A Traditional Korean Diet with a Low Dietary Inflammatory Index Increases Anti-Inflammatory IL-10 and Decreases Pro-Inflammatory NF-κB in a Small Dietary Intervention Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Methods
2.2.1. Dietary Intervention
2.2.2. Blood Chemistry
2.2.3. Plasma Cytokine Levels
2.2.4. Calculation of the Dietary Inflammatory Index
2.3. Statistics
3. Results
3.1. Baseline Characteristics and Changes in Clinical Parameters after the Dietary Intervention
3.2. Comparison of Nutrient Intake and Food Consumption between Two Diet Groups
3.3. Comparisons of DII Scores between Two Diet Groups
3.4. Changes in Inflammatory Markers and Their Associations with Other Parameters
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Hotamisligil, G.S.; Spiegelman, B.M. Tumor necrosis factor alpha: A key component of the obesity-diabetes link. Diabetes 1994, 43, 1271–1278. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S.; Murray, D.L.; Choy, L.N.; Spiegelman, B.M. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc. Natl. Acad. Sci. USA 1994, 91, 4854–4858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregor, M.F.; Hotamisligil, G.S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 2011, 29, 415–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minihane, A.M.; Vinoy, S.; Russell, W.R.; Baka, A.; Roche, H.M.; Tuohy, K.M.; Teeling, J.L.; Blaak, E.E.; Fenech, M.; Vauzour, D.; et al. Low-grade inflammation, diet composition and health: Current research evidence and its translation. Br. J. Nutr. 2015, 114, 999–1012. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C.; Ahluwalia, N.; Brouns, F.; Buetler, T.; Clement, K.; Cunningham, K.; Esposito, K.; Jonsson, L.S.; Kolb, H.; Lansink, M.; et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br. J. Nutr. 2011, 106, S5–S78. [Google Scholar] [CrossRef]
- Corley, J.; Shivappa, N.; Hebert, J.R.; Starr, J.M.; Deary, I.J. Associations between Dietary Inflammatory Index Scores and Inflammatory Biomarkers among Older Adults in the Lothian Birth Cohort 1936 Study. J. Nutr. Health Aging 2019, 23, 628–636. [Google Scholar] [CrossRef] [Green Version]
- Park, S.Y.; Kang, M.; Wilkens, L.R.; Shvetsov, Y.B.; Harmon, B.E.; Shivappa, N.; Wirth, M.D.; Hebert, J.R.; Haiman, C.A.; Le Marchand, L.; et al. The Dietary Inflammatory Index and All-Cause, Cardiovascular Disease, and Cancer Mortality in the Multiethnic Cohort Study. Nutrients 2018, 10, 1844. [Google Scholar] [CrossRef] [Green Version]
- Cavicchia, P.P.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Hebert, J.R. A new dietary inflammatory index predicts interval changes in serum high-sensitivity C-reactive protein. J. Nutr. 2009, 139, 2365–2372. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, M.S.; Kim, S.H.; Kim, M.S.; Lee, M.S.; Park, Y.S.; Lee, H.J.; Kang, S.A.; Lee, H.S.; Lee, K.E.; et al. Korean diet: Characteristics and historical background. J. Ethnic Foods 2016, 3, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Ham, D.; Jun, S.; Kang, M.; Paik, H.Y.; Joung, H.; Shin, S. Consumption of Korean Foods with High Flavonoid Contents Reduces the Likelihood of Having Elevated C-Reactive Protein Levels: Data from the 2015-2017 Korea National Health and Nutrition Examination Survey. Nutrients 2019, 11, 2370. [Google Scholar] [CrossRef] [Green Version]
- Jun, S.; Chun, O.K.; Joung, H. Estimation of dietary total antioxidant capacity of Korean adults. Eur. J. Nutr. 2018, 57, 1615–1625. [Google Scholar] [CrossRef] [PubMed]
- Jun, S.; Ha, K.; Chung, S.; Joung, H. Meat and milk intake in the rice-based Korean diet: Impact on cancer and metabolic syndrome. Proc. Nutr. Soc. 2016, 75, 374–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hebert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebert, J.R.; Shivappa, N.; Wirth, M.D.; Hussey, J.R.; Hurley, T.G. Perspective: The Dietary Inflammatory Index (DII)-Lessons Learned, Improvements Made, and Future Directions. Adv. Nutr. 2019, 10, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Shin, P.-K.; Chun, S.; Kim, M.S.; Park, S.-J.; Kim, M.J.; Kwon, D.Y.; Kim, K.; Lee, H.-J.; Choi, S.-W. Traditional Korean diet can alter the urine organic acid profile, which may reflect the metabolic influence of the diet. J. Nutr. Health 2020, 53, 231–243. [Google Scholar] [CrossRef]
- Yun, S.; Kim, H.J.; Oh, K. Trends in energy intake among Korean adults, 1998-2015: Results from the Korea National Health and Nutrition Examination Survey. Nutr. Res. Pract. 2017, 11, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.; Lee, K.W.; Brann, L.; Shivappa, N.; Hebert, J.R. Dietary inflammatory index is positively associated with serum high-sensitivity C-reactive protein in a Korean adult population. Nutrition 2019, 63–64, 155–161. [Google Scholar] [CrossRef]
- Asadullah, K.; Sterry, W.; Volk, H.D. Interleukin-10 therapy—Review of a new approach. Pharmacol. Rev. 2003, 55, 241–269. [Google Scholar] [CrossRef]
- Baker, R.G.; Hayden, M.S.; Ghosh, S. NF-kappaB, inflammation, and metabolic disease. Cell Metab. 2011, 13, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Kondo, H.; Abe, I.; Gotoh, K.; Fukui, A.; Takanari, H.; Ishii, Y.; Ikebe, Y.; Kira, S.; Oniki, T.; Saito, S.; et al. Interleukin 10 Treatment Ameliorates High-Fat Diet-Induced Inflammatory Atrial Remodeling and Fibrillation. Circ. Arrhythm. Electrophysiol. 2018, 11, e006040. [Google Scholar] [CrossRef]
- Kinzenbaw, D.A.; Chu, Y.; Pena Silva, R.A.; Didion, S.P.; Faraci, F.M. Interleukin-10 protects against aging-induced endothelial dysfunction. Physiol. Rep. 2013, 1, e00149. [Google Scholar] [CrossRef]
- Hong, E.G.; Ko, H.J.; Cho, Y.R.; Kim, H.J.; Ma, Z.; Yu, T.Y.; Friedline, R.H.; Kurt-Jones, E.; Finberg, R.; Fischer, M.A.; et al. Interleukin-10 prevents diet-induced insulin resistance by attenuating macrophage and cytokine response in skeletal muscle. Diabetes 2009, 58, 2525–2535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosser, D.M.; Zhang, X. Interleukin-10: New perspectives on an old cytokine. Immunol. Rev. 2008, 226, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Heymach, J.V.; Shackleford, T.J.; Tran, H.T.; Yoo, S.Y.; Do, K.A.; Wergin, M.; Saintigny, P.; Vollmer, R.T.; Polascik, T.J.; Snyder, D.C.; et al. Effect of low-fat diets on plasma levels of NF-kappaB-regulated inflammatory cytokines and angiogenic factors in men with prostate cancer. Cancer Prev. Res. (Phila.) 2011, 4, 1590–1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlsen, H.; Haugen, F.; Zadelaar, S.; Kleemann, R.; Kooistra, T.; Drevon, C.A.; Blomhoff, R. Diet-induced obesity increases NF-kappaB signaling in reporter mice. Genes Nutr. 2009, 4, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Xing, S.S.; Sun, X.L.; Xing, Q.C. Overexpression of activated nuclear factor-kappa B in aorta of patients with coronary atherosclerosis. Clin. Cardiol. 2009, 32, E42–E47. [Google Scholar] [CrossRef]
- Wessling-Resnick, M. Iron homeostasis and the inflammatory response. Annu. Rev. Nutr. 2010, 30, 105–122. [Google Scholar] [CrossRef] [Green Version]
- North, C.J.; Venter, C.S.; Jerling, J.C. The effects of dietary fibre on C-reactive protein, an inflammation marker predicting cardiovascular disease. Eur. J. Clin. Nutr. 2009, 63, 921–933. [Google Scholar] [CrossRef] [Green Version]
- Hayden, M.S.; Ghosh, S. Regulation of NF-kappaB by TNF family cytokines. Semin. Immunol. 2014, 26, 253–266. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, L.; Jordan, N.; Millar, A. Interleukin 10 (IL-10) regulation of tumour necrosis factor alpha (TNF-alpha) from human alveolar macrophages and peripheral blood monocytes. Thorax 1996, 51, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Popa, C.; Netea, M.G.; Van Riel, P.L.; Van der Meer, J.W.; Stalenhoef, A.F. The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J. Lipid Res. 2007, 48, 751–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggio, M.; Guralnik, J.M.; Longo, D.L.; Ferrucci, L. Interleukin-6 in aging and chronic disease: A magnificent pathway. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Zha, Z.; Bucher, F.; Nejatfard, A.; Zheng, T.; Zhang, H.; Yea, K.; Lerner, R.A. Interferon-gamma is a master checkpoint regulator of cytokine-induced differentiation. Proc. Natl. Acad. Sci. USA 2017, 114, E6867–E6874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroder, K.; Hertzog, P.J.; Ravasi, T.; Hume, D.A. Interferon-gamma: An overview of signals, mechanisms and functions. J. Leukoc. Biol. 2004, 75, 163–189. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Jamison, S.; Lin, W. Interferon-gamma activates nuclear factor-kappa B in oligodendrocytes through a process mediated by the unfolded protein response. PLoS ONE 2012, 7, e36408. [Google Scholar] [CrossRef] [Green Version]
- Yanagawa, Y.; Iwabuchi, K.; Onoe, K. Co-operative action of interleukin-10 and interferon-gamma to regulate dendritic cell functions. Immunology 2009, 127, 345–353. [Google Scholar] [CrossRef]
- Kuczmarski, M.F.; Mason, M.A.; Allegro, D.; Zonderman, A.B.; Evans, M.K. Diet quality is inversely associated with C-reactive protein levels in urban, low-income African-American and white adults. J. Acad. Nutr. Diet. 2013, 113, 1620–1631. [Google Scholar] [CrossRef] [Green Version]
- Uemura, H.; Katsuura-Kamano, S.; Yamaguchi, M.; Bahari, T.; Ishizu, M.; Fujioka, M.; Arisawa, K. Relationships of serum high-sensitivity C-reactive protein and body size with insulin resistance in a Japanese cohort. PLoS ONE 2017, 12, e0178672. [Google Scholar] [CrossRef]
- Caso, G.; Mileva, I.; Kelly, P.; Ahn, H.; Gelato, M.C.; McNurlan, M.A. Feeding acutely stimulates fibrinogen synthesis in healthy young and elderly adults. J. Nutr. 2009, 139, 2032–2036. [Google Scholar] [CrossRef] [Green Version]
- Miura, K.; Nakagawa, H.; Ueshima, H.; Okayama, A.; Saitoh, S.; Curb, J.D.; Rodriguez, B.L.; Sakata, K.; Okuda, N.; Yoshita, K.; et al. Dietary factors related to higher plasma fibrinogen levels of Japanese-americans in hawaii compared with Japanese in Japan. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 1674–1679. [Google Scholar] [CrossRef] [Green Version]
- Najjar, R.S.; Moore, C.E.; Montgomery, B.D. Consumption of a defined, plant-based diet reduces lipoprotein(a), inflammation, and other atherogenic lipoproteins and particles within 4 weeks. Clin. Cardiol. 2018, 41, 1062–1068. [Google Scholar] [CrossRef] [PubMed]
Food Parameters | Control Diet | K-Diet | p-Value |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Energy (kcal) | 0.01 ± 0.12 | −0.01 ± 0.09 | 0.4713 |
Carbohydrate (g) | −0.04 ± 0.05 | 0.03 ± 0.04 | <0.0001 |
Protein (g) | 0.00 ± 0.01 | 0.00 ± 0.01 | 0.0123 |
Total fat (g) | −0.06 ± 0.17 | 0.05 ± 0.16 | 0.0003 |
Cholesterol (mg) | 0.05 ± 0.09 | −0.04 ± 0.11 | <0.0001 |
Saturated fat (g) | −0.05 ± 0.23 | 0.05 ± 0.20 | 0.0093 |
MUFA (g) | 0.00 ± 0.01 | 0.00 ± 0.01 | 0.0041 |
PUFA (g) | 0.07 ± 0.18 | −0.06 ± 0.19 | <0.0001 |
n-3 Fatty acids (g) | 0.04 ± 0.25 | −0.04 ± 0.25 | 0.0764 |
n-6 Fatty acids (g) | 0.02 ± 0.09 | −0.02 ± 0.09 | 0.0166 |
Fiber (g) | 0.32 ± 0.23 | −0.31 ± 0.21 | <0.0001 |
Vitamin A (RE) | 0.04 ± 0.21 | −0.04 ± 0.24 | 0.0471 |
β-Carotene (μg) | 0.11 ± 0.31 | −0.10 ± 0.34 | 0.0003 |
Thiamin (mg) | 0.04 ± 0.05 | −0.04 ± 0.04 | <0.0001 |
Riboflavin (mg) | 0.02 ± 0.03 | −0.02 ± 0.04 | <0.0001 |
Niacin (mg) | 0.12 ± 0.08 | −0.12 ± 0.08 | <0.0001 |
Vitamin B6 (mg) | 0.09 ± 0.24 | −0.08 ± 0.13 | <0.0001 |
Folic acid (μg) | 0.08 ± 0.08 | −0.08 ± 0.08 | <0.0001 |
Vitamin B12 (μg) | −0.03 ± 0.07 | 0.02 ± 0.05 | <0.0001 |
Vitamin C (mg) | 0.03 ± 0.28 | −0.02 ± 0.20 | 0.2567 |
Vitamin D (μg) | −0.11 ± 0.25 | 0.12 ± 0.21 | <0.0001 |
Vitamin E (mg) | −0.11 ± 0.26 | 0.11 ± 0.16 | <0.0001 |
Mg (mg) | 0.03 ± 0.24 | −0.03 ± 0.31 | 0.2338 |
Fe (mg) | −0.01 ± 0.01 | 0.01 ± 0.01 | <0.0001 |
Se (μg) | 0.07 ± 0.18 | −0.07 ± 0.15 | <0.0001 |
Zn (mg) | 0.03 ± 0.06 | −0.04 ± 0.04 | <0.0001 |
Garlic (g) | 0.15 ± 0.22 | −0.14 ± 0.16 | <0.0001 |
Onion (g) | −0.09 ± 0.15 | 0.10 ± 0.14 | <0.0001 |
Ginger (g) | 0.01 ± 0.33 | 0.00 ± 0.17 | 0.7513 |
Green/black tea (g) | 0.27 ± 0.16 | −0.26 ± 0.16 | <0.0001 |
Pepper (g) | −0.06 ± 0.04 | 0.06 ± 0.05 | <0.0001 |
Alcohol(g) | 0.00 ± 0.15 | 0.00 ± 0.17 | 0.9504 |
DII | 1.04 ± 1.61 | −0.94 ± 1.39 | <0.0001 |
Clinical Parameters | Control Diet (n = 5) | K-Diet (n = 5) * |
---|---|---|
Age | 54.60 ± 0.87 | 52.8 ± 1.02 |
Weight (kg) | 66.48 ± 2.02 | 64.36 ± 2.12 |
BMI (Kg/m2) | 27.30 ± 0.93 | 26.00 ± 0.64 |
Waist circumference (cm) | 90.60 ± 1.54 | 85.40 ± 3.64 |
Total cholesterol (mg/dL) | 209.40 ± 4.74 | 239.40 ± 15.14 |
LDL-cholesterol (mg/dL) | 142.20 ± 5.40 | 138.40 ± 24.91 |
HDL-cholesterol (mg/dL) | 46.56 ± 4.05 | 57.65 ± 3.40 |
Triglyceride (mg/dL) | 103.20 ± 12.99 | 237.80 ± 116.24 |
Fasting blood glucose (mg/dL) | 92.40 ± 4.15 | 93.40 ± 3.31 |
Insulin (mU/L) | 6.64 ± 1.05 | 10.46 ± 2.09 |
CRP (mg/dL) | 0.12 ± 0.03 | 0.12 ± 0.04 |
Fibrinogen (mg/dL) | 292.40 ± 27.18 | 283.20 ± 20.73 |
Control Diet | K-Diet | |||||
---|---|---|---|---|---|---|
Variable | Baseline | 2 Weeks | p Value | Baseline | 2 Weeks | p Value |
BMI (kg/m2) | 27.30 ± 0.93 | 26.97 ± 0.84 | NS | 26.00 ± 0.64 | 25.62 ± 0.53 | NS |
Weight (Kg) | 66.48 ± 2.02 | 65.68 ± 1.97 | NS | 64.36 ± 2.12 | 63.36 ± 1.82 | NS |
Waist circumference (cm) | 90.60 ± 1.54 | 88.20 ± 0.85 | NS | 85.40 ± 3.64 | 83.80 ± 2.05 | NS |
Total cholesterol (mg/dL) | 209.40 ± 4.74 | 229.80 ± 8.12 | NS | 239.40 ± 15.14 | 198.20 ± 13.25 | 0.0163 |
LDL cholesterol (mg/dL) | 142.20 ± 5.40 | 146.60 ± 7.09 | NS | 138.40 ± 24.91 | 123.60 ± 13.05 | NS |
HD -cholesterol (mg/dL) | 46.56 ± 4.05 | 55.12 ± 5.53 | NS | 57.65 ± 3.40 | 49.52 ± 9.03 | NS |
Triglyceride (mg/dL) | 103.20 ± 12.99 | 140.40 ± 16.10 | NS | 237.80 ± 116.24 | 125.40 ± 16.36 | NS |
Fasting glucose (mg/dL) | 92.40 ± 4.15 | 89.60 ± 3.39 | NS | 93.40 ± 3.31 | 82.20 ± 3.92 | NS |
Insulin (mU/L) | 6.64 ± 1.05 | 9.00 ± 1.20 | NS | 10.46 ± 2.09 | 7.40 ± 1.34 | NS |
HOMA-IR | 1.48 ± 0.18 | 1.98 ± 0.24 | NS | 2.47 ± 0.55 | 1.46 ± 0.20 | NS |
WBC (×103/μL) | 5.97 ± 0.69 | 5.70 ± 0.57 | NS | 6.43 ± 0.57 | 5.42 ± 0.68 | NS |
Hb (g/dL) | 13.52 ± 0.18 | 13.34 ± 0.34 | NS | 13.38 ± 0.34 | 12.86 ± 0.49 | 0.0348 |
Nutrients | Control Diet (n = 5) | K-Diet (n = 5) | p Value |
---|---|---|---|
Energy (kcal) | 1775.5 ± 25.5 | 1740.2 ± 12.7 | NS |
Carbohydrate (% of energy) | 57 ± 0.6 | 63.7 ± 0.4 | <0.0001 |
Fiber (g) | 27.1 ± 1.3 | 41.5 ± 0.4 | <0.0001 |
Protein (% of energy) | 15.7 ± 0.2 | 17.1 ± 0.3 | <0.0001 |
Animal based protein (% of energy) | 7.3 ± 0.3 | 4.9 ± 0.3 | <0.0001 |
Plant based protein | 8.4 ± 0.1 | 12.2 ± 0.1 | <0.0001 |
Fat (% of energy) | 27.4 ± 0.4 | 19.2 ± 0.3 | <0.0001 |
Animal based fat (% of energy) | 10.4 ± 0.5 | 2.3 ± 0.2 | <0.0001 |
Plant based fat (% of energy) | 17.1 ± 0.3 | 16.9 ± 0.3 | NS |
Cholesterol (mg) | 447.3 ± 30 | 182.9 ± 11 | <0.0001 |
Vitamins | |||
Vitamin A (µg RE) | 1246.4 ± 42.4 | 1497.7 ± 71.4 | 0.0031 |
Vitamin C (mg) | 177.4 ± 6.6 | 180.1 ± 3.8 | NS |
Thiamin (mg) | 1 3 ±0 | 1.7 ± 0 | <0.0001 |
Riboflavin (mg) | 1.3 ± 0 | 1.5 ± 0 | <0.0001 |
Niacin (mg) | 16.4 ± 0.3 | 24.9 ± 0.4 | <0.0001 |
Iron (mg) | 15.3 ± 0.3 | 22.6 ± 0.7 | <0.0001 |
Animal based iron (mg) | 3.6 ± 0.2 | 4 ± 0.7 | NS |
Plant based iron (mg) | 11.7 ± 0.2 | 18.6 ± 0.4 | <0.0001 |
Food | Control Diet (n = 5) | K-Diet (n = 5) | p Value |
---|---|---|---|
Total grains | 217.4 ± 5.1 | 277.7 ± 3.9 | <0.0001 |
Whole grains | 0.4 ± 0.1 | 267.9 ± 4.9 | <0.0001 |
Fruits and vegetables | 405.1 ± 7 | 543.2 ± 10.3 | <.0001 |
Legumes and tofu | 40 ± 4.6 | 63.4 ± 4.6 | 0.0004 |
Nuts | 2.6 ± 0.6 | 21.4 ± 3.8 | <0.0001 |
Seaweeds | 15.7 ± 2.8 | 24.5 ± 3.9 | 0.0708 |
Fishes and shell | 35.4 ± 3.9 | 53.2 ± 5.3 | 0.0073 |
Meats | 57.3 ± 4.6 | 10 ± 2.2 | <0.0001 |
Red meats | 48.8 ± 4.2 | 5.4 ± 1.3 | <0.0001 |
Processed foods | 21.9 ± 3.4 | 0 ± 0 | <0.0001 |
Control Diet (n = 5) | K-Diet (n = 5) | |||||
---|---|---|---|---|---|---|
Inflammation Markers | Baseline | 2 Weeks | p Value | Baseline | 2 Weeks | p Value |
CRP (mg/dL) | 0.12 ± 0.03 | 0.11 ± 0.03 | NS | 0.12 ± 0.04 | 0.07 ± 0.02 | NS |
Fibrinogen (mg/dL) | 292.4 ± 27.18 | 283.4 ± 25.76 | NS | 283.2 ± 20.73 | 253.8 ± 17.72 | NS |
TNF-α (pg/mL) | 2.21 ± 0.32 | 1.93 ± 0.12 | NS | 1.80 ± 0.24 | 2.27 ± 0.24 | NS |
NFκB (pg/mL) | 3.85 ± 0.95 | 3.84 ± 0.61 | NS | 7.70 ± 0.62 * | 2.71 ± 0.49 | 0.0015 |
IL-6 (pg/mL) | 0.68 ± 0.12 | 0.50 ± 0.22 | NS | 0.78 ± 0.06 | 1.34 ± 0.89 | NS |
IL-10 (pg/mL) | 4.10 ± 0.31 | 4.58 ± 0.30 | NS | 4.45 ± 0.34 | 5.94 ± 0.33 | 0.0102 |
IFN-γ (pg/mL) | 4.51 ± 1.03 | 2.65 ± 0.66 | NS | 2.74 ± 0.28 | 2.35 ± 0.21 | NS |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, P.-K.; Park, S.-J.; Kim, M.S.; Kwon, D.Y.; Kim, M.J.; Kim, K.; Chun, S.; Lee, H.-J.; Choi, S.-W. A Traditional Korean Diet with a Low Dietary Inflammatory Index Increases Anti-Inflammatory IL-10 and Decreases Pro-Inflammatory NF-κB in a Small Dietary Intervention Study. Nutrients 2020, 12, 2468. https://doi.org/10.3390/nu12082468
Shin P-K, Park S-J, Kim MS, Kwon DY, Kim MJ, Kim K, Chun S, Lee H-J, Choi S-W. A Traditional Korean Diet with a Low Dietary Inflammatory Index Increases Anti-Inflammatory IL-10 and Decreases Pro-Inflammatory NF-κB in a Small Dietary Intervention Study. Nutrients. 2020; 12(8):2468. https://doi.org/10.3390/nu12082468
Chicago/Turabian StyleShin, Phil-Kyung, Seon-Joo Park, Myung Sunny Kim, Dae Young Kwon, Min Jung Kim, KyongChol Kim, Sukyung Chun, Hae-Jeung Lee, and Sang-Woon Choi. 2020. "A Traditional Korean Diet with a Low Dietary Inflammatory Index Increases Anti-Inflammatory IL-10 and Decreases Pro-Inflammatory NF-κB in a Small Dietary Intervention Study" Nutrients 12, no. 8: 2468. https://doi.org/10.3390/nu12082468
APA StyleShin, P.-K., Park, S.-J., Kim, M. S., Kwon, D. Y., Kim, M. J., Kim, K., Chun, S., Lee, H.-J., & Choi, S.-W. (2020). A Traditional Korean Diet with a Low Dietary Inflammatory Index Increases Anti-Inflammatory IL-10 and Decreases Pro-Inflammatory NF-κB in a Small Dietary Intervention Study. Nutrients, 12(8), 2468. https://doi.org/10.3390/nu12082468