutrients. 2020; 12(8):2228. https://doi.org/10.3390/nu12082228
Chicago/Turabian StyleJin, Taiyue, Jiyoung Youn, An Na Kim, Moonil Kang, Kyunga Kim, Joohon Sung, and Jung Eun Lee. 2020. "Interactions of Habitual Coffee Consumption by Genetic Polymorphisms with the Risk of Prediabetes and Type 2 Diabetes Combined" Nutrients 12, no. 8: 2228. https://doi.org/10.3390/nu12082228
APA StyleJin, T., Youn, J., Kim, A. N., Kang, M., Kim, K., Sung, J., & Lee, J. E. (2020). Interactions of Habitual Coffee Consumption by Genetic Polymorphisms with the Risk of Prediabetes and Type 2 Diabetes Combined. Nutrients, 12(8), 2228. https://doi.org/10.3390/nu12082228