Nutritional Interventions in the Management of Fibromyalgia Syndrome
Abstract
:1. Introduction
2. Nutritional Supplementation and Fibromyalgia
2.1. Vitamin D
2.2. Vitamin C and Vitamin E
2.3. Minerals
2.4. Probiotics
2.5. Other Substances
3. Dietary Interventions and Fibromyalgia
3.1. Olive Oil
3.2. Ancient Grain Products
3.3. Monosodium Glutamate and Aspartame-Free Diet
3.4. Gluten-Free Diet
3.5. Low-FODMAPs Diet
3.6. Low-Calorie Diet
3.7. Vegetarian Diet
3.8. Mediterranean Diet
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Clauw, D.J. Fibromyalgia and related conditions. Mayo Clin. Proc. 2015, 90, 680–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gracely, R.H.; Schweinhardt, P. Key mechanisms mediating fibromyalgia. Clin. Exp. Rheumatol. 2015, 33, 3–6. [Google Scholar]
- Littlejohn, G.; Guymer, E. Key milestones contributing to the understanding of the mechanisms underlying fibromyalgia. Biomedicines 2020, 8, 223. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Hauser, W.; Katz, R.L.; Mease, P.J.; Russell, A.S.; Russell, I.J.; Walitt, B. Revisions to the 2010/2011 fibromyalgia diagnostic criteria. Semin. Arthritis Rheum. 2016, 46, 319–329. [Google Scholar] [CrossRef]
- Clauw, D.J. Fibromyalgia: A clinical review. JAMA 2014, 311, 1547–1555. [Google Scholar] [CrossRef]
- Jones, G.T.; Atzeni, F.; Beasley, M.; Flüß, E.; Sarzi-Puttini, P.; Macfarlane, G.J. The prevalence of fibromyalgia in the general population: A comparison of the american college of rheumatology 1990, 2010, and modified 2010 classification criteria. Arthritis Rheumatol. 2015, 65, 568–575. [Google Scholar] [CrossRef] [Green Version]
- Borchers, A.T.; Gershwin, M.E. Fibromyalgia: A critical and comprehensive review. Clin. Rev. Allergy Immunol. 2015, 49, 100–151. [Google Scholar] [CrossRef]
- Sluka, K.A.; Clauw, D.J. Neurobiology of fibromyalgia and chronic widespread pain. Neuroscience 2016, 338, 114–129. [Google Scholar] [CrossRef]
- Ozgocmen, S.; Ozyurt, H.; Sogut, S.; Akyol, O.; Ardicoglu, O.; Yildizhan, H. Antioxidant status, lipid peroxidation and nitric oxide in fibromyalgia etiologic and therapeutic concerns. Rheumatol. Int. 2006, 26, 598–603. [Google Scholar] [CrossRef]
- García, J.J.; Carvajal-Gil, J.; Herrero-Olea, A.; Gómez-Galán, R. Altered inflammatory mediators in fibromyalgia. Rheumatology 2017, 7, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Ablin, J.N.; Cohen, H.; Buskila, D. Mechanisms of disease: Genetics of fibromyalgia. Nat. Clin. Pract. Rheumatol. 2006, 2, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Sullivan, P.F.; Evengard, B.; Pedersen, N.L. Importance of genetic influences on chronic widespread pain. Arthritis Rheum. 2006, 54, 1682–1686. [Google Scholar] [CrossRef] [PubMed]
- Docampo, E.; Escaramís, G.; Gratacòs, M.; Villatoro, S.; Puig, A.; Kogevinas, M.; Collado, A.; Carbonell, J.; Rivera, J.; Vidal, J.; et al. Genome-wide analysis of single nucleotide polymorphisms and copy number variants in fibromyalgia suggest a role for the central nervous system. Pain 2014, 155, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Haviland, M.G.; Morton, K.R.; Oda, K.; Fraser, G.E. Traumatic experiences, major life stressors, and selfreporting a physician-given fibromyalgia diagnosis. Psychiatry Res. 2010, 177, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Low, L.A.; Schweinhardt, P. Early life adversity as a risk factor for fibromyalgia in later life. Pain Res. Treat. 2012, 2012, 140832. [Google Scholar] [CrossRef] [Green Version]
- D′Agnelli, S.; Arendt-Nielsen, L.; Gerra, M.C.; Zatorri, K.; Boggiani, L.; Baciarello, M.; Bignami, E. Fibromyalgia: Genetics and epigenetics insights may provide the basis for the development of diagnostic biomarkers. Mol. Pain 2019, 15, 1–12. [Google Scholar] [CrossRef]
- MacFarlanw, G.J.; Kronish, C.; Dean, L.E.; Atzeni, F.; Häuser, W.; Fluß, E.; Choy, E.; Kosek, E.; Amris, K.; Branco, J.; et al. EULAR revised recommendations for the management of fibromyalgia. Ann. Rheum. Dis. 2017, 76, 318–328. [Google Scholar] [CrossRef]
- Aman, M.M.; Yong, R.J.; Kaye, A.D.; Urman, R.D. Evidence-based non-pharmacological therapies for fibromyalgia. Curr. Pain Headache Rep. 2018, 22, 33–37. [Google Scholar] [CrossRef]
- Rossi, A.; Di Lollo, A.; Guzzo, M.; Giacomelli, C.; Atzeni, F.; Bazzichi, L.; Di Franco, M. Fibromyalgia and nutrition: What news? Clin. Exp. Rheumatol. 2015, 33 (Suppl. 88), 117–125. [Google Scholar]
- Holton, K. The role of diet in the treatment of fibromyalgia. Pain Manag. 2016, 6, 317–320. [Google Scholar] [CrossRef] [Green Version]
- Bjørklund, G.; Dadar, M.; Chirumbolo, S.; Aaseth, J. Fibromyalgia and nutrition: Therapeutic possibilities? Biomed. Pharmacother. 2018, 103, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Arranz, L.I.; Canela, M.Á.; Rafecas, M. Dietary aspects in fibromyalgia patients: Results of a survey on food awareness, allergies, and nutritional supplementation. Rheumatol. Int. 2012, 32, 2615–2621. [Google Scholar] [CrossRef] [PubMed]
- Joustra, M.L.; Minovic, I.; Janssens, K.A.M.; Bakker, S.J.L.; Rosmalen, J.G.M. Vitamin and mineral status in chronic fatigue syndrome and fibromyalgia syndrome: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0176631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warner, A.E.; Arnspiger, S.A. Diffuse musculoskeletal pain is not associated with low vitamin D levels or improved by treatment with vitamin D. J. Clin. Rheumatol. 2008, 14, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Arvold, D.S.; Odean, M.J.; Dornfeld, M.P.; Regal, R.R.; Arvold, J.G.; Karwoski, G.C.; Mast, D.J.; Sanford, P.B.; Sjoberg, R.J. Correlation of symptoms with vitamin D deficiency and symptom response to cholecalciferol treatment: A randomized controlled trial. Endocr. Pract. 2009, 15, 203–212. [Google Scholar] [CrossRef]
- Abokrysha, N.T. Vitamin D deficiency in women with fibromyalgia in Saudi Arabia. Pain Med. 2012, 13, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Wepner, F.; Scheuer, R.; Schuetz-Wieser, B.; Machacek, P.; Pieler-Bruha, E.; Cross, H.S.; Hahne, J.; Friedrich, M. Effects of vitamin D on patients with fibromyalgia syndrome: A randomized placebo-controlled trial. Pain 2014, 155, 261–268. [Google Scholar] [CrossRef]
- Yilmaz, R.; Salli, A.; Cingoz, H.T.; Kucuksen, S.; Ugurlu, H. Efficacy of vitamin D replacement therapy on patients with chronic nonspecific widespread musculoskeletal pain with vitamin D deficiency. Int. J. Rheum. Dis. 2016, 19, 1255–1262. [Google Scholar] [CrossRef] [Green Version]
- Dogru, A.; Balkarli, A.; Cobankara, V.; Tunc, S.E.; Sahin, M. Effects of vitamin d therapy on quality of life in patients with fibromyalgia. Eurasian. J. Med. 2017, 49, 113–117. [Google Scholar] [CrossRef]
- De Carvalho, J.F.; da Rocha Araújo, F.A.G.; da Mota, L.M.A.; Aires, R.B.; de Araujo, R.P. Vitamin D supplementation seems to improve fibromyalgia symptoms: Preliminary results. Isr. Med. Assoc. J. 2018, 20, 379–381. [Google Scholar]
- Mirzaei, A.; Zabihiyeganeh, M.; Jahed, S.A.; Khiabani, E.; Nojomi, M.; Ghaffari, S. Effects of vitamin D optimization on quality of life of patients with fibromyalgia: A randomized controlled trial. Med. J. Islam. Repub. Iran 2018, 32, 29–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naziroglu, M.; Akkus, S.; Soyupek, F.; Yalman, K.; Çelik, O.; Eris, S.; Uslusoy, G.A. Vitamins C and E treatment combined with exercise modulates oxidative stress markers in blood of patients with fibromyalgia: A controlled clinical pilot study. Stress 2010, 13, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Russell, I.J.; Michalek, J.E.; Flechas, J.D.; Abraham, G.E. Treatment of fibromyalgia syndrome with super malic: A randomized, double blind, placebo controlled, crossover pilot study. J. Rheumatol. 1995, 22, 953–958. [Google Scholar] [PubMed]
- Bagis, S.; Karabiber, M.; As, I.; Tamer, L.; Erdogan, C.; Atalay, A. Is magnesium citrate treatment effective on pain, clinical parameters and functional status in patients with fibromyalgia? Rheumatol. Int. 2013, 33, 167–172. [Google Scholar] [CrossRef]
- Boomershine, C.S.; Koch, T.A.; Morris, D. A blinded, randomized, placebo-controlled study to investigate the efficacy and safety of ferric carboxymaltose in iron-deficient patients with fibromyalgia. Rheumatol. Ther. 2018, 5, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Roman, P.; Estévez, A.F.; Miras, A.; Sánchez-Labraca, N.; Cañadas, F.; Vivas, A.B.; Cardona, D. A pilot randomized controlled trial to explore cognitive and emotional effects of probiotics in fibromyalgia. Sci. Rep. 2018, 8, 10965. [Google Scholar] [CrossRef]
- Al-Allaf, A.; Mole, P.; Paterson, C.; Pullar, T. Bone health in patients with fibromyalgia. Rheumatology 2003, 42, 1202–1206. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, D.; Meenagh, G.; Bickle, I.; Lee, A.; Curran, E.S.; Finch, M. Vitamin D deficiency is associated with anxiety and depression in fibromyalgia. Clin. Rheumatol. 2007, 26, 551–554. [Google Scholar] [CrossRef]
- Olama, S.M.; Senna, M.K.; Elarman, M.M.; Elhawary, G. Serum vitamin D level and bone mineral density in premenopausal egyptian women with fibromyalgia. Rheumatol. Int. 2013, 33, 185–192. [Google Scholar] [CrossRef]
- Ulatowski, L.M.; Manor, D. Vitamin E and neurodegeneration. Neurobiol. Dis. 2015, 84, 78–83. [Google Scholar] [CrossRef]
- Engen, D.J.; McAllister, S.J.; Whipple, M.O.; Cha, S.S.; Dion, L.J.; Vincent, A.; Bauer, B.A.; Wahner-Roedler, D.L. Effects of transdermal magnesium chloride on quality of life for patients with fibromyalgia: A feasibility study. J. Integr. Med. 2015, 13, 306–313. [Google Scholar] [CrossRef]
- Kasim, A.A. Calcium, magnesium and phosphorous levels in serum of iraqi women with fibromyalgia. Iraqi J. Pharm. Sci. 2017, 20, 34–37. [Google Scholar]
- Andretta, A.; Batista, E.D.; Schieferdecker, M.E.M.; Petterle, R.R.; Boguszewski, C.L.; Paiva, E.D.S. Relation between magnesium and calcium and parameters of pain, quality of life and depression in women with fibromyalgia. Adv. Rheumatol. 2019, 59, 55–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porter, N.S.; Jason, L.A.; Boulton, A.; Bothne, N.; Coleman, B. Alternative medical interventions used in the treatment and management of myalgic encephalomyelitis/chronic fatigue syndrome and fibromyalgia. J. Altern. Complement. Med. 2010, 16, 235–249. [Google Scholar] [CrossRef] [PubMed]
- Pamuk, G.E.; Pamuk, O.N.; Set, T.; Harmandar, O.; Yeşil, N. An increased prevalence of fibromyalgia in iron deficiency anemia and thalassemia minor and associated factors. Clin. Rheumatol. 2008, 27, 1103–1108. [Google Scholar] [CrossRef]
- Ortancil, O.; Sanli, A.; Eryuksel, R.; Basaran, A.; Ankarali, H. Association between serum ferritin level and fibromyalgia syndrome. Eur. J. Clin. Nutr. 2010, 64, 308–312. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, K.M.; Lee, D.J.; Kim, B.T.; Park, S.B.; Cho, D.Y.; Suh, C.H.; Kim, H.A.; Park, R.W.; Joo, N.S. Women with fibromyalgia have lower levels of calcium, magnesium, iron and manganese in hair mineral analysis. J. Korean Med. Sci. 2011, 26, 1253–1257. [Google Scholar] [CrossRef]
- Minerbi, A.; Fitzcharles, M.A. Gut microbiome: Pertinence in fibromyalgia. Clin. Exp. Rheumatol. 2020, 38 (Suppl. 123), 99–104. [Google Scholar]
- Bazzichi, L.; Palego, L.; Giannaccini, G.; Rossi, A.; De Feo, F.; Giacomelli, C.; Betti, L.; Giusti, L.; Mascia, G.; Bombardieri, S.; et al. Altered amino acid homeostasis in subjects affected by fibromyalgia. Clin. Biochem. 2009, 42, 1064–1070. [Google Scholar] [CrossRef]
- Schwarz, M.J.; Offenbaecher, M.; Neumeister, A.; Ackenheil, M. Experimental evaluation of an altered tryptophan metabolism in fibromyalgia. Adv. Exp. Med. Biol. 2003, 527, 265–275. [Google Scholar]
- Rus, A.; Molina, F.; Ramos, M.M.; Martínez-Ramírez, M.J.; Del Moral, M.L. Extra virgin olive oil improves oxidative stress, functional capacity, and health-related psychological status in patients with fibromyalgia: A preliminary study. Biol. Res. Nurs. 2017, 19, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Rus, A.; Molina, F.; Martínez-Ramírez, M.J.; Aguilar-Ferrándiz, M.E.; Carmona, R.; Del Moral, M.L. Effects of olive oil consumption on cardiovascular risk factors in patients with fibromyalgia. Nutrients 2020, 12, 918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagliai, G.; Colombini, B.; Dinu, M.; Whittaker, A.; Masoni, A.; Danza, G.; Amedei, A.; Ballerini, G.; Benedettelli, S.; Sofi, F. Effectiveness of a Khorasan wheat-based replacement on pain symptoms and quality of life in patients with fibromyalgia. Pain Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Holton, K.F.; Taren, D.L.; Thomson, C.A.; Bennett, R.M.; Jones, K.D. The effect of dietary glutamate on fibromyalgia and irritable bowel symptoms. Clin. Exp. Rheumatol. 2012, 30 (Suppl. 74), 10–17. [Google Scholar] [PubMed]
- Vellisca, M.Y.; Latorre, J.I. Monosodium glutamate and aspartame in perceived pain in fibromyalgia. Rheumatol. Int. 2014, 34, 1011–1013. [Google Scholar] [CrossRef]
- Rodrigo, L.; Blanco, I.; Bobes, J.; de Serres, F.J. Clinical impact of a gluten-free diet on health-related quality of life in seven fibromyalgia syndrome patients with associated celiac disease. BMC Gastroenterol. 2013, 13, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigo, L.; Blanco, I.; Bobes, J.; de Serres, F.J. Effect of one year of a gluten-free diet on the clinical evolution of irritable bowel syndrome plus fibromyalgia in patients with associated lymphocytic enteritis: A case-control study. Arthritis Res. Ther. 2014, 16, 421–431. [Google Scholar]
- Isasi, C.; Colmenero, I.; Casco, F.; Tejerina, E.; Fernandez, N.; Serrano-Vela, J.I.; Castro, M.J.; Villa, L.F. Fibromyalgia and non-celiac gluten sensitivity: A description with remission of fibromyalgia. Rheumatol. Int. 2014, 34, 1607–1612. [Google Scholar] [CrossRef] [Green Version]
- Slim, M.; Calandre, E.P.; Garcia-Leiva, J.M.; Rico-Villademoros, F.; Molina-Barea, R.; Rodriguez-Lopez, C.M.; Morillas-Arques, P. The effects of a gluten-free diet versus a hypocaloric diet among patients with fibromyalgia experiencing gluten sensitivity-like symptoms: A pilot, open-label randomized clinical trial. J. Clin. Gastroenterol. 2017, 51, 500–507. [Google Scholar] [CrossRef]
- Marum, A.P.; Moreira, C.; Saraiva, F.; Tomas-Carus, P.; Sousa-Guerreiro, C. A low fermentable oligo-di-mono saccharides and polyols (FODMAP) diet reduced pain and improved daily life in fibromyalgia patients. Scand. J. Pain 2016, 13, 166–172. [Google Scholar] [CrossRef]
- Marum, A.P.; Moreira, C.; Tomas-Carus, P.; Saraiva, F.; Guerreiro, C.S. A low fermentable oligo-di-mono-saccharides and polyols (FODMAP)diet is a balanced therapy for fibromyalgia with nutritional and symptomatic benefits. Nutr. Hosp. 2017, 34, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, J.R.; Anderson, D.A.; Danoff-Burg, S. A pilot study of the effects of behavioral weight loss treatment on fibromyalgia symptoms. J. Psychosom. Res. 2005, 59, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Senna, M.K.; Sallam, R.A.; Ashour, H.S.; Elarman, M. Effect of weight reduction on the quality of life in obese patients with fibromyalgia syndrome: A randomized controlled trial. Clin. Rheumatol. 2012, 31, 1591–1597. [Google Scholar] [CrossRef] [PubMed]
- Schrepf, A.; Harte, S.E.; Miller, N.; Fowler, C.; Nay, C.; Williams, D.A.; Clauw, D.J.; Rothberg, A. Improvement in the spatial distribution of pain, somatic symptoms, and depression following a weight-loss intervention. J. Pain 2017, 18, 1542–1550. [Google Scholar] [CrossRef]
- Hostmark, A.T.; Lystad, E.; Vellar, O.D.; Hovi, K.; Berg, J.E. Reduced plasma fibrinogen, serum peroxides, lipids, and apolipoproteins after a 3-week vegetarian diet. Plant Foods Hum. Nutr. 1993, 43, 55–61. [Google Scholar] [CrossRef]
- Azad, K.A.; Alam, M.N.; Haq, S.A.; Nahar, S.; Chowdhury, M.A.; Ali, S.M.; Ullah, A.K. Vegetarian diet in the treatment of fibromyalgia. Bangladesh Med. Res. Counc. Bull. 2000, 26, 41–47. [Google Scholar]
- Kaartinen, K.; Lammi, K.; Hypen, M.; Nenonen, M.; Hanninen, O.; Rauma, A.L. Vegan diet alleviates fibromyalgia symptoms. Scand. J. Rheumatol. 2000, 29, 308–313. [Google Scholar] [CrossRef]
- Hänninen, O.; Kaartinen, K.; Rauma, A.L.; Nenonen, M.; Törrönen, R.; Häkkinen, A.S.; Adlercreutz, H.; Laakso, J. Antioxidants in vegan diet and rheumatic disorders. Toxicology 2000, 155, 45–53. [Google Scholar] [CrossRef]
- Donaldson, M.S.; Speight, N.; Loomis, S. Fibromyalgia syndrome improved using a mostly raw vegetarian diet: An observational study. BMC Complement. Altern. Med. 2001, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Rodríguez, A.; Leyva-Vela, B.; Martínez-García, A.; Nadal-Nicolás, Y. Efectos de la dieta lacto-vegetariana y ejercicios de estabilización del core sobre la composición corporal y el dolor en mujeres con fibromialgia: Ensayo controlado aleatorizado [Effects of lacto-vegetarian diet and stabilization core exercises on body composition and pain in women with fibromyalgia: Randomized controlled trial]. Nutr. Hosp. 2018, 35, 392–399. [Google Scholar]
- Michalsen, A.; Riegert, M.; Lüdtke, R.; Bäcker, M.; Langhorst, J.; Schwickert, M.; Dobos, G.J. Mediterranean diet or extended fasting’s influence on changing the intestinal microflora, immunoglobulin A secretion and clinical outcome in patients with rheumatoid arthritis and fibromyalgia: An observational study. BMC Complement. Altern. Med. 2005, 5, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Rodríguez, A.; Rubio-Arias, J.Á.; Ramos-Campo, D.J.; Reche-García, C.; Leyva-Vela, B.; Nadal-Nicolás, Y. Psychological and sleep effects of tryptophan and magnesium-enriched mediterranean diet in women with fibromyalgia. Int. J. Environ. Res. Public Health 2020, 17, 2227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whittaker, A.; Dinu, M.; Cesari, F.; Gori, A.M.; Fiorillo, C.; Becatti, M.; Casini, A.; Marcucci, R.; Benedettelli, S.; Sofi, F. A Khorasan wheat-based replacement diet improves risk profile of patients with type 2 diabetes mellitus (T2DM): A randomized crossover trial. Eur. J. Nutr. 2017, 56, 1191–1200. [Google Scholar] [CrossRef] [Green Version]
- Dinu, M.; Whittaker, A.; Pagliai, G.; Giangrandi, I.; Colombini, B.; Gori, A.M.; Fiorillo, C.; Becatti, M.; Casini, A.; Benedettelli, S.; et al. A Khorasan wheat-based replacement diet improves risk profile of patients with nonalcoholic fatty liver disease (NAFLD): A randomized clinical trial. J. Am. Coll. Nutr. 2018, 37, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Sofi, F.; Whittaker, A.; Cesari, F.; Gori, A.M.; Fiorillo, C.; Becatti, M.; Marotti, I.; Dinelli, G.; Casini, A.; Abbate, R.; et al. Characterization of Khorasan wheat (Kamut) and impact of a replacement diet on cardiovascular risk factors: Cross-over dietary intervention study. Eur. J. Clin. Nutr. 2013, 67, 190–195. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.D.; Terpening, C.M.; Schmidt, S.O.; Gums, J.G. Relief of fibromyalgia symptoms following discontinuation of dietary excitotoxins. Ann. Pharmacother. 2001, 35, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Ciappuccini, R.; Ansemant, T.; Maillefert, J.F.; Tavernier, C.; Ornetti, P. Aspartame-induced fibromyalgia, an unusual but curable cause of chronic pain. Clin. Exp. Rheumatol. 2010, 28 (Suppl. 63), S131–S133. [Google Scholar] [PubMed]
- Orlando, A.; Tutino, V.; Notarnicola, M.; Riezzo, G.; Linsalata, M.; Clemente, C.; Prospero, L.; Martulli, M.; D′Attoma, B.; De Nunzio, V.; et al. Improved symptom profiles and minimal inflammation in IBS-D patients undergoing a long-term low-FODMAP diet: A lipidomic perspective. Nutrients 2020, 12, 1652. [Google Scholar] [CrossRef]
- Helfenstein, M.; Heymann, R.; Feldman, D. Prevalence of irritable bowel syndrome in patients with fibromyalgia. Rev. Bras. Reum. 2006, 46, 16–23. [Google Scholar]
- Arranz, L.I.; Canela, M.A.; Rafecas, M. Fibromyalgia and nutrition, what do we know? Rheumatol. Int. 2010, 30, 1417–1427. [Google Scholar] [CrossRef] [Green Version]
- Steck, S.; Shivappa, N.; Tabung, F.; Harmon, B.; Wirth, M.; Hurley, T.; Hebert, J. The dietary inflammatory index: A new tool for assessing diet quality based on inflammatory potential. Digest 2014, 49, 1–10. [Google Scholar]
- Correa-Rodríguez, M.; El Mansouri-Yachou, J.; Tapia-Haro, R.M.; Molina, F.; Rus, A.; Rueda-Medin, A.B.; Aguilar-Ferrandiz, M.E. Mediterranean diet, body composition, and activity associated with bone health in women with fibromyalgia syndrome. Nurs. Res. 2019, 68, 358–364. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Country | Intervention, n | Control, n | Age, y | Sex | Duration | Intervention | Control | Outcomes | Findings | Efficacy * |
---|---|---|---|---|---|---|---|---|---|---|---|
Vitamin D | |||||||||||
Warner et al., 2008 [24] | US | 25 | 25 | 58.0 ± 7.3 intervention; 56.7 ± 11.3 control | F | 12 weeks | 50,000 IU of oral ergocalciferol weekly | Placebo | 25(OH)D, duration of pain, VAS, FPS | 25(OH)D increase in the intervention group; no difference in duration of pain, VAS and FPS score | = |
Arvold et al., 2009 [25] | US | 48 | 42 | 59.7 ± 14.0 intervention; 57.8 ± 15.8 control | All | 8 weeks | 50,000 IU of oral cholecalciferol weekly | Placebo | 25(OH)D, PTH, creatinine, calcium, self-reported symptoms, FIQ | 25(OH)D increase and PTH decrease in the intervention group. 5 out 20 FIQ items and total FIQ score improved after intervention. Severely deficient patients did not show symptom improvement | + |
Abokrysha et al., 2012 [26] | Saudi Arabia | 30 | NA | 34.6 ± 8.1 | F | 8 weeks | 600,000 IU of intramuscular single dose or 50,000 IU oral cholecalciferol weekly | NA | WPI, fatigue, waking unrefreshed, cognition, SS | Improvement of WPI, fatigue, waking unrefreshed and SS score after treatment | + |
Wepner et al., 2014 [27] | Austria | 15 | 15 | 48.4 ± 5.3 | All | 20 weeks | 2400 IU or 1200 IU (according to serum calcifediol levels) of cholecalciferol daily | Placebo | Calcifediol, pain severity (VAS), SF-36; HADS-D, FIQ, SCL-90-R | Severity of pain and physical role functioning scale improved after intervention | +/= |
Yilmaz et al., 2016 [28] | Turkey | 30 | NA | 36.9 ± 9.2 | All | 12 weeks | 50,000 IU of oral cholecalciferol weekly | NA | Ca, P, ALP, 25(OH) D, pain severity (VAS), asthenia (VAS), TPC, BDI, SF-36, waking unrefreshed, headache, tenderness on tibia | Marked decrease in pain, asthenia, severity of waking unrefreshed, TPC, and BDI and improvement in quality of life after treatment | + |
Dogru et al., 2017 [29] | Turkey | 42 | 28 | 38.7 ± 5.2 | F | 12 weeks | 50,000 IU of oral cholecalciferol weekly | No treatment | FIQ, SF-36, pain severity (VAS), ASEX, BDI | Improvements in physical function, physical role limitations, emotional role limitations, social function, mental health, vitality, and quality of life after treatment | + |
de Carvalho et al., 2018 [30] | Brazil | 11 | NA | 48.5 (28-67) | F | 12 weeks | 50,000 IU of oral cholecalciferol weekly | NA | 25(OH)D, pain severity (VAS), TPC | Improvements in 25(OH)D levels, pain severity and reduction in TPC | + |
Mirzaei et al., 2018 [31] | Iran | 37 | 37 | 42.1 ± 10.8 intervention; 41.0 ± 10.3 control | All | 8 weeks | Trazodone 25 mg + 50,000 IU of oral cholecalciferol weekly | Trazodone 25 mg + placebo | 25(OH)D, WPI, FIQ, PSQI, SF-36 | Improvement in 25(OH)D, WPI, FIQ, PSQI and SF-36 in the intervention group | + |
Vitamin C + E | |||||||||||
Naziroglu et al., 2010 [32] | Turkey | 21 (n = 11 vit. C + E; n = 10) vit. C+E + exercise) | 11 | 40.5 ± 4.9 vit. C + E; 37.4 ± 4.0 vit. C + E + exercise; 37.8 ± 8.7 control | F | 12 weeks | 150 mg/day of α -tocopheryl acetate and 500 mg/day ascorbic acid or 150 mg/day of α -tocopheryl acetate and 500 mg/day ascorbic acid + exercise | Exercise | Vitamin A, C and E, β-carotene, LP, GSH, GSH-Px, pain severity (VAS) | Improvement of LP, GSH, GSH- Px and plasma vitamins A, C, and E after the supplementations with or without exercise | +/= |
Magnesium | |||||||||||
Russell et al., 1995 [33] | US | 12 | 12 | 49 | F | 4 weeks | 200 mg malic acid + 50 mg magnesium, 3 tablets/day up to 6 tablets/day | Placebo | Pain severity (VAS), TPC, TPA, HAQ, CESD, Hassle, psychological response to events | Little or no effect with low doses; improvements in the severity of primary pain/tenderness measures with dose escalation and a longer duration of treatment | +/= |
Bagis et al., 2013 [34] | Turkey | 40 (n = 20 Mg citrate; n = 20 Mg citrate + amitriptyline) | 20 | 40.2 ± 5.1 Mg citrate;40.7 ± 5.2 Mg citrate + amitriptyline; 42.1 ± 6.2 control | F | 8 weeks | 300 mg/day of Mg citrate or 300 mg/day of Mg citrate + 10 mg/day amitriptyline | 10 mg/day amitriptyline | Pain severity (VAS), TPC, FIQ, BDI, BAI, self-reported symptoms | Improvement in TPC, FIQ and BDI with the Mg citrate treatment. Improvement in almost all parameters except for pain, FIQ, headache, gastric problems, IBS, cramps after amitriptyline treatment. Improvement in all parameters except numbness after the combined amitriptyline + Mg citrate treatment | + |
Iron | |||||||||||
Boomershine et al., 2018 [35] | US | 41 | 40 | 41.2 ± 11.1 intervention; 43.9 ± 10.8 control | All | 6 weeks | 15 mg/kg (up to 750 mg) of ferric carboxymaltose for 5 days | Placebo | Iron indices, hematology parameters, FIQR, BPI, MOS Sleep scale, Fatigue VNS | Improvement in FIQ, BPI, fatigue and iron indices in the treatment group. | + |
Probiotics | |||||||||||
Roman et al., 2018 [36] | Spain | 20 | 20 | 55.0 ± 8.4 intervention; 50.3 ± 7.9 control | All | 7 weeks | 4 pills/day containing Lactobacillus Rhamnosus GG®, Casei, Acidophilus, and Bifidobacterium Bifidus | Placebo | Pain severity (VAS), FIQ, SF-36, BDI, STAI, MMSE, cortisol | Improved impulsivity and decision-making after the intervention | +/= |
Author, Year | Country | Intervention, n | Control, n | Age, y | Sex | Duration | Intervention | Control | Outcomes | Findings | Efficacy * |
---|---|---|---|---|---|---|---|---|---|---|---|
Olive oil | |||||||||||
Rus et al., 2017 [51] | Spain | 11 | 12 | 53.6 ± 5.5 intervention; 48.2 ± 8.0 control | F | 3 weeks | 50 mL/die EVOO | 50 mL/die ROO | BMI, SBP, DBP, cardiac frequency, oxidative stress markers, antioxidative markers, FIQ, pain severity (VAS), PCS-12, MCS-12 | Improvement in protein carbonyls, lipid peroxidation, FIQ and mental health status after the intervention with EVOO | + |
Rus et al., 2020 [52] | Spain | 15 | 15 | 54.1 ± 5.6 intervention; 49.8 ± 5.8 control | F | 3 weeks | 50 mL/die EVOO | 50 mL/die ROO | weight, BMI, waist circumference, thrombosis-related parameters, ESR, inflammatory markers, NO, lipid profile, cortisol | EVOO declined red blood cell count and ESR. ROO increased mean platelet volume and reduced PDW, neutrophil-to-lymphocyte ratio, ESR and fibrinogen. Significant differences in pre–post change between EVOO and ROO for cortisol and PDW | + |
Ancient grain | |||||||||||
Pagliai et al., 2020 [53] | Italy | 10 | 10 | 46.2 ± 11.5 intervention; 51.7 ± 12.9 control | All | 8 weeks | Pasta, bread, cracker, biscuits made with ancient grain Khorasan | Pasta, bread, cracker, biscuits made with modern grain Palesio | WPI, SS, FIQ, FSS, TSS, SRSBQ, RSQD, FOSQ | Improvement in WPI + SS, FIQ and FOSQ after the intervention | + |
MSG and aspartame-free diet | |||||||||||
Holton et al., 2012 [54] | US | 46 | NA | 53.0 ± 13.0 | All | 4 weeks | MSG and aspartame-free diet | NA | 28-symptom checklist, pain severity (VAS), FIQR, IBS QOL | Improvement in all the tested outcomes after the intervention | + |
Vellisca et al., 2014 [55] | Spain | 36 | 36 | 42.3 ± 8.4 intervention; 39.6 ± 8.2 control | F | 12 weeks | MSG and aspartame-free diet | Free diet | Pain severity (VAS) | No significant differences in pain referred after the intervention | = |
Gluten-free diet | |||||||||||
Rodrigo et al., 2013 [56] | Spain | 7 | NA | 49.0 ± 12.0 | F | 1 year | Gluten-free diet | NA | TPC, FIQ, HAQ, SF-36, gastrointestinal complaints (VAS), pain severity (VAS), fatigue (VAS), tTG | Improvement of all the tested outcomes after the intervention | + |
Rodrigo et al., 2014 [57] | Spain | 97 | NA | 50.0 ± 8.0 | All | 1 year | Gluten-free diet | NA | TPC, FIQ, HAQ, SF-36, gastrointestinal complaints (VAS), pain severity (VAS), fatigue (VAS) | Improvement of all the tested outcomes after the intervention only in the lymphocytic enteritis subgroup | + |
Isasi et al., 2014 [58] | Spain | 20 | NA | 46 (25–73) | F | 16 months | Gluten-free diet | NA | Widespread pain, return to work, return to normal life | Improvement of all the tested outcomes after the intervention | + |
Slim et al., 2017 [59] | Spain | 35 | 40 | 52 (36–66) intervention; 53 (32–65) control | F | 24 weeks | Gluten-free diet | Hypocaloric diet | NCGS symptoms, BMI, waist circumference, FIQR, PSQI, BPI-SF, BDI, STAI, SF-12, PGI-S | No statistically significant difference in the tested outcomes between intervention and control treatment | = |
Low-FODMAPs diet | |||||||||||
Marum et al., 2016 [60] | Portugal | 38 | NA | 38.5 ± 10.0 | F | 4 weeks | Low-FODMAPs diet | NA | FSQ, FIQR, IBS-SSS, EQ-5D, abdominal and somatic pain (VAS), satisfaction | Improvements in VAS, FSQ, FIQR and GI symptom | + |
Marum et al., 2017 [61] | Portugal | 38 | NA | 38.5 ± 10.0 | F | 4 weeks | Low-FODMAPs diet | NA | Body weight, BMI, body composition, waist circumference | Weight, BMI and waist circumference decreased after the intervention, but no significant effect on body composition | + |
Low-calorie diet | |||||||||||
Shapiro et al., 2005 [62] | US | 42 | NA | 54.5 ± 8.1 | F | 5 months | Hypocaloric diet (1200–1500 kcal/die) | NA | Body weight, BMI, waist circumference, FIQ, HAQ, MPI, BDI-II, STAI, QOL, BSQ | Improvement in pain, body image, anxiety, quality of life and depression after the intervention | + |
Senna et al., 2012 [63] | Egypt | 43 | 43 | 44.8 ± 13.6 intervention; 46.3 ± 14.4 control | All | 6 months | Hypocaloric diet (1200 kcal/die: 50% CHO, 30% Fat, 20% Protein) | Isocaloric diet | FIQ, TPC, BDI-II, PSQI, Body weight, BMI, waist circumference, IL-6, CRP | Improvements in pain, fatigue, depression, IL-6, CRP | + |
Schrepf et al., 2017 [64] | US | 123 | NA | 50.7 (23–69) | All | 12 weeks | Hypocaloric diet (800 kcal/die) | NA | Body weight, WPI, SS IDS, inflammatory markers | Improvements in pain, symptom severity, depression, FM scores, IL-10 after weight loss | + |
Vegetarian diet | |||||||||||
Hostmark et al., 1993 [65] | Norway | 10 | NA | 49.9 ± 4.1 | All | 3 weeks | Vegetarian diet | NA | Peroxides, lipid profile, apolipoproteins, fibrinogen | Improvements in serum peroxide concentration, fibrinogen, total cholesterol, apolipoprotein-B and -A | + |
Azad et al., 2000 [66] | Bangladesh | 37 | 41 | NA | All | 6 weeks | Vegetarian diet | Amitriptyline | Fatigue, insomnia, non-restorative sleep, pain severity (VAS), TPC | No statistically significant difference in the tested outcomes between intervention and control treatment | = |
Kaartinen et al., 2000 [67] | Finland | 18 | 15 | 51 (34–62) intervention; 52 (37–59) control | F | 12 weeks | Raw vegan diet | Omnivorous diet | BMI, HAQ, TPC, pain severity (VAS), BDI, sleep, haematocrit, ESR, total cholesterol, urinary Na, GHQ, physical activity | Improvements in pain, autonomy, sleep quality, morning stiffness, total cholesterol and urinary Na after the intervention | + |
Hänninen et al., 2000 [68] | Finland | 33 | 20 | NA | 12 weeks | Raw vegan diet | Omnivorous diet | Antioxidants, lignan, carotenoids, vitamins, morning stiffness, pain severity (VAS) | Improvements of carotenoids, phenolic compounds, vitamin C and E, joint stiffness, pain, general well-being after the intervention | + | |
Donaldson et al., 2001 [69] | US | 30 | NA | NA | All | 7 months | Raw vegan diet | NA | FIQ, SF-36, QOL, physical performance | Improvement in pain, vitality, mobility, general well-being after the intervention | + |
Martínez-Rodríguez et al., 2018 [70] | Spain | 14 (n = 7 LOV; n = 7 LOV + exercise) | 7 | 34.0 ± 2.0 LOV + exercise; 34.0 ± 2.0 LOV; 33.0 ± 3.0 control | F | 4 weeks | LOV or LOV + exercise | Free diet and no exercise | Pain severity (VAS), body composition | Improvement in body composition and pain severity after the intervention with diet and exercise | + |
Mediterranean diet | |||||||||||
Michalsen et al., 2005 [71] | Germany | 14 | 21 | 51.6 ± 13.3 intervention; 52.0 ± 10.0 control | All | 8 weeks | Mediterranean diet | 8-days fasting | Gut microbiota composition, stool pH, IgA, pain severity (VAS) | No statistically significant difference in the tested outcomes between intervention and control treatment | = |
Martínez-Rodríguez et al., 2020 [72] | Spain | 11 | 11 | 48.0 ± 4.0 intervention; 50.0 ± 5.0 control | F | 16 weeks | Mediterranean diet + 60 mg of tryptophan and 60 mg of Mg | Mediterranean diet | PSQI, BSQ, STAI, POMS-29, EAT-26 | Improvements in anxiety, mood disturbance, eating disorders, dissatisfaction with body image after tryptophan and Mg-enriched Mediterranean diet | + |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagliai, G.; Giangrandi, I.; Dinu, M.; Sofi, F.; Colombini, B. Nutritional Interventions in the Management of Fibromyalgia Syndrome. Nutrients 2020, 12, 2525. https://doi.org/10.3390/nu12092525
Pagliai G, Giangrandi I, Dinu M, Sofi F, Colombini B. Nutritional Interventions in the Management of Fibromyalgia Syndrome. Nutrients. 2020; 12(9):2525. https://doi.org/10.3390/nu12092525
Chicago/Turabian StylePagliai, Giuditta, Ilaria Giangrandi, Monica Dinu, Francesco Sofi, and Barbara Colombini. 2020. "Nutritional Interventions in the Management of Fibromyalgia Syndrome" Nutrients 12, no. 9: 2525. https://doi.org/10.3390/nu12092525
APA StylePagliai, G., Giangrandi, I., Dinu, M., Sofi, F., & Colombini, B. (2020). Nutritional Interventions in the Management of Fibromyalgia Syndrome. Nutrients, 12(9), 2525. https://doi.org/10.3390/nu12092525