Nutritional Optic Neuropathies: State of the Art and Emerging Evidences
Abstract
:1. Introduction
2. Etiology
2.1. Vitamin B12 (Cobalamin)
2.2. Folic Acid (Vitamin B9)
2.3. Thiamine (Vitamin B1)
2.4. Copper
3. Diagnosis
4. Differential Diagnosis
4.1. Toxic Optic Neuropathies
4.2. Hereditary Optic Neuropathies
5. Treatment
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sadun, A.A. Metabolic optic neuropathies. Semin. Ophthalmol. 2002, 17, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Jefferis, J.M.; Hickman, S.J. Treatment and Outcomes in Nutritional Optic Neuropathy. Curr. Treat. Options Neurol. 2019, 21. [Google Scholar] [CrossRef] [PubMed]
- Chun, B.Y.; Rizzo, J.F. Dominant optic atrophy: Updates on the pathophysiology and clinical manifestations of the optic atrophy 1 mutation. Curr. Opin. Ophthalmol. 2016, 27, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Pilz, Y.L.; Bass, S.J.; Sherman, J. Revisión de las neuropatías ópticas mitocondriales: De las formas hereditarias a las adquiridas. J. Optom. 2017, 10, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Parrott, J.; Frank, L.; Rabena, R.; Craggs-Dino, L.; Isom, K.A.; Greiman, L. American Society for Metabolic and Bariatric Surgery Integrated Health Nutritional Guidelines for the Surgical Weight Loss Patient 2016 Update: Micronutrients. Surg. Obes. Relat. Dis. 2017, 13, 727–741. [Google Scholar] [CrossRef]
- Rizzo, G.; Laganà, A.S.; Rapisarda, A.M.C.; La Ferrera, G.M.G.; Buscema, M.; Rossetti, P.; Nigro, A.; Muscia, V.; Valenti, G.; Sapia, F.; et al. Vitamin B12 among Vegetarians: Status, Assessment and Supplementation. Nutrients 2016, 8, 767. [Google Scholar]
- Milea, D.; Cassoux, N.; LeHoang, P. Blindness in a strict vegan. N. Engl. J. Med. 2000, 342, 897–898. [Google Scholar] [CrossRef]
- Calderón-Ospina, C.A.; Nava-Mesa, M.O. B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci. Ther. 2020, 26, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, S.; Pandit, L. Approach to diagnosis and management of optic neuropathy. Neurol. India 2014, 62, 599–605. [Google Scholar] [CrossRef]
- Langan, R.C.; Goodbred, A.J. Vitamin B12 Deficiency: Recognition and Management. Am. Fam. Physician 2017, 96, 384–389. [Google Scholar] [CrossRef]
- Briani, C.; Dalla Torre, C.; Citton, V.; Manara, R.; Pompanin, S.; Binotto, G.; Adami, F. Cobalamin Deficiency: Clinical Picture and Radiological Findings. Nutrients 2013, 5, 4521–4539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suarez-Moreira, E.; Yun, J.; Birch, C.S.; Williams, J.H.H.; McCaddon, A.; Brasch, N.E. Vitamin B12 and redox homeostasis: Cob(II)alamin reacts with superoxide at rates approaching superoxide dismutase (SOD). J. Am. Chem. Soc. 2009, 131, 15078–15079. [Google Scholar] [CrossRef] [PubMed]
- Moreira, E.S.; Brasch, N.E.; Yun, J. Vitamin B12 protects against superoxide-induced cell injury in human aortic endothelial cells. Free Radic. Biol. Med. 2011, 51, 876–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol. 2003, 552, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.; Almasieh, M.; Catrinescu, M.M.; Levin, L.A. Cobalamin-Associated Superoxide Scavenging in Neuronal Cells Is a Potential Mechanism for Vitamin B12–Deprivation Optic Neuropathy. Am. J. Pathol. 2018, 188, 160–172. [Google Scholar] [CrossRef] [Green Version]
- Miller, N.R.; Newman, N.J. Walsh & Hoyt’s Clinical Neuro-Ophthalmology, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005. [Google Scholar]
- Ebara, S. Nutritional role of folate. Congenit. Anom. 2017, 57, 138–141. [Google Scholar] [CrossRef]
- Blom, H.J.; Smulders, Y. Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. J. Inherit. Metab. Dis. 2011, 34, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.L.; West, K.P.; Black, R.E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 2015, 66, 22–33. [Google Scholar] [CrossRef]
- De Silva, P.; Jayamanne, G.; Bolton, R. Folic acid deficiency optic neuropathy: A case report. J. Med. Case Rep. 2008, 2, 2–4. [Google Scholar] [CrossRef] [Green Version]
- Sijilmassi, O. Folic acid deficiency and vision: A review. Graefe Arch. Clin. Exp. Ophthalmol. 2019, 257, 1573–1580. [Google Scholar] [CrossRef]
- Weng, Q.; Wang, J.; Wang, J.; Tan, B.; Wang, J.; Wang, H.; Zheng, T.; Lu, Q.R.; Yang, B.; He, Q. Folate metabolism regulates oligodendrocyte survival and differentiation by modulating AMPKα activity. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Aleyasin, A.; Ghazanfari, M.; Houshmand, M. Leber hereditary optic neuropathy: Do folate pathway gene alterations influence the expression of mitochondrial DNA mutation? Iran. J. Public Health 2010, 39, 53–60. [Google Scholar] [PubMed]
- Mérida, S.; Palacios, E.; Navea, A.; Bosch-Morell, F. Macrophages and uveitis in experimental animal models. Mediat. Inflamm. 2015, 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sijilmassi, O.; López-Alonso, J.M.; Barrio Asensio, M.D.C.; Del Río Sevilla, A. Alteration of lens and retina textures from mice embryos with folic acid deficiency: Image processing analysis. Graefe Arch. Clin. Exp. Ophthalmol. 2019, 257, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Ota, Y.; Capizzano, A.A.; Moritani, T.; Naganawa, S.; Kurokawa, R.; Srinivasan, A. Comprehensive review of Wernicke encephalopathy: Pathophysiology, clinical symptoms and imaging findings. Jpn. J. Radiol. 2020, 1–12. [Google Scholar] [CrossRef]
- Desjardins, P.; Butterworth, R.F. Role of mitochondrial dysfunction and oxidative stress in the pathogenesis of selective neuronal loss in Wernicke’s encephalopathy. Mol. Neurobiol. 2005, 31, 17–25. [Google Scholar] [CrossRef]
- Gratton, S.M.; Lam, B.L. Visual loss and optic nerve head swelling in thiamine deficiency without prolonged dietary deficiency. Clin. Ophthalmol. 2014, 8, 1021–1024. [Google Scholar] [CrossRef] [Green Version]
- Sechi, G.; Serra, A. Wernicke’s encephalopathy: New clinical settings and recent advances in diagnosis and management. Lancet Neurol. 2007, 6, 442–455. [Google Scholar] [CrossRef]
- Yeh, W.Y.; Lian, L.M.; Chang, A.; Cheng, C.K. Thiamine-deficient optic neuropathy associated with Wernicke’s encephalopathy in patients with chronic diarrhea. J. Formos. Med. Assoc. 2013, 112, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Mumford, C.J. Papilloedema delaying diagnosis of Wernicke’s encephalopathy in a comatose patient. Postgrad. Med. J. 1989, 65, 371–373. [Google Scholar] [CrossRef] [Green Version]
- Sia, P.I.; Sia, D.I.T.; Crompton, J.L.; Casson, R.J. Nerve fiber layer infarcts in thiamine deficiency. J. Neuro-Ophthalmol. 2015, 35, 274–276. [Google Scholar] [CrossRef] [PubMed]
- Bohnsack, B.L.; Patel, S.S. Peripapillary nerve fiber layer thickening, telangiectasia, and retinal hemorrhages in Wernicke encephalopathy. J. Neuro-Ophthalmol. 2010, 30, 54–58. [Google Scholar] [CrossRef]
- Li, J.M.; Rucker, J.C. Irreversible optic neuropathy in Wernicke encephalopathy and leber hereditary optic neuropathy. J. Neuro-Ophthalmol. 2010, 30, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Lazarchick, J. Update on anemia and neutropenia in copper deficiency. Curr. Opin. Hematol. 2012, 19, 58–60. [Google Scholar] [CrossRef] [PubMed]
- Yarandi, S.S.; Griffith, D.P.; Sharma, R.; Mohan, A.; Zhao, V.M.; Ziegler, T.R. Optic neuropathy, myelopathy, anemia, and neutropenia caused by acquired copper deficiency after gastric bypass surgery. J. Clin. Gastroenterol. 2014, 48, 862–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naismith, R.T.; Shepherd, J.B.; Weihl, C.C.; Tutlam, N.T.; Cross, A.H. Acute and bilateral blindness due to optic neuropathy associated with copper deficiency. Arch. Neurol. 2009, 66, 1025–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Stavern, G.P. Metabolic, hereditary, traumatic, and neoplastic optic neuropathies. Contin. Lifelong Learn. Neurol. 2014, 20, 877–906. [Google Scholar] [CrossRef]
- Carelli, V.; Ross-Cisneros, F.N.; Sadun, A.A. Mitochondrial dysfunction as a cause of optic neuropathies. Prog. Retin. Eye Res. 2004, 23, 53–89. [Google Scholar] [CrossRef]
- Suzuki, S.; Kumanomido, T. Optic neuropathy from thiamine deficiency. Intern. Med. 1997, 36, 532. [Google Scholar] [CrossRef] [Green Version]
- Vieira, L.M.C.; Silva, N.F.A.; Dias Dos Santos, A.M.; Dos Anjos, R.S.; Pinto, L.A.P.A.; Vicente, A.R.; Borges, B.I.C.C.J.; Ferreira, J.P.T.; Amado, D.M.; Da Cunha, J.P.P.B. Retinal ganglion cell layer analysis by optical coherence tomography in toxic and nutritional optic neuropathy. J. Neuro-Ophthalmol. 2015, 35, 242–245. [Google Scholar] [CrossRef]
- Grzybowski, A.; Obuchowska, I.; Arndt, C. OCT in Toxic and Nutritional Optic Neuropathies. In OCT and Imaging in Central Nervous System Diseases; Springer International Publishing: Cham, Switzerland, 2016; pp. 375–400. [Google Scholar] [CrossRef]
- Grzybowski, A.; Zülsdorff, M.; Wilhelm, H.; Tonagel, F. Toxic optic neuropathies: An updated review. Acta Ophthalmol. 2015, 93, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Wazir, S.M.; Ghobrial, I. Copper deficiency, a new triad: Anemia, leucopenia, and myeloneuropathy. J. Community Hosp. Int. Med. Perspect. 2017, 7, 265–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margolin, E.; Shemesh, A. Optic Neuropathy, Toxic and Nutritional. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Green, R.; Datta Mitra, A. Megaloblastic Anemias: Nutritional and Other Causes. Med. Clin. 2017, 101, 297–317. [Google Scholar] [CrossRef]
- Carmel, R.; Green, R.; Rosenblatt, D.S.; Watkins, D. Update on cobalamin, folate, and homocysteine. Hematol. Am. Soc. Hematol. Educ. Program 2003, 62–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitfield, K.C.; Bourassa, M.W.; Adamolekun, B.; Bergeron, G.; Bettendorff, L.; Brown, K.H.; Cox, L.; Fattal-Valevski, A.; Fischer, P.R.; Frank, E.L.; et al. Thiamine deficiency disorders: Diagnosis, prevalence, and a roadmap for global control programs. Ann. N. Y. Acad. Sci. 2018, 1430, 3–43. [Google Scholar] [CrossRef]
- Atan, D. Challenges and opportunities in the diagnosis of nutritional optic neuropathy. Expert Rev. Ophthalmol. 2020, 15, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.Y.; Sadun, A.A. Drug-related mitochondrial optic neuropathies. J. Neuro-Ophthalmol. 2013, 33, 172–178. [Google Scholar] [CrossRef]
- Chun, B.Y.; Rizzo, J.F. Dominant Optic Atrophy and Leber’s Hereditary Optic Neuropathy: Update on Clinical Features and Current Therapeutic Approaches. Semin. Pediatr. Neurol. 2017, 24, 129–134. [Google Scholar] [CrossRef]
- Theodorou-Kanakari, A.; Karampitianis, S.; Karageorgou, V.; Kampourelli, E.; Kapasakis, E.; Theodossiadis, P.; Chatziralli, I. Current and Emerging Treatment Modalities for Leber’s Hereditary Optic Neuropathy: A Review of the Literature. Adv. Ther. 2018, 35, 1510–1518. [Google Scholar] [CrossRef]
- Lenaers, G.; Hamel, C.; Delettre, C.; Amati-Bonneau, P.; Procaccio, V.; Bonneau, D.; Reynier, P.; Milea, D. Dominant optic atrophy. Orphanet J. Rare Dis. 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Almind, G.J.; Ek, J.; Rosenberg, T.; Eiberg, H.; Larsen, M.; LuCamp, L.C.; Brøndum-Nielsen, K.; Grønskov, K. Dominant optic atrophy in Denmark—Report of 15 novel mutations in OPA1, using a strategy with a detection rate of 90%. BMC Med. Genet. 2012, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barboni, P.; Valentino, M.L.; La Morgia, C.; Carbonelli, M.; Savini, G.; De Negri, A.; Simonelli, F.; Sadun, F.; Caporali, L.; Maresca, A.; et al. Idebenone treatment in patients with OPA1-mutant dominant optic atrophy. Brain 2013, 136, e231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carelli, V.; Carbonelli, M.; De Coo, I.F.; Kawasaki, A.; Klopstock, T.; Lagrèze, W.A.; La Morgia, C.; Newman, N.J.; Orssaud, C.; Pott, J.W.R.; et al. International consensus statement on the clinical and therapeutic management of leber hereditary optic neuropathy. J. Neuro-Ophthalmol. 2017, 37, 371–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feuer, W.J.; Schiffman, J.C.; Davis, J.L.; Porciatti, V.; Gonzalez, P.; Koilkonda, R.D.; Yuan, H.; Lalwani, A.; Lam, B.L.; Guy, J. Gene Therapy for Leber Hereditary Optic Neuropathy: Initial Results. Ophthalmology 2016, 123, 558–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, X.; Pei, H.; Zhao, M.; Yang, S.; Hu, W.; He, H.; Ma, S.; Zhang, G.; Dong, X.; Chen, C.; et al. Efficacy and Safety of rAAV2-ND4 Treatment for Leber’s Hereditary Optic Neuropathy. Sci. Rep. 2016, 6, 21587. [Google Scholar] [CrossRef]
- Yang, S.; Ma, S.-Q.; Wan, X.; He, H.; Pei, H.; Zhao, M.-J.; Chen, C.; Wang, D.-W.; Dong, X.-Y.; Yuan, J.-J.; et al. Long-term outcomes of gene therapy for the treatment of Leber’s hereditary optic neuropathy. EBioMedicine 2016, 10, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Mu, M.; Kourti, P.; Brouzas, D.; Kawasaki, A.; Physics, B.; Federal, S.; Gonin, J.; Hospital, E. B12 deficiency, optic neuropathy and cyanocobalamin nasal spray. Acta Ophthalmol. 2020, 1–2. [Google Scholar] [CrossRef]
Symptoms |
---|
Progressive, bilateral, and symmetrical visual impairment |
Central or centrocecal scotoma |
Dyschromatopsia |
Loss of contrast sensitivity |
Signs |
No relative afferent pupillary defect (RAPD) |
Normal or hyperaemic optic disc (early stages)—except for thiamine deficiency where it is swollen already at early stages |
Temporal, then diffuse optic disc pallor (late stage) |
Thinning of RNFL in papillomacular bundle (early stage) |
Thinning of RNFL involves of all the quadrants (late stage) |
Normal or near normal latency with significantly reduced amplitude of VEP |
Test | |
---|---|
Colour vision tests (Ishihara plates, Panel 15D test) | Dyschromatopsia |
VF | Central or cecocentral scotoma |
VEP | Reduced amplitude, normal or near normal latency |
RNFL OCT | RNFL thinning |
ERG, OCT | To exclude retinal disease |
MRI | To exclude compressive or demyelinating diseases |
Normal | Pathologic | |
---|---|---|
Vitamin B12 | 200–900 pmol/L | <150 pmol/L |
Folate | 3–20 ng/mL | <3 ng/mL |
Thiamine | 75–195 nmol/L | <75 nmol/L |
Copper | 70–125 μg/dL | <70 μg/dL |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roda, M.; di Geronimo, N.; Pellegrini, M.; Schiavi, C. Nutritional Optic Neuropathies: State of the Art and Emerging Evidences. Nutrients 2020, 12, 2653. https://doi.org/10.3390/nu12092653
Roda M, di Geronimo N, Pellegrini M, Schiavi C. Nutritional Optic Neuropathies: State of the Art and Emerging Evidences. Nutrients. 2020; 12(9):2653. https://doi.org/10.3390/nu12092653
Chicago/Turabian StyleRoda, Matilde, Natalie di Geronimo, Marco Pellegrini, and Costantino Schiavi. 2020. "Nutritional Optic Neuropathies: State of the Art and Emerging Evidences" Nutrients 12, no. 9: 2653. https://doi.org/10.3390/nu12092653
APA StyleRoda, M., di Geronimo, N., Pellegrini, M., & Schiavi, C. (2020). Nutritional Optic Neuropathies: State of the Art and Emerging Evidences. Nutrients, 12(9), 2653. https://doi.org/10.3390/nu12092653