Fish Consumption and Coronary Heart Disease: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Inclusion Criteria
2.2. Data Extraction and Quality Assessment
2.3. Statistical Analysis
3. Results
3.1. Literature Search and Study Characteristics
3.2. Fish Intake and CHD Incidence
3.3. Fish Intake and CHD Mortality
3.4. Subgroup Analysis and Meta-Regression
3.5. Dose–Response Relationship
3.6. Sensitivity Analysis and Publication Bias
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- GBD 2017 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1859–1922. [Google Scholar]
- GBD 2017 DALYs and HALE Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar]
- Chow, C.; Cardona, M.; Raju, P.K.; Iyengar, S.; Sukumar, A.; Raju, R.; Colman, S.; Madhav, P.; Raju, R.; Reddy, K.S.; et al. Cardiovascular disease and risk factors among 345 adults in rural India—The Andhra Pradesh Rural Health Initiative. Int. J. Cardiol. 2007, 116, 180–185. [Google Scholar] [CrossRef]
- Gupta, R.; Mohan, I.; Narula, J. Trends in coronary heart disease epidemiology in India. Ann. Glob. Health 2016, 82, 307–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kromhout, D.; Menotti, A.; Kesteloot, H.; Sans, S. Prevention of coronary heart disease by diet and lifestyle. Circulation 2002, 105, 893–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K. Fish, long-chain omega-3 polyunsaturated fatty acids and prevention of cardiovascular disease—Eat fish or take fish oil supplement? Prog. Cardiovasc. Dis. 2009, 52, 95–114. [Google Scholar] [CrossRef]
- Jayedi, A.; Zargar, M.S.; Shab-Bidar, S. Fish consumption and risk of myocardial infarction: A systematic review and dose-response meta-analysis suggests a regional difference. Nutr. Res. 2018, 62, 1–12. [Google Scholar] [CrossRef]
- Yang, B.; Shi, M.-Q.; Li, Z.-H.; Yang, J.-J.; Li, D. Fish, Long-Chain n-3 PUFA and incidence of elevated blood pressure: A meta-analysis of prospective cohort studies. Nutrients 2016, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Tang, H.; Yang, X.; Luo, X.; Wang, X.; Shao, C.; He, J. Fish consumption and stroke risk: A meta-analysis of prospective cohort studies. J. Stroke Cerebrovasc. Dis. 2019, 28, 604–611. [Google Scholar] [CrossRef]
- Kromann, N.; Green, A. Epidemiological studies in the Upernavik district, Greenland. Incidence of some chronic diseases 1950–1974. Acta Medica Scand. 1980, 208, 401–406. [Google Scholar] [CrossRef]
- Newman, W.; Middaugh, J.; Propst, M.; Rogers, D.; Newman, P. Atherosclerosis in Alaska natives and non-natives. Lancet 1993, 341, 1056–1057. [Google Scholar] [CrossRef]
- Ajith, T.A.; Jayakumar, T.G. Omega-3 fatty acids in coronary heart disease: Recent updates and future perspectives. Clin. Exp. Pharmacol. Physiol. 2018, 46, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.-F.; Marklund, M.; Wu, J.H.Y. Fish consumption for cardiovascular health: Benefits from long-chain omega-3 fatty acids versus potential harms due to mercury. Heart 2019, 105, 1384–1385. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.-Y.; Qin, L.-Q.; Zhang, Z.; Zhao, Y.; Wang, J.; Arigoni, F.; Zhang, W. Effect of oral l-arginine supplementation on blood pressure: A meta-analysis of randomized, double-blind, placebo-controlled trials. Am. Hear. J. 2011, 162, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Sun, L.; Yang, T.; Sun, K.; Chen, J.; Hui, R. Increase in fasting vascular endothelial function after short-term oral l-arginine is effective when baseline flow-mediated dilation is low: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2008, 89, 77–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnatz, P.F.; Jiang, X.; Aragaki, A.K.; Nudy, M.; O’Sullivan, D.M.; Williams, M.; LeBlanc, E.S.; Martin, L.W.; Manson, J.E.; Shikany, J.M.; et al. Effects of Calcium, Vitamin D, and Hormone therapy on cardiovascular disease risk factors in the women’s health initiative: A randomized controlled trial. Obstet. Gynecol. 2017, 129, 121–129. [Google Scholar] [CrossRef]
- Huang, T.; Li, K.; Asimi, S.; Chen, Q.; Li, D. Effect of vitamin B-12 and n-3 polyunsaturated fatty acids on plasma homocysteine, ferritin, C-reaction protein, and other cardiovascular risk factors: A randomized controlled trial. Asia Pac. J. Clin. Nutr. 2015, 24, 403–411. [Google Scholar]
- Whelton, S.P.; He, J.; Whelton, P.K.; Muntner, P. Meta-Analysis of observational studies on fish intake and coronary heart disease. Am. J. Cardiol. 2004, 93, 1119–1123. [Google Scholar] [CrossRef]
- He, K.; Song, Y.; Daviglus, M. Accumulated-evidence on fish consumption and coronary heart disease mortality. A meta-analysis of cohort studies. ACC Curr. J. Rev. 2004, 13, 21–22. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, T.; Yu, Y.; Hu, X.; Yang, B.; Li, D. Fish consumption and CHD mortality: An updated meta-analysis of seventeen cohort studies. Public Heal. Nutr. 2011, 15, 725–737. [Google Scholar] [CrossRef] [Green Version]
- Bechthold, A.; Boeing, H.; Schwedhelm, C.; Hoffmann, G.; Knüppel, S.; Iqbal, K.; De Henauw, S.; Michels, N.; Devleesschauwer, B.; Schlesinger, S.; et al. Food groups and risk of coronary heart disease, stroke and heart failure: A systematic review and dose-response meta-analysis of prospective studies. Crit. Rev. Food Sci. Nutr. 2017, 59, 1071–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Q.; Guo, P.; Zhong, G.C.; Zhong, S.L. Transforming the reference group of discrete correlated datain original study of dose response meta analysis. Evid. Basedmed. 2016, 16, 60–64. [Google Scholar]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Harre, F.E.; Lee, K.L.; Pollock, B.G. Regression models in clinical studies: Determining relationships between predictors and response. J. Natl. Cancer Inst. 1988, 80, 1198–1202. [Google Scholar] [CrossRef]
- Orsini, N.; Li, R.; Wolk, A.; Khudyakov, P.; Spiegelman, D. Meta-analysis for linear and nonlinear dose-response relations: Examples, an evaluation of approximations, and software. Am. J. Epidemiol. 2011, 175, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Greenland, S.; Longnecker, M.P. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am. J. Epidemiol. 1992, 135, 1301–1309. [Google Scholar] [CrossRef]
- Orsini, N.; Bellocco, R.; Greenland, S. Generalized least squares for trend estimation of summarized dose–response data. Stata Journal: Promot. Commun. Stat. Stata 2006, 6, 40–57. [Google Scholar] [CrossRef] [Green Version]
- Orsini, N.; Greenland, S. A Procedure to tabulate and plot results after flexible modeling of a quantitative covariate. Stata J. Promot. Commun. Stat. Stata 2011, 11, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oomen, C.M.; Feskens, E.; Räsänen, L.; Fidanza, F.; Nissinen, A.M.; Menotti, A.; Kok, F.J.; Kromhout, D. Fish consumption and coronary heart disease mortality in Finland, Italy, and the Netherlands. Am. J. Epidemiol. 2000, 151, 999–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, G.E.; Sabaté, J.; Beeson, W.L.; Strahan, T.M. A possible protective effect of nut consumption on risk of coronary heart disease. Arch. Intern. Med. 1992, 152, 1416–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ascherio, A.; Rimm, E.B.; Stampfer, M.J.; Giovannucci, E.L.; Willett, W.C. Dietary intake of marine n-3 fatty acids, fish intake, and the risk of coronary disease among men. N. Engl. J. Med. 1995, 332, 977–983. [Google Scholar] [CrossRef]
- Albert, C.M.; Hennekens, C.H.; O’Donnell, C.J.; Ajani, U.A.; Carey, V.J.; Willett, W.C.; Ruskin, J.N.; Manson, J.E. Fish consumption and risk of sudden cardiac death. JAMA 1998, 279, 23–28. [Google Scholar] [CrossRef]
- Gillum, R.F.; Mussolino, M.; Madans, J.H. The relation between fish consumption, death from all causes, and incidence of coronary heart disease. the NHANES I Epidemiologic Follow-up Study. J. Clin. Epidemiol. 2000, 53, 237–244. [Google Scholar] [CrossRef]
- Hu, F.B.; Bronner, L.; Willett, W.C.; Stampfer, M.J.; Rexrode, K.M.; Albert, C.M.; Hunter, D.; Manson, J.E. Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. JAMA 2002, 287, 1815–1821. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D.; Lemaitre, R.; Kuller, L. Cardiac benefits of fish consumption may depend on the type of fish meal consumed. The Cardiovascular Health Study. ACC Curr. J. Rev. 2003, 12, 29–30. [Google Scholar] [CrossRef]
- Osler, M. No inverse association between fish consumption and risk of death from all-causes, and incidence of coronary heart disease in middle-aged, Danish adults. J. Clin. Epidemiol. 2003, 56, 274–279. [Google Scholar] [CrossRef]
- Iso, H.; Kobayashi, M.; Ishihara, J.; Sasaki, S.; Okada, K.; Kita, Y.; Kokubo, Y.; Tsugane, S. Intake of fish and n3 fatty acids and risk of coronary heart disease among Japanese. Circulation 2006, 113, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Buckland, G.; González, C.A.; Agudo, A.; Vilardell, M.; Berenguer, A.; Amiano, P.; Ardanaz, E.; Arriola, L.; Barricarte, A.; Basterretxea, M.; et al. Adherence to the Mediterranean diet and risk of coronary heart disease in the Spanish EPIC Cohort Study. Am. J. Epidemiol. 2009, 170, 1518–1529. [Google Scholar] [CrossRef]
- De Goede, J.; Geleijnse, J.M.; Boer, J.M.A.; Kromhout, D.; Verschuren, W.M.M. Marine (n-3) fatty acids, fish consumption, and the 10-year risk of fatal and nonfatal coronary heart disease in a large population of dutch adults with low fish intake. J. Nutr. 2010, 140, 1023–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernstein, A.M.; Sun, Q.; Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Willett, W.C. Major dietary protein sources and risk of coronary heart disease in women. Circulation 2010, 122, 876–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjerregaard, L.J.; Joensen, A.M.; Dethlefsen, C.; Jensen, M.K.; Johnsen, S.P.; Tjønneland, A.; Rasmussen, L.H.; Overvad, K.; Schmidt, E.B. Fish intake and acute coronary syndrome. Eur. Hear. J. 2009, 31, 29–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wennberg, M.; Bergdahl, I.A.; Hallmans, G.; Norberg, M.; Lundh, T.; Skerfving, S.; Strömberg, U.; Vessby, B.; Jansson, J.-H. Fish consumption and myocardial infarction: A second prospective biomarker study from northern Sweden. Am. J. Clin. Nutr. 2010, 93, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Gonzalez, M.A.; García-López, M.; Bes-Rastrollo, M.; Toledo, E.; Martinez, J.A.; Delgado-Rodríguez, M.; Vázquez, Z.; Benito, S.; Beunza, J. Mediterranean diet and the incidence of cardiovascular disease: A Spanish cohort. Nutr. Metab. Cardiovasc. Dis. 2010, 21, 237–244. [Google Scholar] [CrossRef]
- Lajous, M.; Willett, W.C.; Robins, J.; Young, J.G.; Rimm, E.; Mozaffarian, D.; Hernández-Díaz, S. Changes in fish consumption in midlife and the risk of coronary heart disease in men and women. Am. J. Epidemiol. 2013, 178, 382–391. [Google Scholar] [CrossRef] [Green Version]
- Kühn, T.; Teucher, B.; Kaaks, R.; Boeing, H.; Weikert, C.; Buijsse, B. Fish consumption and the risk of myocardial infarction and stroke in the German arm of the European Prospective Investigation into Cancer and Nutrition (EPIC-Germany). Br. J. Nutr. 2013, 110, 1118–1125. [Google Scholar] [CrossRef] [Green Version]
- Haring, B.; Gronroos, N.; Nettleton, J.A.; Von Ballmoos, M.C.W.; Selvin, E.; Alonso, A. Dietary Protein Intake and Coronary Heart Disease in a Large Community Based Cohort: Results from the Atherosclerosis Risk in Communities (ARIC) Study. PLoS ONE 2014, 9, e109552. [Google Scholar] [CrossRef] [Green Version]
- Nahab, F.; Pearson, K.; Frankel, M.R.; Ard, J.; Safford, M.M.; Kleindorfer, D.; Howard, V.J.; Judd, S. Dietary fried fish intake increases risk of CVD: The reasons for geographic and racial differences in stroke (REGARDS) study. Public Health Nutr. 2016, 19, 3327–3336. [Google Scholar] [CrossRef] [Green Version]
- Gammelmark, A.; Nielsen, M.S.; Bork, C.S.; Lundbye-Christensen, S.; Tjønneland, A.; Overvad, K.; Schmidt, E.B. Association of fish consumption and dietary intake of marine n-3 PUFA with myocardial infarction in a prospective Danish cohort study. Br. J. Nutr. 2016, 116, 167–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonaccio, M.; Ruggiero, E.; Di Castelnuovo, A.; Costanzo, S.; Persichillo, M.; De Curtis, A.; Cerletti, C.; Donati, M.; De Gaetano, G.; Iacoviello, L.; et al. Fish intake is associated with lower cardiovascular risk in a Mediterranean population: Prospective results from the Moli-sani study. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Hengeveld, L.M.; Praagman, J.; Beulens, J.W.J.; Brouwer, I.A.; Van Der Schouw, Y.T.; Sluijs, I. Fish consumption and risk of stroke, coronary heart disease, and cardiovascular mortality in a Dutch population with low fish intake. Eur. J. Clin. Nutr. 2018, 72, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.E.; Cho, K.; Nguyen, X.-M.T.; Vassy, J.L.; Ho, Y.-L.; Quaden, R.M.; Gagnon, D.R.; Wilson, P.W.; Gaziano, J.M.; Djoussé, L.; et al. Omega-3 supplement use, fish intake, and risk of non-fatal coronary artery disease and ischemic stroke in the million veteran program. Clin. Nutr. 2019, 39, 574–579. [Google Scholar] [CrossRef]
- Kromhout, D.; Bosschieter, E.B.; Coulander, C.D.L. The Inverse Relation between Fish Consumption and 20-Year Mortality from Coronary Heart Disease. N. Engl. J. Med. 1985, 312, 1205–1209. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, B.L.; Sharp, D.S.; Abbott, R.D.; Burchfiel, C.M.; Masaki, K.; Chyou, P.-H.; Huang, B.; Yano, K.; Curb, J.D. Fish Intake May Limit the Increase in Risk of Coronary Heart Disease Morbidity and Mortality Among Heavy Smokers. Circulation 1996, 94, 952–956. [Google Scholar] [CrossRef]
- Daviglus, M.L.; Stamler, J.; Orencia, A.J.; Dyer, A.R.; Liu, K.; Greenland, P.; Walsh, M.K.; Morris, D.; Shekelle, R.B. Fish Consumption and the 30-Year Risk of Fatal Myocardial Infarction. N. Engl. J. Med. 1997, 336, 1046–1053. [Google Scholar] [CrossRef]
- I Mann, J.; Appleby, P.N.; Key, T.J.; Thorogood, M. Dietary determinants of ischaemic heart disease in health conscious individuals. Heart 1997, 78, 450–455. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Ross, R.K.; Gao, Y.-T.; Yu, M.C. Fish and shellfish consumption in relation to death from myocardial infarction among men in Shanghai, China. Am. J. Epidemiol. 2001, 154, 809–816. [Google Scholar] [CrossRef] [Green Version]
- Folsom, A.R. Fish Intake, Marine Omega-3 fatty acids, and mortality in a cohort of postmenopausal women. Am. J. Epidemiol. 2004, 160, 1005–1010. [Google Scholar] [CrossRef]
- Nakamura, Y.; Ueshima, H.; Okamura, T.; Kadowaki, T.; Hayakawa, T.; Kita, Y.; Tamaki, S.; Okayama, A. Association between fish consumption and all-cause and cause-specific mortality in Japan: NIPPON DATA80, 1980–1989. Am. J. Med. 2005, 118, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Järvinen, R.; Knekt, P.; Rissanen, H.; Reunanen, A. Intake of fish and long-chain n−3 fatty acids and the risk of coronary heart mortality in men and women. Br. J. Nutr. 2006, 95, 824–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamagishi, K.; Iso, H.; Date, C.; Fukui, M.; Wakai, K.; Kikuchi, S.; Inaba, Y.; Tanabe, N.; Tamakoshi, A. Japan collaborative cohort study for evaluation of cancer risk study g. fish, omega-3 polyunsaturated fatty acids, and mortality from cardiovascular diseases in a nationwide community-based cohort of Japanese men and women the JACC (Japan Collaborative Cohort Study for Evaluation of Cancer Risk) Study. J. Am. Coll. Cardiol. 2008, 52, 988–996. [Google Scholar]
- Kaushik, S.; Wang, J.J.; Flood, V.; Liew, G.; Smith, W.; Mitchell, P. Frequency of Fish Consumption, Retinal Microvascular Signs and Vascular Mortality. Microcirculation 2008, 15, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Tomasallo, C.; Anderson, H.; Haughwout, M.; Imm, P.; Knobeloch, L. Mortality among frequent consumers of Great Lakes sport fish. Environ. Res. 2010, 110, 62–69. [Google Scholar] [CrossRef]
- Takata, Y.; Zhang, X.; Li, H.; Gao, Y.-T.; Yang, G.; Gao, J.; Cai, H.; Xiang, Y.-B.; Zheng, W.; Shu, X.-O. Fish intake and risks of total and cause-specific mortality in 2 population-based cohort studies of 134,296 men and women. Am. J. Epidemiol. 2013, 178, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Engeset, D.; Braaten, T.; Teucher, B.; Kühn, T.; Bueno-de-Mesquita, H.B.; Leenders, M.; Agudo, A.; Bergmann, M.M.; Valanou, E.; Naska, A.; et al. Fish consumption and mortality in the European Prospective Investigation into cancer and nutrition cohort. Eur. J. Epidemiol. 2014, 30, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Farvid, M.S.; Malekshah, A.F.; Pourshams, A.; Poustchi, H.; Sepanlou, S.G.; Sharafkhah, M.; Khoshnia, M.; Farvid, M.; Abnet, C.C.; Kamangar, F.; et al. Dietary protein sources and all-cause and cause-specific mortality: The Golestan Cohort Study in Iran. Am. J. Prev. Med. 2017, 52, 237–248. [Google Scholar] [CrossRef] [Green Version]
- Wallin, A.; Orsini, N.; Forouhi, N.G.; Wolk, A. Fish consumption in relation to myocardial infarction, stroke and mortality among women and men with type 2 diabetes: A prospective cohort study. Clin. Nutr. 2017, 37, 590–596. [Google Scholar] [CrossRef] [Green Version]
- Holmberg, S.; Thelin, A.; Stiernström, E.-L. Food Choices and Coronary Heart Disease: A Population Based Cohort Study of Rural Swedish Men with 12 Years of Follow-up. Int. J. Environ. Res. Public Health 2009, 6, 2626–2638. [Google Scholar] [CrossRef] [Green Version]
- Salonen, J.T.; Seppänen, K.; Nyyssönen, K.; Korpela, H.; Kauhanen, J.; Kantola, M.; Tuomilehto, J.; Esterbauer, H.; Tatzber, F.; Salonen, R. Intake of Mercury From Fish, Lipid Peroxidation, and the Risk of Myocardial Infarction and Coronary, Cardiovascular, and Any Death in Eastern Finnish Men. Circulation 1995, 91, 645–655. [Google Scholar] [CrossRef]
- Tognon, G.; Lissner, L.; Sæbye, D.; Walker, K.Z.; Heitmann, B.L. The Mediterranean diet in relation to mortality and CVD: A Danish cohort study. Br. J. Nutr. 2013, 111, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dilis, V.; Katsoulis, M.; Lagiou, P.; Trichopoulos, D.; Naska, A.; Trichopoulou, A. Mediterranean diet and CHD: The Greek European Prospective Investigation into Cancer and Nutrition cohort. Br. J. Nutr. 2012, 108, 699–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuyama, S.; Sawada, N.; Tomata, Y.; Zhang, S.; Goto, A.; Yamaji, T.; Iwasaki, M.; Inoue, M.; Tsuji, I.; Tsugane, S.; et al. Association between adherence to the Japanese diet and all-cause and cause-specific mortality: The Japan Public Health Center-based Prospective Study. Eur. J. Nutr. 2020, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Guo, Y.; Bennett, D.A.; Bragg, F.; Bian, Z.; Chadni, M.; Yu, C.; Chen, Y.; Tan, Y.; Millwood, I.Y.; et al. Red meat, poultry and fish consumption and risk of diabetes: A 9 year prospective cohort study of the China Kadoorie Biobank. Diabetologia 2020, 63, 767–779. [Google Scholar] [CrossRef] [Green Version]
- Tong, T.Y.N.; Appleby, P.N.; Key, T.J.; Dahm, C.C.; Overvad, K.; Olsen, A.; Tjønneland, A.; Katzke, V.; Kühn, T.; Boeing, H.; et al. The associations of major foods and fibre with risks of ischaemic and haemorrhagic stroke: A prospective study of 418 329 participants in the EPIC cohort across nine European countries. Eur. Heart J. 2020, 41, 2632–2640. [Google Scholar] [CrossRef]
- Barrett-Connor, E. Sex differences in coronary heart disease. Why are women so superior? The 1995 Ancel Keys Lecture. Circulation 1997, 95, 252–264. [Google Scholar] [CrossRef]
- Zeller, T.; Schnabel, R.B.; Appelbaum, S.; Ojeda, F.; Berisha, F.; Schulte-Steinberg, B.; Brueckmann, B.E.; Kuulasmaa, K.; Jousilahti, P.; Blankenberg, S.; et al. Low testosterone levels are predictive for incident atrial fibrillation and ischaemic stroke in men, but protective in women. Results from the FINRISK study. Eur. J. Prev. Cardiol. 2018, 25, 1133–1139. [Google Scholar] [CrossRef]
- Kloner, R.A.; Carson, C., III; Dobs, A.; Kopecky, S.; Mohler, E.R.M., III. Testosterone and Cardiovascular Disease. J. Am. Coll. Cardiol. 2016, 67, 545–557. [Google Scholar] [CrossRef]
- Basaria, S.; Coviello, A.D.; Travison, T.G.; Storer, T.W.; Farwell, W.R.; Jette, A.M.; Eder, R.; Tennstedt, S.; Ulloor, J.; Zhang, A.; et al. Adverse events associated with testosterone administration. N. Engl. J. Med. 2010, 363, 109–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celis-Morales, C.A.; Welsh, P.; Lyall, D.M.; Steell, L.; Petermann, F.; Anderson, J.; Iliodromiti, S.; Sillars, A.; Graham, N.; Mackay, D.F.; et al. Associations of grip strength with cardiovascular, respiratory, and cancer outcomes and all cause mortality: Prospective cohort study of half a million UK Biobank participants. BMJ 2018, 361, 1651. [Google Scholar]
- Mozaffarian, D.; Prineas, R.J.; Stein, P.K.; Siscovick, D.S. Dietary fish and n-3 fatty acid intake and cardiac electrocardiographic parameters in humans. J. Am. Coll. Cardiol. 2006, 48, 478–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffarian, D.; Stein, P.K.; Prineas, R.J.; Siscovick, D.S. Dietary fish and ω-3 fatty acid consumption and heart rate variability in US adults. Circulation 2008, 117, 1130–1137. [Google Scholar] [CrossRef]
- De Mello, V.D.; Schwab, U.; Kolehmainen, M.; Koenig, W.; Siloaho, M.; Poutanen, K.; Mykkanen, H.; Uusitupa, M. A diet high in fatty fish, bilberries and wholegrain products improves markers of endothelial function and inflammation in individuals with impaired glucose metabolism in a randomised controlled trial: The Sysdimet study. Diabetologia 2011, 54, 2755–2767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rangel-Huerta, O.D.; Aguilera, C.; Mesa, M.D.; Gil, A. Omega-3 long-chain polyunsaturated fatty acids supplementation on inflammatory biomakers: A systematic review of randomised clinical trials. Br. J. Nutr. 2012, 107, S159–S170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- London, B.; Albert, C.; Anderson, M.E.; Giles, W.R.; Van Wagoner, D.R.; Balk, E.; Billman, G.E.; Chung, M.; Lands, W.; Leaf, A.; et al. Omega-3 fatty acids and cardiac arrhythmias: Prior studies and recommendations for future research: A report from the National Heart, Lung, and Blood Institute and Office of Dietary Supplements Omega-3 Fatty acids and their role in cardiac arrhythmogenesis workshop. Circulation 2007, 116, e320–e335. [Google Scholar] [PubMed] [Green Version]
- McLennan, P.L.; Abeywardena, M.Y. membrane basis for fish oil effects on the heart: Linking natural hibernators to prevention of human sudden cardiac death. J. Membr. Boil. 2005, 206, 85–102. [Google Scholar] [CrossRef]
- Chiuve, S.E.; Rimm, E.B.; Sandhu, R.K.; Bernstein, A.M.; Rexrode, K.M.; Manson, J.E.; Willett, W.C.; Albert, C.M. Dietary fat quality and risk of sudden cardiac death in women. Am. J. Clin. Nutr. 2012, 96, 498–507. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, B.P.; Mahanty, A.; Ganguly, S.; Mitra, T.; Karunakaran, D.; Anandan, R. Nutritional composition of food fishes and their importance in providing food and nutritional security. Food Chem. 2017, 293, 561–570. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, T.C.; Zhang, A.; Persons, K.; Kohn, N.; Berkowitz, R.; Martinello, S.; Holick, M.F. An evaluation of the vitamin D3 content in fish: Is the vitamin D content adequate to satisfy the dietary requirement for vitamin D? J. Steroid Biochem. Mol. Boil. 2007, 103, 642–644. [Google Scholar] [CrossRef] [Green Version]
- Guasch-Ferre, M.; Babio, N.; Martinez-Gonzalez, M.A.; Corella, D.; Ros, E.; Martin-Pelaez, S.; Estruch, R.; Aros, F.; Gomez-Gracia, E.; Fiol, M.; et al. Dietary fat intake and risk of cardiovascular disease and all-cause mortality in a population at high risk of cardiovascular disease. Am. J. Clin. Nutr. 2015, 102, 1563–1573. [Google Scholar] [PubMed] [Green Version]
- Manson, J.E.; Bassuk, S.S.; Cook, N.R.; Lee, I.M.; Mora, S.; Albert, C.M.; Buring, J.E.; VITAL Research Group. Vitamin D, Marine n-3 fatty acids, and primary prevention of cardiovascular disease current evidence. Circ. Res. 2020, 126, 112–128. [Google Scholar] [CrossRef] [PubMed]
- Ju, W.; Li, X.; Li, Z.; Wu, G.; Fu, X.; Yang, X.; Zhang, X.; Gao, X. The effect of selenium supplementation on coronary heart disease: A systematic review and meta-analysis of randomized controlled trials. J. Trace Elements Med. Boil. 2017, 44, 8–16. [Google Scholar] [CrossRef] [PubMed]
Study Source (Year), Country | Age (Gender) | Subjects (Cases) | Follow-Up Period | Fish Intake Category | Exposure Measure | Outcome Measure | Covariates Adjusted |
---|---|---|---|---|---|---|---|
Fraser [33] (1992), USA | ≥25 (Both) | 26,743 (134) | 6 y | Never; <1/wk; ≥1/wk | FFQ | Obtained from medical records | Age, sex, smoking, exercise, relative weight, and high blood pressure |
Ascherio [34] (1995), USA | 40–75 (M) | 44,895 (547) | 6 y | <1/mo; 1–3/mo; 1/wk; 2–3/wk; 4–5/wk; ≥6/wk | FFQ | Based on medical records and autopsy report | Age, body mass index, smoking habits, alcohol consumption, history of hypertension, history of diabetes, history of hypercholesterolemia, family history of myocardial infarction before 60 y of age and profession |
Albert [35] (1998), USA | 40–84 (M) | 20,551 (308) | 11 y | 1/mo; 1–3/mo; 1–2/wk; 2–5/wk; ≥5/wk | FFQ | Obtained from hospital medical records | Age, aspirin, -carotene treatment assignment, evidence of cardiovascular disease before 12-mo questionnaire, body mass index, smoking status, history of diabetes, history of hypertension, history of hypercholesterolemia, alcohol consumption, vigorous exercise, and vitamin E, vitamin C, and multivitamin use |
Gillum [36] (2000), USA | 25–74 (Both) | 8825 (2007) | 18.8 y | Never; <1/wk; 1/wk; >1/wk | FFQ | ICD9 | Age, smoking, history of diabetes, education, high school graduate, systolic blood pressure, serum cholesterol concentration, body mass index, alcohol intake, and physical activity. |
Hu [37] (2002), USA | 34–50 (F) | 84,688 (1029) | 16 y | <1/mo; 1–3/mo; 1/wk; 2–4/wk; ≥5/wk | FFQ | Based on medical records, death certificate and autopsy report | Age, time periods, smoking status, body mass index, alcohol intake, menopausal status and postmenopausal hormone use, vigorous to moderate activity, No. of times aspirin was used per week, multivitamin use, vitamin E supplement use, and history of hypertension, hypercholesterolemia, diabetes, intake of trans-fat, the ratio of polyunsaturated fat to saturated fat, and dietary fiber |
Mozaffarian [38] (2003), USA | ≥66 (Both) | 3910 (363) | 9.3 y | ≤1/mo; 1–3/mo; 1/wk; 2/wk; ≥3/wk | FFQ | Based on medical records and death certificate | Age, gender, education, diabetes, smoking, body mass index, systolic blood pressure, LDL cholesterol, HDL cholesterol, triglycerides, C-reactive protein, saturate fat, alcohol, beef/pork, fruit and vegetables |
Osler [39] (2003), Denmark | 30–70 (Both) | 8497 (491) | 11 y | ≤1/mo; 2/mo; 1/wk; ≥2/wk | Self-administered questionnaire | ICD-8 (codes 410–414), ICD-10 (codes I20–I25) | Familial predisposition, smoking status, physical activity, alcohol, educational status, healthy diet score, total cholesterol, and body mass index |
Iso [40] (2006), Japan | 40–59 (Both) | 41,578 (196) | 11 y | Median intake: 23 g/d; 51 g/d; 78 g/d; 114 g/d; 180 g/d | FFQ | Self-reported (letter, telephone), medical records | Age, sex, cigarette smoking, alcohol intake, body mass index, histories of hypertension and diabetes, medication use for hypercholesterolemia, education level, sports at leisure time, quintiles of dietary intake of fruits, vegetables, saturated fat, monounsaturated fat, n6 polyunsaturated fat, cholesterol, and total energy |
Buckland [41] (2009), Spain | 29–69 (Both) | 40,757 (606) | 10.4 y | g/1000 kcal/d: 0–16.9; >16.9–31.0; >31.0–266.7 | Self-reported questionnaires | Obtained from hospital medical records | Center and age and were adjusted for education, physical activity, body mass index, smoking status, diabetes, hypertension, and hyperlipidemia status, and total calorie intake. |
de Goede [42] (2010), The Netherlands | 20–65 (Both) | 21,342 (252) | 11.3 y | <3.3 g/d; 3.3–7.3 g/d; 7.4–14.0 g/d; >14 g/d | FFQ | ICD-9 (codes 410) | Age, gender, BMI, total energy intake, ethanol intake, cigarette smoking, social economic status, vitamin or mineral supplement use, use of drugs for hypertension or hypercholesterolaemia, |
Bernstein [43] (2010), USA | 30–55 (F) | 84,136 (3162) | 26 y | Median servings per day: 0.07; 0.11; 0.14; 0.25; 0.43 | FFQ | obtained from the medical records | Age, time period, total energy, cereal fiber, alcohol, trans fat, body mass index, cigarette smoking, menopausal status, parental history of early myocardial infarction, multivitamin use, vitamin E supplement use, aspirin use at least once per week, physical exercise |
Bjerregaard [44] (2010), Denmark | 50–64 (Both) | 54,226 (1122) | 7.6 y | Male: 0–24 g/d; 25–35 g/d; 36–47 g/d; 48–64 g/d; >64 g/d; Female: 0–22 g/d; 23–31 g/d; 32–41 g/d; 42–54 g/d; >55 g/d | FFQ | (ICD-8:410.00–410.99 and 427.27; ICD-10: I20.0, I21.0–I21.9, and I46.0–I46.9) | Education, smoking, alcohol intake, body mass index, history of diabetes mellitus, systolic blood pressure, serum cholesterol, physical activity, dietary intake of fruits and vegetables, total energy intake, dietary intake of saturated fat, monounsaturated fat, and polyunsaturated fat |
Wennberg [45] (2011), Sweden | 30–77 (Both) | 930 (431) | 12 y | Meals/wk: <1/mo; 1/mo; <1/wk; 1–2/wk; >2/wk | FFQ | Based on medical records | Apolipoprotein B/apolipoprotein A-I, smoking, SBP, diabetes, educational level, consumption of fruit and vegetables |
Martínez-González [46] (2011), Spain | Mean age: 38 (Both) | 13,609 (68) | 4.9 y | Male: <87 g/d; ≥87 g/dFemale: <86 g/d; ≥86 g/d | FFQ | Based on medical records | Age, sex, family history of CHD, total energy intake, physical activity, smoking, BMI, diabetes at baseline, use of aspirin, history of hypertension and history of hypercholesterolemia |
Lajous [47] (2013), USA | 40–75(M) 30–55(F) | 79,569 (3756) | 18 y(M) 22 y(F) | 0 servings/wk; ≥1 servings/wk | FFQ | Based on medical records | Age, parental history of myocardial infarction, oral contraceptive use, body mass index, smoking, menopausal status, hormone replacement therapy, physical activity, aspirin use, vitamin E supplement use, multivitamin supplement use, high blood pressure, high cholesterol, diabetes, angina or coronary artery bypass grafting, stroke, and intakes of calories, trans-fats, alcohol, cereal fiber, red meat, and fish |
Kuhn [48] (2013), Germany | 35–65 (Both) | 48,315 (488) | 8.1 y | <7.5 g/d; 7.5–14.5 g/d; 14.5–21.5 g/d; 21.5–31.1 g/d; >31.1 g/d | FFQ | Medical verification of self-reports of incident disease from questionnaires | Age, gender, energy intake, alcohol intake, BMI, waist circumference, physical activity, educational attainment, smoking and prevalent diabetes mellitus. |
Haring [49] (2014), USA | 45–64 (Both) | 12,066 (1147) | 22 y | Servings/d: 0; 0.1; 0.2; 0.3; 0.6 | FFQ | Information from study visits, yearly telephone follow-up calls, review of hospital discharge lists and medical charts, death certificates, | Age, sex, race, study center, total energy intake, smoking, education, systolic blood pressure, use of antihypertensive medication, HDLc, total cholesterol, use of lipid lowering medication, body mass index, waist-to-hip ratio, alcohol intake, sports-related physical activity, leisure-related physical activity, carbohydrate intake, fiber intake, and magnesium intake. |
Nahab [50] (2016), USA | ≥40 (Both) | 16,479 (440) | 5.1 y | Servings: <1/mo; 1-3/mo; 1–2/wk; ≥2/wk | FFQ | Based on medical records | Age, race, region, sex, income, education, exercise, smoking status, Mediterranean diet score, regular aspirin use and total energy intake, current use of hypertensive medication, diabetes status, SBP, BMI, dyslipidaemia |
Gammelmark [51] (2016), men, Danish | 50–64 (M) | 25,913 (2136) | 17 y | 0–8 g/d; >8–13 g/d; >13–18 g/d; >18–28 g/d; >28 g/d | FFQ | ICD8 and ICD10 | Smoking, BMI, waist circumference, physical activity, alcohol intake, educational level, history of diabetes mellitus, hypercholesterolaemia, hypertension, total energy intake, intake of fruits and vegetables and intake of nuts |
Gammelmark [51] (2016), women, Danish | 50–64 (F) | 28,991 (892) | 17 y | 0–6 g/d; >6–10 g/d; >10–15 g/d; >15–23 g/d; >23 g/d | FFQ | ICD8 and ICD10 | Smoking, BMI, waist circumference, physical activity, alcohol intake, educational level, history of diabetes mellitus, hypercholesterolaemia, hypertension, total energy intake, intake of fruits and vegetables and intake of nuts |
Bonaccio [52] (2017), Italy | ≥35 (Both) | 20,969 (287) | 4.3 y | times/wk: 0–1.99; 2–3.99; ≥4 | FFQ | ICD9 | Age, sex, energy intake, education, smoking, drugs for diabetes, drugs for hypertension, drugs for lipids, MDS without fish, blood glucose, LDL-cholesterol and low-grade inflammation |
Hengeveld [53] (2018), The Netherlands | 20–70 (Both) | 34,033 (2134) | 18 y | portion/wk: 0; <1; ≥1 | FFQ | ICD10(I20–I25, I46, and R96) | Age, sex, physical activity, smoking status, education level, BMI, alcohol intake, total energy intake, intakes of saturated fatty acids, trans fatty acids, fruit, vegetables, and dietary fibre |
Ward [54] (2019), USA | Mean age:66 (Both) | 197,761 (6265) | 6 y | <1/mo; 1–3/mo; 1/wk; 2–4/wk; ≥5/wk | FFQ | ICD-9 (codes 410) | Age, sex, race, BMI, education, smoking status, alcohol intake, exercise |
Study Source (Year), Country | Age (Gender) | Subjects (Cases) | Follow-Up Period | Fish Intake Category | Exposure Measure | Outcome Measure | Covariates Adjusted |
---|---|---|---|---|---|---|---|
Kromhout [55] (1985), The Netherlands | 40–59 (M) | 852 (78) | 20 y | 0 g/d; 1–14 g/d; 15–29 g/d; 30–44 g/d; ≥45 g/d | Interview | ICD-8 (codes 410–413) | Age, systolic blood pressure, serum total cholesterol, cigarette smoking, subscapular skinfold thickness, physical activity, energy intake, dietary cholesterol, prescribed diet and occupation |
Ascherio [34] (1995), USA | 40–75 (M) | 44,895 (264) | 6 y | <1/mo; 1–3/mo; 1/wk; 2–3/wk; 4–5/wk; ≥6/wk | FFQ | Based on medical records and autopsy report, ICD codes are not available | Age, body mass index, smoking habits, alcohol consumption, history of hypertension, history of diabetes, history of hypercholesterolemia, family history of myocardial infarction before 60 y of age and profession |
Rodriguez [56] (1996), USA | 45–68 (M) | 534 (-) | 23 y | <2/wk; >2/wk | Interview | Based on death certificates, supplemented with the State Department of Health | Age, years lived in Japan, total calories/d, alcohol intake, physical activity, years smoked, hypertension, and serum cholesterol, glucose, and uric acid levels for past and current smokers separately |
Daviglus [57] (1997), USA | 40–55 (M) | 1822 (430) | 30 y | 0 g/d; 1–17 g/d; 18–34 g/d; ≥35 g/d | Interview | ICD-8 (codes 410–414) | Age, education, religion, systolic pressure, serum cholesterol, no. of cigarettes smoked per day, BMI, diabetes, ECG abnormalities, daily intakes of energy, cholesterol, SFA, MUFA, PUFA, total protein, carbohydrate, alcohol, Fe, thiamin, riboflavin, niacin, vitamin C, b-carotene and retinol |
Mann [58] (1997), UK | 16–79 (both) | 10,802 (64) | 13.3 y | Never, <1/wk, ≥1/wk | FFQ | ICD-9 (codes 410–414) | Age, sex, smoking and social class |
Albert [35] (1998), USA | 40–84 (M) | 20,551 (308) | 11 y | 1/mo; 1–3/mo; 1–2/wk; 2–5/wk; ≥5/wk | FFQ | ICD-9 (codes 410–414) | Age, aspirin, -carotene treatment assignment, evidence of cardiovascular disease before 12-mo questionnaire, body mass index, smoking status, history of diabetes, history of hypertension, history of hypercholesterolemia, alcohol consumption, vigorous exercise, and vitamin E, vitamin C, and multivitamin use |
Oomen [32] (2000), Finland | 50–69 (M) | 1088 (242) | 20 y | 0–19 g/d; 20–39 g/d; ≥40 g/d | Interview based on Burke’s diet history method | ICD-8 (codes 410–414, 795) | Age, body mass index, cigarette smoking, intake of energy, vegetables, fruits, alcohol, meat, butter, and margarine |
Oomen [32] (2000), Italy | 50–69 (M) | 1097 (116) | 20 y | 0 g/d; 1–19 g/d; 20–39 g/d; ≥40 g/d | Interview based on Burke’s diet history method | ICD-8 (codes 410–414, 795) | Age, body mass index, cigarette smoking, intake of energy, vegetables, fruits, alcohol, meat, butter, and margarine |
Oomen [32] (2000), The Netherlands | 50–69 (M) | 553 (109) | 20 y | 0 g/d; 1–19 g/d; ≥20 g/d | Interview based on Burke’s diet history method | ICD-8 (codes 410–414, 795) | Age, body mass index, cigarette smoking, intake of energy, vegetables, fruits, alcohol, meat, butter, and margarine |
Yuan [59] (2001), China | 45–64 (M) | 18,244 (187) | 12 y | <30 g/wk; 30–<60 g.wk; 60–<100 g/wk; 100–<150 g/wk; ≥150 g/wk | FFQ | ICD-9 (codes 410–414) | Age, total energy intake, level of education, body mass index, current smoker, average no. of cigarettes smoked per day, no. of alcoholic drinks consumed per week, history of diabetes, and history of hypertension |
Hu [37] (2002), USA | 34–50 (F) | 84,688 (484) | 16 y | <1/mo; 1–3/mo; 1/wk; 2–4/wk; ≥5/wk | FFQ | Based on medical records, death certificate and autopsy report; ICD codes are not available | Age, time periods, smoking status, body mass index, alcohol intake, menopausal status and postmenopausal hormone use, vigorous to moderate activity, No. of times aspirin was used per week, multivitamin use, vitamin E supplement use, and history of hypertension, hypercholesterolemia, diabetes, intake of trans-fat, the ratio of polyunsaturated fat to saturated fat, and dietary fiber |
Osler [39] (2003), Denmark | 30–70 (both) | 7389 (247) | 11 y | ≤1/mo; 2/mo; 1/wk; ≥2/wk | Self-administered questionnaire | ICD-8 (codes 410–414) | Familial predisposition, smoking status, physical activity, alcohol, educational status, healthy diet score, total cholesterol, and body mass index |
Mozaffarian [38] (2003), USA | ≥66 (both) | 3910 (247) | 9.3 y | ≤1/mo; 1–3/mo; 1/wk; 2/wk; ≥3/wk | FFQ | Based on medical records and death certificate. ICD codes are not available | Age, gender, education, diabetes, smoking, body mass index, systolic blood pressure, LDL cholesterol, HDL cholesterol, triglycerides, C-reactive protein, saturate fat, alcohol, beef/pork, fruit and vegetables |
Folsom [60] (2004), USA | 55–69 (F) | 41,836 (922) | 14 y | <0.5/wk; 0.5–<1/wk; 1–1.5/wk; <1.5–>2.5/wk; ≥2.5/wk | FFQ | ICD-9 (codes 410–414,429.2) or ICD-10 (codes I20–I25, I51.6) | Age, energy intake, educational level, physical activity level, alcohol consumption, smoking status, pack-years of cigarette smoking, age at first live birth, oestrogen use, vitamin use, BMI, waist:hip ratio, diabetes, hypertension, intakes of whole grains, fruit and vegetables, red meat, cholesterol and saturated fat |
Nakamura [61] (2005), Japan | ≥30 (both) | 8879 (142) | 19 y | <1/wk; 1–2/wk; 0.5/d; 1/d; ≥2/d | Self-administered questionnaire | ICD-9 or ICD10 | Age, sex, cigarette smoking and alcohol intake, hypertension, body mass index, diabete. serum total cholesterol concentration |
Jarvinen [62] (2006), men, Finland | 30–79 (M) | 2775 (335) | 21.5 y | ≤11 g/d; 12–21 g/d; 22–35 g/d; 36–62 g/d; ≥63 g/d | Interview | ICD-9 (codes 410–414) | Age, energy intake, area, BMI, serum cholesterol, blood pressure, smoking, occupation and diabetes |
Jarvinen [62] (2006), women, Finland | 30–79 (F) | 2445 (163) | 21.5 y | ≤8 g/d; 9–15 g/d; 16–24 g/d; 25–40 g/d; ≥41 g/d | Interview | ICD-9 (codes 410–414) | Age, energy intake, area, BMI, serum cholesterol, blood pressure, smoking, occupation and diabetes |
Iso [40] (2006), Japan | 40–59 (both) | 41,578 (62) | 11 y | Median intake: 23 g/d; 51 g/d; 78 g/d; 114 g/d; 180 g/d | FFQ | ICD-10(I21–I23, I46, and I50) | Age; sex; cigarette smoking; alcohol intake; body mass index; histories of hypertension and diabetes; medication use for hypercholesterolemia; education level; sports at leisure time; quintiles of dietary intake of fruits, vegetables, saturated fat, monounsaturated fat, n6 polyunsaturated fat, cholesterol, and total energy |
Yamagish [63] (2008), Japan | 40–79 (both) | 57,972 (419) | 12.7 y | 0–27 g/d; 27–39 g/d; 39–53 g/d; 53–72 g/d; 72–229 g/d | FFQ | ICD 10 (codes I20–I25) | Age, gender, energy, history of hypertension and diabetes mellitus, smoking status, alcohol consumption, BMI, mental stress, walking, sports, education level, total energy, and dietary intakes of cholesterol, saturated and n-6 polyunsaturated fatty acids, vegetables and fruit |
Kaushik [64] (2008), Australia | ≥49 (both) | 2683 (287) | 12 y | <1/wk; 1/wk; ≥2/wk | FFQ | Based on the Australian National Death Index (NDI) database | Age, gender, mean arterial blood pressure, body-mass index, smoking status, glucose, cholesterol, white cell count, platelet count, qualification level, self-rated health, past history of myocardial infarction and stroke, total vegetable and fat intake |
Tomasallo [65] (2010), USA | Mean 48.5 (both) | 940 (26) | 12 y | ≤1/mo; >1/mo–<1/wk; ≥1/wk | Interview | ICD-9 (codes 410–414) or ICD-10 (codesI20–25) | Sex, age, BMI and income at study baseline |
Goede [42] (2010), The Netherlands | 20–65 (both) | 21,342 (82) | 11.3 y | <3.3 g/d; 3.3–7.3 g/d; 7.4–14.0 g/d; >14 g/d | FFQ | ICD-9 (codes 410–414) or ICD-10 (codes I20–I25) | Age, gender, BMI, total energy intake, ethanol intake, cigarette smoking, social economic status, vitamin or mineral supplement use, use of drugs for hypertension or hypercholesterolaemia, family history of CVD, SFA, fruit and vegetables |
Kuhn [48] (2013), Germany | 35–65 (both) | 48,315 (117) | 8.1 y | <7.5 g/d; 7.5–14.5 g/d; 14.5–21.5 g/d; 21.5–31.1 g/d; >31.1 g/d | FFQ | ICD-10 (I21) | Age, gender, energy intake, alcohol intake, BMI, waist circumference, physical activity, educational attainment, smoking and prevalent diabetes mellitus. |
Takata [66] (2013), China | 40–74 (both) | 134,296 (476) | 11.2 y | median intake: 10.6 g/d; 24.7 g/d; 38.8 g/d; 59.3 g/d; 106.2 g/d | FFQ | ICD-9 (codes 410–414) | Age, total energy intake, income, occupation, education, comorbidity index, physical activity level, red meat intake, poultry intake, total vegetable intake, total fruit intake, smoking history, and alcohol consumption |
Engeset [67] (2015), men, Italy; Spain; UK; The Netherlands; Greece; Sweden; Denmark; Norway; Germany; France | 35–70 (M) | 143,183 (2215) | 16 y | median intake:1.9 g/d; 10.8 g/d; 21.1 g/d; 34.2 g/d; 76.2 g/d | FFQ | ICD-10 (I20-25) | Energy from fat, energy from carbohydrates and proteins, dietary fibres, red meat, processed meat, vegetables, fruit, alcohol intake, body mass index, physical activity, smoking, education. |
Engeset [67] (2015), women, Italy; Spain; UK; The Netherlands; Greece; Sweden; Denmark; Norway; Germany; France | 35–70 (F) | 337,352 (1050) | 16 y | median intake:1.9 g/d; 10.8 g/d; 21.1 g/d; 34.2 g/d; 76.2 g/d | FFQ | ICD-10 (I20-25) | Energy from fat, energy from carbohydrates and proteins, dietary fibres, red meat, processed meat, vegetables, fruit, alcohol intake, body mass index, physical activity, smoking, education. |
Gammelmark [51] (2016), men, Danish | 50–64 (M) | 25,913 (424) | 17 y | 0–8 g/d; >8–13 g/d; > 13–18 g/d; >18–28 g/d; >28 g/d | FFQ | ICD-8 (410.00-410.99) or ICD-10 (I21.0-I21.9) | Smoking, BMI, waist circumference, physical activity, alcohol intake, educational level, history of diabetes mellitus, hypercholesterolaemia, hypertension, total energy intake, intake of fruits and vegetables and intake of nuts |
Gammelmark [51] (2016), women, Danish | 50–64 (F) | 28,991 (156) | 17 y | 0–6 g/d; >6–10 g/d; >10–15 g/d; >15–23 g/d; >23 g/d | FFQ | ICD-8 (410.00-410.99) or ICD-10 (I21.0-I21.9) | Smoking, BMI, waist circumference, physical activity, alcohol intake, educational level, menopausal status, history of diabetes mellitus, hypercholesterolaemia, hypertension, total energy intake, intake of fruits and vegetables and intake of nuts |
Farvid [68] (2017), Iran | 36–85 (both) | 42,403 (762) | 11 y | median intake: 0 g/d; 0.85 g/d; 5.1 g/d; 16.15 g/d | FFQ | ICD-10 (I20-52) | Gender; age; ethnicity; education; marital status; residency; smoking; opium use; alcohol; BMI; systolic blood pressure; occupational physical activity; family history of cancer; wealth score; medication; and energy intake. |
Wallin [69] (2018), Swedish | 45–84 (both) | 2225 (154) | 14 y | ≤3/mo; 1–<2/wk; 2–3/wk; >3/wk | FFQ | ICD-10 (I20-25) | Age, sex, time since diabetes diagnosis, BMI, physical activity, education, cigarette smoking, total energy intake, alcohol, history of high cholesterol, history of hypertension and DASH diet component score |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Xiong, K.; Cai, J.; Ma, A. Fish Consumption and Coronary Heart Disease: A Meta-Analysis. Nutrients 2020, 12, 2278. https://doi.org/10.3390/nu12082278
Zhang B, Xiong K, Cai J, Ma A. Fish Consumption and Coronary Heart Disease: A Meta-Analysis. Nutrients. 2020; 12(8):2278. https://doi.org/10.3390/nu12082278
Chicago/Turabian StyleZhang, Bo, Ke Xiong, Jing Cai, and Aiguo Ma. 2020. "Fish Consumption and Coronary Heart Disease: A Meta-Analysis" Nutrients 12, no. 8: 2278. https://doi.org/10.3390/nu12082278