The Effects of Linoleic Acid Consumption on Lipid Risk Markers for Cardiovascular Disease in Healthy Individuals: A Review of Human Intervention Trials
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Total Blood Cholesterol
3.2. Triglycerides (TGs)
3.3. Low-Density Lipoprotein Cholesterol (LDL-C)
3.4. Very-Low-Density Lipoprotein Cholesterol (VLDL-C)
3.5. High-Density Lipoprotein Cholesterol (HDL-C)
3.6. Lipoprotein(a) (Lp(a)) Particles
3.7. Apolipoprotein (apo) A1, ApoA2, and ApoB
4. Discussion
4.1. Major Findings of the Reviewed Studies of LA Decreasing the Risk Factors for CVD
4.2. Mechanisms by Which PUFAs Decrease Total Cholesterol
4.3. Mechanisms by Which PUFAs Decrease Triglycerides
4.4. Mechanisms by Which PUFAs Decrease LDL-C
4.5. Mechanisms by Which PUFAs Decrease VLDL-C
4.6. Mechanisms by Which PUFAs Affect HDL-C
4.7. Lipoprotein A as a Risk Factor for CVD
4.8. ApoA Is Associated with HDL Particles
4.9. ApoB and the ApoB/ApoA1 Ratio as Risk Markers for CVD
4.10. Linoleic Acid Consumption and Recommended Intakes
4.11. Future Research Directions and Insights
4.12. Translating Fatty Acid Recommendations into Dietary Recommendations
5. Conclusions
- LA consumption decreased Lp (a) compared to a TFA-rich diet [48].
- LA consumption increased apoA1 compared with a typical U.S. diet [33].
- As mentioned in previous studies, there were no significant differences or mixed results for certain CVD risk markers, notably when comparing LA and OA intakes. These outcomes indicate that additional studies are needed.
Author Contributions
Funding
Conflicts of Interest
References
- Deaths: Leading Causes for 2017. Available online: https://www.cdc.gov/nchs/nvss/leading-causes-of-death.htm (accessed on 14 June 2020).
- World Health Organization. The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 16 June 2020).
- Anton, S.D.; Heekin, K.; Simkins, C.; Acosta, A. Differential effects of adulterated versus unadulterated forms of linoleic acid on cardiovascular health. J. Integr. Med. 2013, 11, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.D.; Hu, F.B. Dietary fat and risk of cardiovascular disease: Recent controversies and advances. Annu. Rev. Nutr. 2017, 37, 423–446. [Google Scholar] [CrossRef]
- Hu, F.B.; Willett, W.C. Optimal diets for prevention of coronary heart disease. JAMA 2002, 288, 2569–2578. [Google Scholar] [CrossRef]
- Zock, P.L.; Blom, W.A.; Nettleton, J.A.; Hornstra, G. Progressing insights into the role of dietary fats in the prevention of cardiovascular disease. Curr. Cardiol. Rep. 2016, 18, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millen, B.E.; Wolongevicz, D.M.; de Jesus, J.M.; Nonas, C.A.; Lichtenstein, A.H. 2013 American heart association/American college of cardiology guideline on lifestyle management to reduce cardiovascular risk: Practice opportunities for registered dietitian nutritionists. J. Acad. Nutr. Diet. 2014, 114, 1723–1729. [Google Scholar] [CrossRef] [PubMed]
- Harcombe, Z.; Baker, J.S.; Cooper, S.M.; Davies, B.; Sculthorpe, N.; DiNicolantonio, J.J.; Grace, F. Evidence from randomised controlled trials did not support the introduction of dietary fat guidelines in 1977 and 1983: A systematic review and meta-analysis. Open Heart 2015, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsden, C.E.; Zamora, D.; Majchrzak-Hong, S.; Faurot, K.R.; Broste, S.K.; Frantz, R.P.; Davis, J.M.; Ringel, A.; Suchindran, C.M.; Hibbeln, J.R. Re-evaluation of the traditional diet-heart hypothesis: Analysis of recovered data from Minnesota Coronary Experiment (1968–1973). BMJ 2016, 353, 1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W.C. Dietary fats and coronary heart disease. J. Intern. Med. 2012, 272, 13–24. [Google Scholar] [CrossRef]
- Whelan, J. The health implications of changing linoleic acid intakes. Prostaglandins Leukot Essent Fat. Acids 2008, 79, 165–167. [Google Scholar] [CrossRef]
- Ramsden, C.E.; Hibbeln, J.R.; Majchrzak-Hong, S.F. All PUFAs are not created equal: Absence of CHD benefit specific to linoleic acid in randomized controlled trials and prospective observational cohorts. World Rev. Nutr. Diet. 2011, 102, 30–43. [Google Scholar]
- Kris-Etherton, P.M.; Krauss, R.M. Public health guidelines should recommend reducing saturated fat consumption as much as possible: YES. Am. J. Clin. Nutr. 2020, 112, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Jandacek, R.J. Linoleic acid: A nutritional quandary. Healthcare 2017, 5, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, W.S.; Mozaffarian, D.; Rimm, E.; Kris-Etherton, P.; Rudel, L.L.; Appel, L.J.; Engler, M.M.; Engler, M.B.; Sacks, F. Omega-6 fatty acids and risk for cardiovascular disease: A science advisory from the American heart association nutrition subcommittee of the council on nutrition, physical activity, and metabolism; council on cardiovascular nursing; and council on epidemiology and prevention. Circulation 2009, 119, 902–907. [Google Scholar] [PubMed] [Green Version]
- Vannice, G.; Rasmussen, H. Position of the academy of nutrition and dietetics: Dietary fatty acids for healthy adults. J. Acad. Nutr. Diet. 2014, 114, 136–153. [Google Scholar] [CrossRef] [Green Version]
- Whelan, J.; Fritsche, K. Linoleic acid. Adv. Nutr. 2013, 4, 311–312. [Google Scholar] [CrossRef]
- Marklund, M.; Wu, J.H.Y.; Imamura, F.; del Gobbo, L.C.; Fretts, A.; de Goede, J.; Shi, P.; Tintle, N.; Wennberg, M.; Aslibekyan, S.; et al. Biomarkers of dietary omega-6 fatty acids and incident cardiovascular disease and mortality. Circulation 2019, 139, 2422–2436. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.H.; Lemaitre, R.N.; King, I.B.; Song, X.; Psaty, B.M.; Siscovick, D.S.; Mozaffarian, D. Circulating omega-6 polyunsaturated fatty acids and total and cause-specific mortality: The cardiovascular health study. Circulation 2014, 130, 1245–1253. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Hruby, A.; Bernstein, A.M.; Ley, S.H.; Wang, D.D.; Chiuve, S.E.; Sampson, L.; Rexrode, K.M.; Rimm, E.B.; Willett, W.C.; et al. Saturated fats compared with unsaturated fats and sources of carbohydrates in relation to risk of coronary heart disease: A prospective cohort study. J. Am. Coll. Cardiol. 2015, 66, 1538–1548. [Google Scholar] [CrossRef] [Green Version]
- Jiao, J.; Liu, G.; Shin, H.J.; Hu, F.B.; Rimm, E.B.; Rexrode, K.M.; Manson, J.E.; Zong, G.; Sun, Q. Dietary fats and mortality among patients with type 2 diabetes: Analysis in two population based cohort studies. BMJ 2019, 366, 14009. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Afshin, A.; Yakoob, M.Y.; Singh, G.M.; Rehm, C.D.; Khatibzadeh, S.; Micha, R.; Shi, P.; Mozaffarian, D. Impact of nonoptimal intakes of saturated, polyunsaturated, and trans fat on global burdens of coronary heart disease. J. Am. Heart Assoc. 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Farvid, M.S.; Ding, M.; Pan, A.; Sun, Q.; Chiuve, S.E.; Steffen, L.M.; Willett, W.C.; Hu, F.B. Dietary linoleic acid and risk of coronary heart disease: A systematic review and meta-analysis of prospective cohort studies. Circulation 2014, 130, 1568–1578. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.; Al-Khudairy, L.; Abdelhamid, A.S.; Rees, K.; Brainard, J.S.; Brown, T.J.; Ajabnoor, S.M.; O’Brien, A.T.; Winstanley, L.E.; Donaldson, D.H.; et al. Omega-6 fats for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2018, 11, 11094. [Google Scholar]
- Xu, L.B.; Zhou, Y.F.; Yao, J.L.; Sun, S.J.; Rui, Q.; Yang, X.J.; Li, X.B. Apolipoprotein A1 polymorphisms and risk of coronary artery disease: A meta-analysis. Arch. Med. Sci. 2017, 13, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Florvall, G.; Basu, S.; Larsson, A. Apolipoprotein A1 is a stronger prognostic marker than are HDL and LDL cholesterol for cardiovascular disease and mortality in elderly men. J. Gerontol. Biol. Sci. Med. Sci. 2006, 61, 1262–1266. [Google Scholar] [CrossRef] [Green Version]
- Ooi, E.M.; Watts, G.F.; Ng, T.W.; Barrett, P.H. Effect of dietary Fatty acids on human lipoprotein metabolism: A comprehensive update. Nutrients 2015, 7, 4416–4425. [Google Scholar] [CrossRef] [Green Version]
- Manuelli, M.; Della Guardia, L.; Cena, H. Enriching Diet with n-3 PUFAs to help prevent cardiovascular diseases in healthy adults: Results from clinical trials. Int. J. Mol. Sci. 2017, 18, 1552. [Google Scholar] [CrossRef] [Green Version]
- Kris-Etherton, P.M.; Richter, C.K.; Bowen, K.J.; Skulas-Ray, A.C.; Jackson, K.H.; Petersen, K.S.; Harris, W.S. Recent clinical trials shed new light on the cardiovascular benefits of Omega-3 fatty acids. Methodist DeBakey Cardiovasc. J. 2019, 15, 171–178. [Google Scholar]
- Innes, J.K.; Calder, P.C. Marine Omega-3 (N-3) fatty acids for cardiovascular health: An update for 2020. Int. J. Mol. Sci. 2020, 21, 1362. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Agriculture (USDA). Food Data Central. Available online: https://fdc.nal.usda.gov/ (accessed on 15 June 2020).
- National Center for Biotechnology Information; PubMed.gov. National Library of Medicine. National Institutes of Health. Available online: https://pubmed.ncbi.nlm.nih.gov/ (accessed on 16 June 2020).
- Iacono, J.M.; Dougherty, R.M. Lack of effect of linoleic acid on the high-density-lipoprotein-cholesterol fraction of plasma lipoproteins. Am. J. Clin. Nutr. 1991, 53, 660–664. [Google Scholar] [CrossRef]
- Zock, P.L.; Katan, M.B. Hydrogenation alternatives: Effects of trans fatty acids and stearic acid versus linoleic acid on serum lipids and lipoproteins in humans. J. Lipid Res. 1992, 33, 399–410. [Google Scholar]
- Sanders, T.A.; Oakley, F.R.; Miller, G.J.; Mitropoulos, K.A.; Crook, D.; Oliver, M.F. Influence of n-6 versus n-3 polyunsaturated fatty acids in diets low in saturated fatty acids on plasma lipoproteins and hemostatic factors. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 3449–3460. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K.H.; Tomasch, R.; Elmadfa, I. Impact of diets containing corn oil or olive/sunflower oil mixture on the human plasma and lipoprotein lipid metabolism. Eur. J. Nutr. 2001, 40, 161–167. [Google Scholar] [CrossRef] [PubMed]
- van Schalkwijk, D.B.; Pasman, W.J.; Hendriks, H.F.; Verheij, E.R.; Rubingh, C.M.; van Bochove, K.; Vaes, W.H.; Adiels, M.; Freidig, A.P.; de Graaf, A.A. Dietary medium chain fatty acid supplementation leads to reduced VLDL lipolysis and uptake rates in comparison to linoleic acid supplementation. PLoS ONE 2014, 9, e100376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- French, M.A.; Sundram, K.; Clandinin, M.T. Cholesterolaemic effect of palmitic acid in relation to other dietary fatty acids. Asia Pac. J. Clin. Nutr. 2002, 11, 401–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bronsgeest-Schoute, D.C.; Hautvast, J.G.; Hermus, R.J. Dependence of the effects of dietary cholesterol and experimental conditions on serum lipids in man. I. Effects of dietary cholesterol in a linoleic acid-rich diet. Am. J. Clin. Nutr. 1979, 32, 2183–2187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goyens, P.L.; Mensink, R.P. The dietary alpha-linolenic acid to linoleic acid ratio does not affect the serum lipoprotein profile in humans. J. Nutr. 2005, 135, 2799–2804. [Google Scholar] [CrossRef] [Green Version]
- Sanders, T.A.; Hochland, M.C. A comparison of the influence on plasma lipids and platelet function of supplements of omega 3 and omega 6 polyunsaturated fatty acids. Br. J. Nutr. 1983, 50, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Sola, R.; La Ville, A.E.; Richard, J.L.; Motta, C.; Bargallo, M.T.; Girona, J.; Masana, L.; Jacotot, B. Oleic acid rich diet protects against the oxidative modification of high density lipoprotein. Free Radic. Biol. Med. 1997, 22, 1037–1045. [Google Scholar] [CrossRef]
- Thijssen, M.A.; Mensink, R.P. Small differences in the effects of stearic acid, oleic acid, and linoleic acid on the serum lipoprotein profile of humans. Am. J. Clin. Nutr. 2005, 82, 510–516. [Google Scholar] [CrossRef]
- Pang, D.; Allman-Farinelli, M.A.; Wong, T.; Barnes, R.; Kingham, K.M. Replacement of linoleic acid with alpha-linolenic acid does not alter blood lipids in normolipidaemic men. Br. J. Nutr. 1998, 80, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Damsgaard, C.T.; Frokiaer, H.; Andersen, A.D.; Lauritzen, L. Fish oil in combination with high or low intakes of linoleic acid lowers plasma triacylglycerols but does not affect other cardiovascular risk markers in healthy men. J. Nutr. 2008, 138, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Liou, Y.A.; King, D.J.; Zibrik, D.; Innis, S.M. Decreasing linoleic acid with constant alpha-linolenic acid in dietary fats increases (n-3) eicosapentaenoic acid in plasma phospholipids in healthy men. J. Nutr. 2007, 137, 945–952. [Google Scholar] [CrossRef] [PubMed]
- Dias, C.B.; Amigo, N.; Wood, L.G.; Correig, X.; Garg, M.L. Effect of diets rich in either saturated fat or n-6 polyunsaturated fatty acids and supplemented with long-chain n-3 polyunsaturated fatty acids on plasma lipoprotein profiles. Eur. J. Clin. Nutr. 2017, 71, 1297–1302. [Google Scholar] [CrossRef] [PubMed]
- Mensink, R.P.; Zock, P.L.; Katan, M.B.; Hornstra, G. Effect of dietary cis and trans fatty acids on serum lipoprotein[a] levels in humans. J. Lipid Res. 1992, 33, 1493–1501. [Google Scholar]
- Tobin, K.A.; Steineger, H.H.; Alberti, S.; Spydevold, O.; Auwerx, J.; Gustafsson, J.A.; Nebb, H.I. Cross-talk between fatty acid and cholesterol metabolism mediated by liver X receptor-alpha. Mol. Endocrinol. 2000, 14, 741–752. [Google Scholar]
- Ide, T.; Shimano, H.; Yoshikawa, T.; Yahagi, N.; Amemiya-Kudo, M.; Matsuzaka, T.; Nakakuki, M.; Yatoh, S.; Iizuka, Y.; Tomita, S.; et al. Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. II. LXRs suppress lipid degradation gene promoters through inhibition of PPAR signaling. Mol. Endocrinol. 2003, 17, 1255–1267. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, M.L.; West, K.L. Mechanisms by which dietary fatty acids modulate plasma lipids. J. Nutr. 2005, 135, 2075–2078. [Google Scholar] [CrossRef]
- Ferre, P. The biology of peroxisome proliferator-activated receptors: Relationship with lipid metabolism and insulin sensitivity. Diabetes 2004, 53, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Schoonjans, K.; Staels, B.; Auwerx, J. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J. Lipid Res. 1996, 37, 907–925. [Google Scholar]
- Schoonjans, K.; Peinado-Onsurbe, J.; Lefebvre, A.M.; Heyman, R.A.; Briggs, M.; Deeb, S.; Staels, B.; Auwerx, J. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J. 1996, 15, 5336–5348. [Google Scholar] [CrossRef]
- Illingworth, D.R.; Schmidt, E.B. The influence of dietary n-3 fatty acids on plasma lipids and lipoproteins. Ann. N. Y. Acad. Sci. 1993, 676, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Vasandani, C.; Kafrouni, A.I.; Caronna, A.; Bashmakov, Y.; Gotthardt, M.; Horton, J.D.; Spady, D.K. Upregulation of hepatic LDL transport by n-3 fatty acids in LDL receptor knockout mice. J. Lipid Res. 2002, 43, 772–784. [Google Scholar] [PubMed]
- Shachter, N.S. Apolipoproteins C-I and C-III as important modulators of lipoprotein metabolism. Curr. Opin. Lipidol. 2001, 12, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Cottin, S.C.; Sanders, T.A.; Hall, W.L. The differential effects of EPA and DHA on cardiovascular risk factors. Proc. Nutr. Soc. 2011, 70, 215–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffarian, D.; Wu, J.H. (n-3) fatty acids and cardiovascular health: Are effects of EPA and DHA shared or complementary? J. Nutr. 2012, 142, 614–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffarian, D.; Wu, J.H. Omega-3 fatty acids and cardiovascular disease: Effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef] [Green Version]
- Grimsgaard, S.; Bonaa, K.H.; Hansen, J.B.; Nordoy, A. Highly purified eicosapentaenoic acid and docosahexaenoic acid in humans have similar triacylglycerol-lowering effects but divergent effects on serum fatty acids. Am. J. Clin. Nutr. 1997, 66, 649–659. [Google Scholar] [CrossRef]
- Allaire, J.; Couture, P.; Leclerc, M.; Charest, A.; Marin, J.; Lepine, M.C.; Talbot, D.; Tchernof, A.; Lamarche, B. A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women: The comparing EPA to DHA (ComparED) study. Am. J. Clin. Nutr. 2016, 104, 280–287. [Google Scholar] [CrossRef]
- Mustad, V.A.; Ellsworth, J.L.; Cooper, A.D.; Kris-Etherton, P.M.; Etherton, T.D. Dietary linoleic acid increases and palmitic acid decreases hepatic LDL receptor protein and mRNA abundance in young pigs. J. Lipid Res. 1996, 37, 2310–2323. [Google Scholar]
- Tripodi, A.; Loria, P.; Dilengite, M.A.; Carulli, N. Effect of fish oil and coconut oil diet on the LDL receptor activity of rat liver plasma membranes. Biochim. Biophys. Acta 1991, 1083, 298–304. [Google Scholar] [CrossRef]
- Fernandez, M.L.; Lin, E.C.; McNamara, D.J. Differential effects of saturated fatty acids on low density lipoprotein metabolism in the guinea pig. J. Lipid Res. 1992, 33, 1833–1842. [Google Scholar] [PubMed]
- Caviglia, J.M.; Gayet, C.; Ota, T.; Hernandez-Ono, A.; Conlon, D.M.; Jiang, H.; Fisher, E.A.; Ginsberg, H.N. Different fatty acids inhibit apoB100 secretion by different pathways: Unique roles for ER stress, ceramide, and autophagy. J. Lipid Res. 2011, 52, 1636–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shepherd, J.; Packard, C.J.; Grundy, S.M.; Yeshurun, D.; Gotto, A.M.; Taunton, O.D. Effects of saturated and polyunsaturated fat diets on the chemical composition and metabolism of low density lipoproteins in man. J. Lipid Res. 1980, 21, 91–99. [Google Scholar] [PubMed]
- Woollett, L.A.; Spady, D.K.; Dietschy, J.M. Regulatory effects of the saturated fatty acids 6:0 through 18:0 on hepatic low density lipoprotein receptor activity in the hamster. J. Clin. Investig. 1992, 89, 1133–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergeron, N.; Chiu, S.; Williams, P.T.; Sarah, M.K.; Krauss, R.M. Effects of red meat, white meat, and nonmeat protein sources on atherogenic lipoprotein measures in the context of low compared with high saturated fat intake: A randomized controlled trial. Am. J. Clin. Nutr. 2019, 110, 24–33. [Google Scholar] [CrossRef]
- Dreon, D.M.; Fernstrom, H.A.; Campos, H.; Blanche, P.; Williams, P.T.; Krauss, R.M. Change in dietary saturated fat intake is correlated with change in mass of large low-density-lipoprotein particles in men. Am. J. Clin. Nutr. 1998, 67, 828–836. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Nakamura, M.T.; Cho, H.P.; Clarke, S.D. Sterol regulatory element binding protein-1 expression is suppressed by dietary polyunsaturated fatty acids. A mechanism for the coordinate suppression of lipogenic genes by polyunsaturated fats. J. Biol. Chem. 1999, 274, 23577–23583. [Google Scholar] [CrossRef] [Green Version]
- Shimomura, I.; Bashmakov, Y.; Ikemoto, S.; Horton, J.D.; Brown, M.S.; Goldstein, J.L. Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc. Natl. Acad. Sci. USA 1999, 96, 13656–13661. [Google Scholar] [CrossRef] [Green Version]
- Field, F.J.; Born, E.; Mathur, S.N. Fatty acid flux suppresses fatty acid synthesis in hamster intestine independently of SREBP-1 expression. J. Lipid Res. 2003, 44, 1199–1208. [Google Scholar] [CrossRef] [Green Version]
- Rosenson, R.S.; Brewer, H.B.; Ansell, B.J.; Barter, P.; Chapman, M.J.; Heinecke, J.W.; Kontush, A.; Tall, A.R.; Webb, N.R. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat. Rev. Cardiol. 2016, 13, 48–60. [Google Scholar] [CrossRef]
- Morgantini, C.; Trifiro, S.; Trico, D.; Meriwether, D.; Baldi, S.; Mengozzi, A.; Reddy, S.T.; Natali, A. A short-term increase in dietary cholesterol and fat intake affects high-density lipoprotein composition in healthy subjects. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Morgantini, C.; Natali, A.; Boldrini, B.; Imaizumi, S.; Navab, M.; Fogelman, A.M.; Ferrannini, E.; Reddy, S.T. Anti-inflammatory and antioxidant properties of HDLs are impaired in type 2 diabetes. Diabetes 2011, 60, 2617–2623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgantini, C.; Meriwether, D.; Baldi, S.; Venturi, E.; Pinnola, S.; Wagner, A.C.; Fogelman, A.M.; Ferrannini, E.; Natali, A.; Reddy, S.T. HDL lipid composition is profoundly altered in patients with type 2 diabetes and atherosclerotic vascular disease. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 594–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charles-Schoeman, C.; Meriwether, D.; Lee, Y.Y.; Shahbazian, A.; Reddy, S.T. High levels of oxidized fatty acids in HDL are associated with impaired HDL function in patients with active rheumatoid arthritis. Clin. Rheumatol. 2018, 37, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Trico, D.; Di Sessa, A.; Caprio, S.; Chalasani, N.; Liu, W.; Liang, T.; Graf, J.; Herzog, R.I.; Johnson, C.D.; Umano, G.R.; et al. Oxidized derivatives of linoleic acid in pediatric metabolic syndrome: Is their pathogenic role modulated by the genetic background and the gut microbiota? Antioxid. Redox Signal. 2019, 30, 241–250. [Google Scholar] [CrossRef]
- Woodman, R.J.; Mori, T.A.; Burke, V.; Puddey, I.B.; Watts, G.F.; Beilin, L.J. Effects of purified eicosapentaenoic and docosahexaenoic acids on glycemic control, blood pressure, and serum lipids in type 2 diabetic patients with treated hypertension. Am. J. Clin. Nutr. 2002, 76, 1007–1015. [Google Scholar] [CrossRef] [Green Version]
- Mori, T.A.; Burke, V.; Puddey, I.B.; Watts, G.F.; O’Neal, D.N.; Best, J.D.; Beilin, L.J. Purified eicosapentaenoic and docosahexaenoic acids have differential effects on serum lipids and lipoproteins, LDL particle size, glucose, and insulin in mildly hyperlipidemic men. Am. J. Clin. Nutr. 2000, 71, 1085–1094. [Google Scholar] [CrossRef] [Green Version]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef]
- Tsimikas, S. A test in context: Lipoprotein(a): Diagnosis, prognosis, controversies, and emerging therapies. J. Am. Coll. Cardiol. 2017, 69, 692–711. [Google Scholar] [CrossRef]
- Gudbjartsson, D.F.; Thorgeirsson, G.; Sulem, P.; Helgadottir, A.; Gylfason, A.; Saemundsdottir, J.; Bjornsson, E.; Norddahl, G.L.; Jonasdottir, A.; Jonasdottir, A.; et al. Lipoprotein(a) concentration and risks of cardiovascular disease and diabetes. J. Am. Coll. Cardiol. 2019, 74, 2982–2994. [Google Scholar] [CrossRef]
- Schmidt, K.; Noureen, A.; Kronenberg, F.; Utermann, G. Structure, function, and genetics of lipoprotein (a). J. Lipid Res. 2016, 57, 1339–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malaguarnera, M.; Vacante, M.; Russo, C.; Malaguarnera, G.; Antic, T.; Malaguarnera, L.; Bella, R.; Pennisi, G.; Galvano, F.; Frigiola, A. Lipoprotein(a) in cardiovascular diseases. BioMed Res. Int. 2013, 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tholstrup, T.; Samman, S. Postprandial lipoprotein(a) is affected differently by specific individual dietary fatty acids in healthy young men. J. Nutr. 2004, 134, 2550–2555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ljungberg, J.; Holmgren, A.; Bergdahl, I.A.; Hultdin, J.; Norberg, M.; Naslund, U.; Johansson, B.; Soderberg, S. Lipoprotein(a) and the apolipoprotein b/a1 ratio independently associate with surgery for aortic stenosis only in patients with concomitant coronary artery disease. J. Am. Heart Assoc. 2017, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boerwinkle, E.; Leffert, C.C.; Lin, J.; Lackner, C.; Chiesa, G.; Hobbs, H.H. Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations. J. Clin. Investig. 1992, 90, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Nestel, P.; Noakes, M.; Belling, B.; McArthur, R.; Clifton, P.; Janus, E.; Abbey, M. Plasma lipoprotein lipid and Lp[a] changes with substitution of elaidic acid for oleic acid in the diet. J. Lipid Res. 1992, 33, 1029–1036. [Google Scholar]
- Tholstrup, T.; Marckmann, P.; Vessby, B.; Sandstrom, B. Effect of fats high in individual saturated fatty acids on plasma lipoprotein[a] levels in young healthy men. J. Lipid Res. 1995, 36, 1447–1452. [Google Scholar]
- Fielding, C.J.; Shore, V.G.; Fielding, P.E. A protein cofactor of lecithin:cholesterol acyltransferase. Biochem. Biophys. Res. Commun. 1972, 46, 1493–1498. [Google Scholar] [CrossRef]
- Gao, X.; Yuan, S.; Jayaraman, S.; Gursky, O. Role of apolipoprotein A-II in the structure and remodeling of human high-density lipoprotein (HDL): Protein conformational ensemble on HDL. Biochemistry 2012, 51, 4633–4641. [Google Scholar]
- Kuyl, J.M.; Mendelsohn, D. Observed relationship between ratios HDL-cholesterol/total cholesterol and apolipoprotein A1/apolipoprotein B. Clin. Biochem. 1992, 25, 313–316. [Google Scholar] [CrossRef]
- Walldius, G.; Jungner, I. Apolipoprotein B and apolipoprotein A-I: Risk indicators of coronary heart disease and targets for lipid-modifying therapy. J. Intern. Med. 2004, 255, 188–205. [Google Scholar] [CrossRef]
- Walldius, G.; Jungner, I. Rationale for using apolipoprotein B and apolipoprotein A-I as indicators of cardiac risk and as targets for lipid-lowering therapy. Eur. Heart J. 2005, 26, 210–212. [Google Scholar] [CrossRef] [Green Version]
- Boekholdt, S.M.; Arsenault, B.J.; Hovingh, G.K.; Mora, S.; Pedersen, T.R.; Larosa, J.C.; Welch, K.M.; Amarenco, P.; Demicco, D.A.; Tonkin, A.M.; et al. Levels and changes of HDL cholesterol and apolipoprotein A-I in relation to risk of cardiovascular events among statin-treated patients: A meta-analysis. Circulation 2013, 128, 1504–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walldius, G.; Jungner, I.; Holme, I.; Aastveit, A.H.; Kolar, W.; Steiner, E. High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): A prospective study. Lancet 2001, 358, 2026–2033. [Google Scholar] [CrossRef]
- Barnard, N.D. Trends in food availability, 1909–2007. Am. J. Clin. Nutr. 2010, 91, 1530–1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Interim Summary of Conclusions and Dietary Recommendations on Total Fat & Fatty Acids. Available online: https://www.who.int/nutrition/topics/FFA_summary_rec_conclusion.pdf?ua=1 (accessed on 24 June 2020).
- Barr, L.H.; Dunn, G.D.; Brennan, M.F. Essential fatty acid deficiency during total parenteral nutrition. Ann. Surg. 1981, 193, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S. The Omega-6: Omega-3 ratio: A critical appraisal and possible successor. Prostaglandins Leukot Essent Fat. Acids 2018, 132, 34–40. [Google Scholar] [CrossRef]
- Rett, B.S.; Whelan, J. Increasing dietary linoleic acid does not increase tissue arachidonic acid content in adults consuming Western-type diets: A systematic review. Nutr. Metab. 2011, 8. [Google Scholar] [CrossRef] [Green Version]
- Johnson, G.H.; Fritsche, K. Effect of dietary linoleic acid on markers of inflammation in healthy persons: A systematic review of randomized controlled trials. J. Acad. Nutr. Diet. 2012, 112, 1029–1041. [Google Scholar] [CrossRef]
- Krauss, R.M.; Kris-Etherton, P.M. Public health guidelines should recommend reducing saturated fat consumption as much as possible: Debate consensus. Am. J. Clin. Nutr. 2020, 112, 25–26. [Google Scholar] [CrossRef]
- Krauss, R.M.; Kris-Etherton, P.M. Public health guidelines should recommend reducing saturated fat consumption as much as possible: NO. Am. J. Clin. Nutr. 2020, 112, 19–24. [Google Scholar] [CrossRef] [PubMed]
Oils | Energy (Kcal) | Total Lipid (g) | Linoleic Acid (g) | Alpha-Linolenic Acid (g) | Total Saturated Fat (g) |
---|---|---|---|---|---|
Canola oil | 884 | 100 | 18.6 | 9.14 | 7.37 |
Corn oil | 900 | 100 | 53.5 | 1.16 | 13.0 |
Cottonseed oil | 884 | 100 | 51.9 | 0.20 | 25.9 |
Grapeseed oil | 884 | 100 | 69.6 | 0.10 | 9.60 |
Olive oil | 884 | 100 | 9.76 | 0.76 | 13.8 |
Peanut oil | 884 | 100 | 32.0 | 0.00 | 16.9 |
Safflower oil | 884 | 100 | 12.7 | 0.10 | 7.54 |
Sesame oil | 884 | 100 | 41.3 | 0.30 | 14.2 |
Soybean oil | 884 | 100 | 51.0 | 6.79 | 15.7 |
Sunflower oil | 884 | 100 | 65.7 | 0.00 | 10.3 |
Walnut oil | 884 | 100 | 52.9 | 10.4 | 9.10 |
Food Sources | Energy (Kcal) | Total Lipid (g) | Linoleic Acid (g) | Alpha-Linolenic Acid (g) | Total Saturated Fat (g) |
---|---|---|---|---|---|
Almonds | 164 | 14.2 | 3.49 | 0.001 | 1.08 |
Brazil nuts | 185 | 18.8 | 6.82 | 0.01 | 4.52 |
Cashews | 157 | 12.4 | 2.21 | 0.018 | 2.21 |
Pecans | 196 | 20.4 | 5.85 | 0.28 | 1.75 |
Pine nuts | 191 | 19.4 | 9.4 | 0.046 | 1.39 |
Pistachios | 159 | 12.8 | 4.0 | 0.082 | 1.68 |
Pumpkin seeds | 163 | 13.9 | 5.55 | 0.031 | 2.42 |
Sesame seeds | 159 | 13.4 | 5.78 | 0.102 | 1.88 |
Sunflower seeds | 165 | 14.1 | 9.29 | 0.02 | 1.48 |
Walnuts | 185 | 18.5 | 10.8 | 2.57 | 1.74 |
Author (Year) | Study | Subjects | Age | Duration | Treatment | Linoleic Acid Results |
---|---|---|---|---|---|---|
Bronsgeest-Schoute et al. (1979) [39] | Randomized crossover | 41 total 24 males 17 females | 19–35 years mean, 22.1 years | 4 weeks | 14 to 15% E LA (25 to 50 g/d), with at least 600 mg C for 2 wk, and 2 wk of less than 200 mg C. | ↑serum C (high C diet compared with low C diet) ↔TG |
Sanders et al. (1983) [41] | Randomized double-blinded crossover | 10 total 6 males 4 females | 22–35 years | 4 weeks | 10 g/d fish oil supplement (1.7 g EPA and 1.2 g DHA) or vegetable oil (3.4 g/d LA) for 2 wk. | ↔total C, ↑TG, ↓HDL-C (compared with fish oil) |
Iacono et al. (1991) [33] | Randomized crossover | 11 males | 44–62 years mean, 53.6 years | 100 days | Baseline period of 20 d (typical US diet, but meeting RDAs), followed by a lower LA diet (3.8% E; 16 g/100 g dietary fat) and a higher LA diet (10.8% E; 37.8 g/100 g dietary fat) for 40 d. | ↓total C, ↓LDL-C, ↓apoB (both diets compared to baseline; 10.8% E LA diet had further decreases) ↔HDL-C, ↔TG, ↑apoA1 (both diets compared to baseline) |
Zock et al. (1992) [34] | Randomized multiple crossover | 56 total 26 males 30 females | Males: 19–48 years mean, 25 years Females: 18–49 years mean, 24 years | 9 weeks | Three diets were followed for 3 wk: high in LA (12% E LA), high in SA (11.8% E SA; 3.9% E LA), and high elaidic acid (7.7% E elaidic acid; 3.8% E LA). | ↓total C, ↓LDL-C ↑HDL-C, ↑HDL:LDL ratio ↓TG (compared to SA diet) ↓apoB, ↑apoA1:apoB ratio |
Mensink et al. (1992) [48] | Intervention trial | 58 total 27 males 31 females | Young (specific ages not stated) | 53 days | 17 d on a diet high in SFA (19.3% E; primarily PA and SA), followed by 36 d on a diet replacing 6.5% total E from SFA with MUFA (15.1% E; 14.5% E OA) or PUFA (12.7% E; 12.6% E LA) diets. | ↔Lp(a), ↑LDL-C (compared to MUFA diet) |
Mensink et al. (1992) [48] | Intervention trial | 56 total 26 males 30 females | Young (specific ages not stated) | 3 weeks | SA diet (11.8% E), LA diet (12% E), or TFA diet (7.7% E). | ↔Lp(a) (compared to SA diet) ↓Lp(a) (compared to TFA diet) ↓LDL-C |
Sola et al. (1997) [42] | Randomized crossover | 22 males | Mean, 49.7 (SE, ± 0.6 years) | 32 weeks | Stabilization period for 8 wk, followed by two 8 wk dietary treatments separated by an 8 wk washout period. The dietary treatments included a diet rich in OA (18.2% E MUFA) and one rich in LA (18.1% E PUFA). | ↑oxidized HDL3, ↔total C, ↔LDL-C ↔HDL2-C, ↔HDL3-C ↔TG, ↔apoB ↓apoA1, ↓apoA2 |
Sanders et al. (1997) [35] | Randomized crossover | 26 males | 18–34 years | 17 weeks | 3 wk of a SFA diet (16% E SFA; mostly PA and SA), followed by 3 wk of an n-3 diet (1.5% E EPA and DHA or 5 g/d) or an n-6 diet (1.5% E LA or 5 g/d), separated by an 8 wk washout period. | ↑TG, ↑HDL3-C, ↑apoA2 ↓HDL2-C (compared with n-3 diet) ↓total C, ↓LDL-C, ↓apoB ↑Lp(a) (compared with SFA diet) |
Pang et al. (1998) [44] | Randomized single-blinded | 29 males | 18–35 years | 8 weeks | After a 2 wk stabilization period, the subjects followed either an ALA-rich diet (10.1 g/d, 3.5% E ALA and 12.1 g/d, 3.1% E LA; ALA:LA ratio of 1:0.9) or an LA-rich diet (1 g/d, 0.1% E ALA and 21 g/d, 6.7% E LA; ALA:LA ratio of 1:66) for 6 wk. | ↔total C, ↔LDL-C ↔HDL-C, ↔HDL2-C ↔HDL3-C, ↔TG |
Wagner et al. (2001) [36] | Randomized double-blinded crossover | 28 males | 19–31 years mean, 23.7 years | 11 weeks | After 2 wk of adjustment, the subjects consumed 80 g/d PUFA-rich corn oil (11.3% E LA and 9.6% E OA) or 80 g of a MUFA-rich mixture of olive and sunflower oils (5.7% E LA and 13.6% E OA) for 2 wk. | ↓total C (after crossover; compared with MUFA-rich mixture) ↓LDL-C, ↓TG, ↓VLDL-TG ↓VLDL-C (after initial 2 wk) ↔HDL-C |
French et al. (2002) [38] | Intervention trial | 3 males 3 females | Mean, 25 years | 8 months | The subjects consumed 8 different diets for 21 d each, with a break of 7 d between diets. The diets provided 10% E PA, with levels of LA starting at 10% E and gradually decreasing to 2.5% E. | ↓total C, ↓LDL-C (from 4.5% E to 10% E LA; 10% E LA produced the lowest LDL-C) ↓HDL-C (from 2.5% E to 10% E LA; 2.5% E LA produced the highest HDL-C) |
Goyens et al. (2005) [40] | Randomized double-blinded | 21 males 33 females | Males: mean, 52.6 years (SD, ± 13.7) Females: mean, 47.7 years (SD, ± 11.1) | 10 weeks | Following a 4 wk run-in period, 18 subjects per group consumed a control diet (7% E LA and 0.4% E ALA, ALA:LA ratio of 1:19), low-LA diet (3% E LA, 0.4% ALA) or high-ALA (7% E LA, 1.1% E ALA). Both treatment diets had an ALA:LA ratio of 1:7. | ↓total C,↓LDL-C, ↓apoB ↓total:HDL cholesterol ratio (High-ALA group compared with control) ↔HDL-C, ↔apoA1 ↔TG (all groups) ↓medium VLDL (Low-LA group compared with control) ↓small VLDL (High-ALA group compared with control) |
Thijssen et al. (2005) [43] | Randomized crossover | 18 males 27 females | 28-66 years mean, 51 years (SD, ± 10) | 17 weeks | Each participant consumed each diet for 5 wk, with a washout period of ≥ 1 wk. The diets did not differ, except for the replacement of 7% E with SA, OA, or LA. | ↔total C, ↔LDL-C ↔HDL-C, ↔TG ↔apoA1, ↔apoB ↔total:HDL cholesterol ratio ↔lipoprotein particle sizes (all diets compared) |
Liou et al. (2007) [46] | Randomized crossover | 22 males | 20–45 years mean, 27.9 years (SEM, ± 1.1) | 10 weeks | Following a 2 wk phase without consumption of fish and seafood, each subject consumed the high LA diet (10.5% E LA; LA:ALA ratio of ~10:1) and the low LA diet (3.8% E LA; LA:ALA ratio of ~4:1) for 4 wk each. ALA was maintained at ~1% E for each diet. | ↔total C, ↔LDL-C ↔HDL-C ↔LDL:HDL cholesterol ratio, ↔TG |
Damsgaard et al. (2008) [45] | Randomized double-blinded | 64 males | 19–40 years | 10 weeks | Following a 2 wk run-in period, the participants consumed fish oil capsules (3.1 g/d n-3 LC PUFA; 1.8 g/d EPA, 0.2 g/d DPA, and 1.1 g/d DHA) or olive oil capsules (3.7 g/d OA) for 8 wk. Within each group, the subjects consumed either a low-LA diet (12.7 g LA/100 g fats or 4% E LA) or a high-LA diet (40.3 g LA/100 g fats or 7% E LA; 7.3 g/d higher LA). | ↓TG (fish oil groups compared with olive oil groups; TG decreased by 51% in the low-LA group compared to a decrease of 19% in the high-LA group; not significant) ↔total C, ↔LDL-C ↔HDL-C |
van Schalkwijk et al. (2014) [37] | Randomized double-blinded crossover | 12 males | 30–60 years mean, 51 years (SD, ± 7) | 12 weeks | A supplement spread of 60 g/d MCFA (65% C8:0 and C10:0) or LCFA (71% LA) for 3 wk, with a washout period of 6 wk between treatments. | ↓total C, ↓LDL-C ↓VLDL-C, ↓TG ↓LDL-TG, ↓VLDL-TG |
Dias et al. (2017) [47] | Randomized Intervention trial | 6 males 20 females | 18–65 years | 6 weeks | A SFA-rich diet (18.9% E SFA and 2.9% E LA) or an n-6 PUFA-rich diet (12.6% E SFA and 12.7% E LA) for 6 wk. Each diet was supplemented daily with 400 mg EPA + 2000 mg DHA. | ↔total C, ↔VLDL-C ↔LDL-C, ↔ HDL-C ↔VLDL-TG, ↔total TG (no difference between diets; however, both diets reduced VLDL-C, VLDL-TG and total TG) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Froyen, E.; Burns-Whitmore, B. The Effects of Linoleic Acid Consumption on Lipid Risk Markers for Cardiovascular Disease in Healthy Individuals: A Review of Human Intervention Trials. Nutrients 2020, 12, 2329. https://doi.org/10.3390/nu12082329
Froyen E, Burns-Whitmore B. The Effects of Linoleic Acid Consumption on Lipid Risk Markers for Cardiovascular Disease in Healthy Individuals: A Review of Human Intervention Trials. Nutrients. 2020; 12(8):2329. https://doi.org/10.3390/nu12082329
Chicago/Turabian StyleFroyen, Erik, and Bonny Burns-Whitmore. 2020. "The Effects of Linoleic Acid Consumption on Lipid Risk Markers for Cardiovascular Disease in Healthy Individuals: A Review of Human Intervention Trials" Nutrients 12, no. 8: 2329. https://doi.org/10.3390/nu12082329
APA StyleFroyen, E., & Burns-Whitmore, B. (2020). The Effects of Linoleic Acid Consumption on Lipid Risk Markers for Cardiovascular Disease in Healthy Individuals: A Review of Human Intervention Trials. Nutrients, 12(8), 2329. https://doi.org/10.3390/nu12082329