Genetics of Lactose Intolerance: An Updated Review and Online Interactive World Maps of Phenotype and Genotype Frequencies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Systematic Review Methodology
2.2. Construction of Interactive World Maps
3. Results and Discussion
3.1. Lactose: A Unique Sugar
3.2. The Lactase-Phlorizin Hydrolase Enzyme
3.3. Lactase Phenotypes and Their Genetic Origin
3.4. Lactase Phenotypes and Their Genetics Origin
3.5. Current Status of Genetics Aetiology of Lactase Persistence
3.6. Evolutionary Genetics of Lactase Persistence
- Lifelong access to nutrient-rich milk;
- Lifelong access to carbohydrate and fluid source, critical to pastoralists living in hot, arid environments;
- Lactose enhances calcium absorption, which may be compromised by low vitamin D synthesis in high latitude (northern) environments;
- Human consumption of bovine milk may accelerate reproductive maturation or physical growth, or contribute to larger adult size, possibly due to milk’s stimulatory effects on insulin-like growth factor-I.
3.7. New Insights into the Genetic Basis of Lactase Phenotypes: Epigenetics Alterations
3.8. Lactose Intolerance and Intestinal Microbiota
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Büller, H.A.; Grand, R.J. Lactose Intolerance. Annu. Rev. Med. 1990, 41, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, R.K.; Büller, H.A.; Rings, E.H.H.M.; Grand, R.J. Lactose intolerance and the genetic regulation of intestinal lactase-phlorizin hydrolase. FASEB J. 1991, 5, 2824–2832. [Google Scholar] [CrossRef] [PubMed]
- Naim, H.Y. Molecular and cellular aspects and regulation of intestinal lactase-phlorizin hydrolase. Histol. Histopathol. 2001, 16, 553–561. [Google Scholar] [PubMed]
- Swallow, D.M. Genetics of Lactase Persistence and Lactose Intolerance. Annu. Rev. Genet. 2003, 37, 197–219. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Maiuri, L.; Fusco, M.; Salvati, V.; Fuccio, A.; Auricchio, S.; Mantei, N.; Zecca, L.; Gloor, S.; Semenza, G. Lactase persistence versus decline in human adults: Multifactorial events are involved in down-regulation after weaning. Gastroenterology 1997, 112, 1506–1514. [Google Scholar] [CrossRef]
- Lee, M.-F.; Krasinski, S.D. Human Adult-Onset Lactase Decline: An Update. Nutr. Rev. 2009, 56, 1–8. [Google Scholar] [CrossRef]
- Ségurel, L.; Bon, C. On the Evolution of Lactase Persistence in Humans. Annu. Rev. Genom. Hum. Genet. 2017, 18, 297–319. [Google Scholar] [CrossRef]
- Weiss, K.M. The unkindest cup. Lancet 2004, 363, 1489–1490. [Google Scholar] [CrossRef]
- Liebert, A.; López, S.; Jones, B.L.; Montalva, N.; Gerbault, P.; Lau, W.; Thomas, M.G.; Bradman, N.; Maniatis, N.; Swallow, D.M. World-wide distributions of lactase persistence alleles and the complex effects of recombination and selection. Hum. Genet. 2017, 136, 1445–1453. [Google Scholar] [CrossRef] [Green Version]
- Enattah, N.S.; Jensen, T.G.K.; Nielsen, M.; Lewinski, R.; Kuokkanen, M.; Rasinpera, H.; El-Shanti, H.; Seo, J.K.; Alifrangis, M.; Khalil, I.F.; et al. Independent Introduction of Two Lactase-Persistence Alleles into Human Populations Reflects Different History of Adaptation to Milk Culture. Am. J. Hum. Genet. 2008, 82, 57–72. [Google Scholar] [CrossRef] [Green Version]
- Gibson, G. Human Evolution: Thrifty Genes and the Dairy Queen. Curr. Biol. 2007, 17, R295–R296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tishkoff, S.A.; Reed, F.A.; Ranciaro, A.; Voight, B.F.; Babbitt, C.C.; Silverman, J.S.; Powell, K.; Mortensen, H.M.; Hirbo, J.B.; Osman, M.; et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat. Genet. 2007, 39, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Ahn, J.K.; Wodziak, D.; Sibley, E. The human lactase persistence-associated SNP −13910*T enables in vivo functional persistence of lactase promoter–reporter transgene expression. Hum. Genet. 2012, 131, 1153–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingram, C.J.E.; Elamin, M.F.; Mulcare, C.A.; Weale, M.E.; Tarekegn, A.; Raga, T.O.; Bekele, E.; Elamin, F.M.; Thomas, M.G.; Bradman, N.; et al. A novel polymorphism associated with lactose tolerance in Africa: Multiple causes for lactase persistence? Hum. Genet. 2007, 120, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.G.K.; Liebert, A.; Lewinsky, R.; Swallow, D.M.; Olsen, J.; Troelsen, J.T. The −14010*C variant associated with lactase persistence is located between an Oct-1 and HNF1α binding site and increases lactase promoter activity. Hum. Genet. 2011, 130, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Troelsen, J.T.; Olsen, J.; Møller, J.; Sjöström, H. An Upstream Polymorphism Associated with Lactase Persistence has Increased Enhancer Activity. Gastroenterology 2003, 125, 1686–1694. [Google Scholar] [CrossRef]
- Itan, Y.; Jones, B.L.; Ingram, C.J.; Swallow, D.M.; Thomas, M.G. A worldwide correlation of lactase persistence phenotype and genotypes. BMC Evol. Biol. 2010, 10, 36. [Google Scholar] [CrossRef] [Green Version]
- Storhaug, C.L.; Fosse, S.K.; Fadnes, L.T. Country, regional, and global estimates for lactose malabsorption in adults: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2017, 2, 738–746. [Google Scholar] [CrossRef] [Green Version]
- Büning, C.; Schmidt, H.; Lochs, H.; Ockenga, J. Genetic Components of Lactose Intolerance and Community Frequency. J. Bone Miner. Res. 2004, 19, 1746. [Google Scholar] [CrossRef]
- Bayless, T.M.; Brown, E.; Paige, D.M. Lactase Non-persistence and Lactose Intolerance. Curr. Gastroenterol. Rep. 2017, 19, 23. [Google Scholar] [CrossRef]
- Vicente, M.; Priehodová, E.; Diallo, I.; Podgorná, E.; Poloni, E.S.; Černý, V.; Schlebusch, C.M. Population history and genetic adaptation of the Fulani nomads: Inferences from genome-wide data and the lactase persistence trait. BMC Genom. 2019, 20, 915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priehodová, E.; Austerlitz, F.; Čížková, M.; Mokhtar, M.G.; Poloni, E.S.; Černý, V. The historical spread of Arabian Pastoralists to the eastern African Sahel evidenced by the lactase persistence −13,915*G allele and mitochondrial DNA. Am. J. Hum. Biol. 2017, 29, e22950. [Google Scholar] [CrossRef] [PubMed]
- Zadro, C.; Dipresa, S.; Zorzetti, G.; Pediroda, A.; Menegoni, F. Lactase non-persistent genotype distribution in Italy. Minerva Gastroenterol. Dietol. 2017, 63, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Hubácek, J.A.; Adámková, V.; Šedová, L.; Olišarová, V.; Adámek, V.; Tóthová, V. Frequency of adult type-associated lactase persistence LCT-13910C/T genotypes in the Czech/Slav and Czech Roma/Gypsy populations. Genet. Mol. Biol. 2017, 40, 450–452. [Google Scholar] [CrossRef] [PubMed]
- Montalva, N.; Adhikari, K.; Liebert, A.; Mendoza-Revilla, J.; Flores, S.V.; Mace, R.; Swallow, D.M. Adaptation to milking agropastoralism in Chilean goat herders and nutritional benefit of lactase persistence. Ann. Hum. Genet. 2019, 83, 11–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brasen, C.L.; Frischknecht, L.; Ørnskov, D.; Andreasen, L.; Madsen, J.S. Combination of real-time PCR and sequencing to detect multiple clinically relevant genetic variations in the lactase gene. Scand. J. Clin. Lab. Investig. 2017, 77, 60–65. [Google Scholar] [CrossRef]
- Chin, E.L.; Huang, L.; Bouzid, Y.Y.; Kirschke, C.P.; Durbin-Johnson, B.; Baldiviez, L.M.; Bonnel, E.L.; Keim, N.L.; Korf, I.; Stephensen, C.B.; et al. Association of Lactase Persistence Genotypes (rs4988235) and Ethnicity with Dairy Intake in a Healthy U.S. Population. Nutrients 2019, 11, 1860. [Google Scholar] [CrossRef] [Green Version]
- Valencia, L.; Randazzo, A.; Engfeldt, P.; Olsson, L.A.; Chávez, A.; Buckland, R.J.; Nilsson, T.K.; Almon, R. Identification of novel genetic variants in the mutational hotspot region 14 kb upstream of the LCT gene in a Mexican population. Scand. J. Clin. Lab. Investig. 2017, 77, 311–314. [Google Scholar] [CrossRef]
- Bergholdt, H.K.M.; Nordestgaard, B.G.; Varbo, A.; Ellervik, C. Lactase persistence, milk intake, and mortality in the Danish general population: A Mendelian randomization study. Eur. J. Epidemiol. 2018, 33, 171–181. [Google Scholar] [CrossRef]
- Charati, H.; Peng, M.-S.; Chen, W.; Yang, X.-Y.; Jabbari Ori, R.; Aghajanpour-Mir, M.; Esmailizadeh, A.; Zhang, Y.-P. The evolutionary genetics of lactase persistence in seven ethnic groups across the Iranian plateau. Hum. Genom. 2019, 13, 7. [Google Scholar] [CrossRef] [Green Version]
- Leseva, M.N.; Grand, R.J.; Klett, H.; Boerries, M.; Busch, H.; Binder, A.M.; Michels, K.B. Differences in DNA Methylation and Functional Expression in Lactase Persistent and Non-persistent Individuals. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ben Halima, Y.; Kefi, R.; Sazzini, M.; Giuliani, C.; De Fanti, S.; Nouali, C.; Nagara, M.; Mengozzi, G.; Elouej, S.; Abid, A.; et al. Lactase persistence in Tunisia as a result of admixture with other Mediterranean populations. Genes Nutr. 2017, 12, 20. [Google Scholar] [CrossRef] [PubMed]
- Kozak, K.H.; Graham, C.H.; Wiens, J.J. Integrating GIS-based environmental data into evolutionary biology. Trends Ecol. Evol. 2008, 23, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, R.K.; Krasinski, S.D.; Hirschhorn, J.N.; Grand, R.J. Lactose and Lactase—Who Is Lactose Intolerant and Why? J. Pediatr. Gastroenterol. Nutr. 2007, 45, S131–S137. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 349, g7647. [Google Scholar] [CrossRef] [Green Version]
- Gil, A.; Fontana, L.; Sánchez de Medina, F. Tratado de Nutrición; Editorial Médica Panamericana: Madrid, Spain, 2017; ISBN 978-84-9773-895-8. [Google Scholar]
- Montgomery, R.K.; Mulberg, A.E.; Grand, R.J. Development of the human gastrointestinal tract: Twenty years of progress. Gastroenterology 1999, 116, 702–731. [Google Scholar] [CrossRef]
- Troelsen, J.T. Adult-type hypolactasia and regulation of lactase expression. Biochim. Biophys. Acta Gen. Subj. 2005, 1723, 19–32. [Google Scholar] [CrossRef]
- Van Beers, E.H.; Büller, H.A.; Grand, R.J.; Einerhand, A.W.C.; Dekker, J. Intestinal Brush Border Glycohydrolases: Structure, Function, and Development. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 197–262. [Google Scholar] [CrossRef]
- Newcomer, A.D.; McGill, D.B. Distribution of Disaccharidase Activity in the Small Bowel of Normal and Lactase-Deficient Subjects. Gastroenterology 1966, 51, 481–488. [Google Scholar] [CrossRef]
- Wang, Y.; Harvey, C.; Rousset, M.; Swallow, D.M. Expression of Human Intestinal mRNA Transcripts during Development: Analysis by a Semiquantitative RNA Polymerase Chain Reaction Method. Pediatr. Res. 1994, 36, 514–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boll, W.; Wagner, P.; Mantei, N. Structure of the chromosomal gene and cDNAs coding for lactase-phlorizin hydrolase in humans with adult-type hypolactasia or persistence of lactase. Am. J. Hum. Genet. 1991, 48, 889–902. [Google Scholar] [PubMed]
- Naim, H.Y.; Lentze, M.J. Impact of O-glycosylation on the function of human intestinal lactase-phlorizin hydrolase. Characterization of glycoforms varying in enzyme activity and localization of O-glycoside addition. J. Biol. Chem. 1992, 267, 25494–25504. [Google Scholar] [PubMed]
- Jacob, R.; Radebach, I.; Wuthrich, M.; Grunberg, J.; Sterchi, E.E.; Naim, H.Y. Maturation of Human Intestinal Lactase-Phlorizin Hydrolase. Generation of the Brush Border form of the Enzyme Involves at Least Two Proteolytic Cleavage Steps. Eur. J. Biochem. 1996, 236, 789–795. [Google Scholar] [CrossRef]
- Krasinski, S.; Upchurch, B.; Irons, S.; June, R.; Mishra, K.; Grand, R.; Verhave, M. Rat lactase-phlorizin hydrolase/human growth hormone transgene is expressed on small intestinal villi in transgenic mice. Gastroenterology 1997, 113, 844–855. [Google Scholar] [CrossRef]
- Lee, S.Y.; Wang, Z.; Lin, C.-K.; Contag, C.H.; Olds, L.C.; Cooper, A.D.; Sibley, E. Regulation of Intestine-specific Spatiotemporal Expression by the Rat Lactase Promoter. J. Biol. Chem. 2002, 277, 13099–13105. [Google Scholar] [CrossRef] [Green Version]
- Troelsen, J.T.; Mehlum, A.; Olsen, J.; Spodsberg, N.; Hansen, G.H.; Prydz, H.; Norén, O.; Sjöström, H. 1 kb of the lactase-phlorizin hydrolase promoter directs post-weaning decline and small intestinal-specific expression in transgenic mice. FEBS Lett. 1994, 342, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Boudreau, F.; Rings, E.H.H.M.; van Wering, H.M.; Kim, R.K.; Swain, G.P.; Krasinski, S.D.; Moffett, J.; Grand, R.J.; Suh, E.R.; Traber, P.G. Hepatocyte Nuclear Factor-1α, GATA-4, and Caudal Related Homeodomain Protein Cdx2 Interact Functionally to Modulate Intestinal Gene Transcription. J. Biol. Chem. 2002, 277, 31909–31917. [Google Scholar] [CrossRef] [Green Version]
- Krasinski, S.D.; Van Wering, H.M.; Tannemaat, M.R.; Grand, R.J. Differential activation of intestinal gene promoters: Functional interactions between GATA-5 and HNF-1α. Am. J. Physiol. Liver Physiol. 2001, 281, G69–G84. [Google Scholar] [CrossRef]
- Van Wering, H.M.; Bosse, T.; Musters, A.; De Jong, E.; De Jong, N.; Hogen Esch, C.E.; Boudreau, F.; Swain, G.P.; Dowling, L.N.; Montgomery, R.K.; et al. Complex regulation of the lactase-phlorizin hydrolase promoter by GATA-4. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 287. [Google Scholar] [CrossRef]
- van Wering, H.M.; Huibregtse, I.L.; van der Zwan, S.M.; de Bie, M.S.; Dowling, L.N.; Boudreau, F.; Rings, E.H.H.M.; Grand, R.J.; Krasinski, S.D. Physical Interaction between GATA-5 and Hepatocyte Nuclear Factor-1α Results in Synergistic Activation of the Human Lactase-Phlorizin Hydrolase Promoter. J. Biol. Chem. 2002, 277, 27659–27667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchelmore, C.; Troelsen, J.T.; Sjöström, H.; Norén, O. The HOXC11 Homeodomain Protein Interacts with the Lactase-Phlorizin Hydrolase Promoter and Stimulates HNF1α-dependent Transcription. J. Biol. Chem. 1998, 273, 13297–13306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchelmore, C.; Troelsen, J.T.; Spodsberg, N.; Sjöström, H.; Norén, O. Interaction between the homeodomain proteins Cdx2 and HNF1alpha mediates expression of the lactase-phlorizin hydrolase gene. Biochem. J. 2000, 346 Pt 2, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Spodsberg, N.; Troelsen, J.T.; Carlsson, P.; Enerbäck, S.; Sjöström, H.; Norén, O. Transcriptional regulation of pig lactase-phlorizin hydrolase: Involvement of HNF-1 and FREACs. Gastroenterology 1999, 116, 842–854. [Google Scholar] [CrossRef]
- Verhave, M.; Krasinski, S.D.; Christian, S.I.; Van Schaik, S.; van Den Brink, G.R.; Doting, E.M.H.; Maas, S.M.; Wolthers, K.C.; Grand, R.J.; Montgomery, R.K. Regulatory Regions in the Rat Lactase-Phlorizin Hydrolase Gene that Control Cell-Specific Expression. J. Pediatr. Gastroenterol. Nutr. 2004, 39, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Fang, R.; Olds, L.C.; Sibley, E. Transcriptional regulation of the lactase-phlorizin hydrolase promoter by PDX-1. Am. J. Physiol. Liver Physiol. 2004, 287, G555–G561. [Google Scholar] [CrossRef] [Green Version]
- Harvey, C.B.; Wang, Y.; Darmoul, D.; Phillips, A.; Mantei, N.; Swallow, D.M. Characterisation of a human homologue of a yeast cell division cycle gene, MCM6, located adjacent to the 5′ end of the lactase gene on chromosome 2q21. FEBS Lett. 1996, 398, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Ingram, C.J.E.; Mulcare, C.A.; Itan, Y.; Thomas, M.G.; Swallow, D.M. Lactose digestion and the evolutionary genetics of lactase persistence. Hum. Genet. 2009, 124, 579–591. [Google Scholar] [CrossRef]
- Diekmann, L.; Pfeiffer, K.; Naim, H.Y. Congenital lactose intolerance is triggered by severe mutations on both alleles of the lactase gene. BMC Gastroenterol. 2015, 15, 36. [Google Scholar] [CrossRef] [Green Version]
- Szilagyi, A. Adult Lactose Digestion Status and Effects on Disease. Can. J. Gastroenterol. Hepatol. 2015, 29, 149–156. [Google Scholar] [CrossRef]
- Ghoshal, U.C.; Kumar, S.; Misra, A.; Mittal, B. Lactose malabsorption diagnosed by 50-g dose is inferior to assess clinical intolerance and to predict response to milk withdrawal than 25-g dose in an endemic area. J. Gastroenterol. Hepatol. 2013, 28, 1462–1468. [Google Scholar] [CrossRef]
- Labrie, V.; Buske, O.J.; Oh, E.; Jeremian, R.; Ptak, C.; Gasiūnas, G.; Maleckas, A.; Petereit, R.; Žvirbliene, A.; Adamonis, K.; et al. Lactase nonpersistence is directed by DNA-variation-dependent epigenetic aging. Nat. Struct. Mol. Biol. 2016, 23, 566–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, F.R.; Greenwell, P.; Dickson, L.; Griffiths, B.; Noades, J.; Swallow, D.M.; Greenwell, P. Expression of the ABH, Lewis, and Related Antigens on the Glycoproteins of the Human Jejunal Brush Border. Nature 1988, 522, 119–153. [Google Scholar]
- Lewinsky, R.H.; Jensen, T.G.K.; Møller, J.; Stensballe, A.; Olsen, J.; Troelsen, J.T. T −13910 DNA variant associated with lactase persistence interacts with Oct-1 and stimulates lactase promoter activity in vitro. Hum. Mol. Genet. 2005, 14, 3945–3953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olds, L.C. Lactase persistence DNA variant enhances lactase promoter activity in vitro: Functional role as a cis regulatory element. Hum. Mol. Genet. 2003, 12, 2333–2340. [Google Scholar] [CrossRef] [Green Version]
- Di Rienzo, T.; D’Angelo, G.; D’Aversa, F.; Campanale, M.C.; Cesario, V.; Montalto, M.; Gasbarrini, A.; Ojetti, V. Lactose intolerance: From diagnosis to correct management. Eur. Rev. Med. Pharmacol. Sci. 2013, 17 (Suppl. 2), 18–25. [Google Scholar]
- Tormo, R.; Bertaccini, A.; Conde, M.; Infante, D.; Cura, I. Methane and hydrogen exhalation in normal children and in lactose malabsorption. Early Hum. Dev. 2001, 65, S165–S172. [Google Scholar] [CrossRef]
- Enattah, N.S.; Sahi, T.; Savilahti, E.; Terwilliger, J.D.; Peltonen, L.; Järvelä, I. Identification of a variant associated with adult-type hypolactasia. Nat. Genet. 2002, 30, 233–237. [Google Scholar] [CrossRef]
- Jones, B.L.; Raga, T.O.; Liebert, A.; Zmarz, P.; Bekele, E.; Danielsen, E.T.; Olsen, A.K.; Bradman, N.; Troelsen, J.T.; Swallow, D.M. Diversity of Lactase Persistence Alleles in Ethiopia: Signature of a Soft Selective Sweep. Am. J. Hum. Genet. 2013, 93, 538–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baffour-Awuah, N.Y.; Fleet, S.; Montgomery, R.K.; Baker, S.S.; Butler, J.L.; Campbell, C.; Tischfield, S.; Mitchell, P.D.; Allende-Richter, S.; Moon, J.E.; et al. Functional Significance of Single Nucleotide Polymorphisms in the Lactase Gene in Diverse US Patients and Evidence for a Novel Lactase Persistence Allele at −13909 in Those of European Ancestry. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 182–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liebert, A.; Jones, B.L.; Danielsen, E.T.; Olsen, A.K.; Swallow, D.M.; Troelsen, J.T. In Vitro Functional Analyses of Infrequent Nucleotide Variants in the Lactase Enhancer Reveal Different Molecular Routes to Increased Lactase Promoter Activity and Lactase Persistence. Ann. Hum. Genet. 2016, 80, 307–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olds, L.C.; Ahn, J.K.; Sibley, E. −13915*G DNA polymorphism associated with lactase persistence in Africa interacts with Oct-1. Hum. Genet. 2011, 129, 111–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingram, C.J.E.; Raga, T.O.; Tarekegn, A.; Browning, S.L.; Elamin, M.F.; Bekele, E.; Thomas, M.G.; Weale, M.E.; Bradman, N.; Swallow, D.M. Multiple Rare Variants as a Cause of a Common Phenotype: Several Different Lactase Persistence Associated Alleles in a Single Ethnic Group. J. Mol. Evol. 2009, 69, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Røed, K.H.; Flagstad, Ø.; Nieminen, M.; Holand, Ø.; Dwyer, M.J.; Røv, N.; Vilà, C. Genetic analyses reveal independent domestication origins of Eurasian reindeer. Proc. R. Soc. B Biol. Sci. 2008, 275, 1849–1855. [Google Scholar] [CrossRef] [Green Version]
- Ho, M.W.; Povey, S.; Swallow, D. Lactase polymorphism in adult British natives: Estimating allele frequencies by enzyme assays in autopsy samples. Am. J. Hum. Genet. 1982, 34, 650–657. [Google Scholar]
- Raz, M.; Sharon, Y.; Yerushalmi, B.; Birk, R. Frequency of LCT-13910C/T and LCT-22018G/A single nucleotide polymorphisms associated with adult-type hypolactasia/lactase persistence among Israelis of different ethnic groups. Gene 2013, 519, 67–70. [Google Scholar] [CrossRef]
- Babu, J.; Kumar, S.; Babu, P.; Prasad, J.H.; Ghoshal, U.C. Frequency of lactose malabsorption among healthy southern and northern Indian populations by genetic analysis and lactose hydrogen breath and tolerance tests. Am. J. Clin. Nutr. 2010, 91, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Bulhões, A.C.; Goldani, H.A.S.; Oliveira, F.S.; Matte, U.S.; Mazzuca, R.B.; Silveira, T.R. Correlation between lactose absorption and the C/T-13910 and G/A-22018 mutations of the lactase-phlorizin hydrolase (LCT) gene in adult-type hypolactasia. Braz. J. Med. Biol. Res. 2007, 40, 1441–1446. [Google Scholar] [CrossRef]
- Torniainen, S.; Parker, M.I.; Holmberg, V.; Lahtela, E.; Dandara, C.; Jarvela, I. Screening of variants for lactase persistence/non-persistence in populations from South Africa and Ghana. BMC Genet. 2009, 10, 31. [Google Scholar] [CrossRef] [Green Version]
- Breton, G.; Schlebusch, C.M.; Lombard, M.; Sjödin, P.; Soodyall, H.; Jakobsson, M. Lactase Persistence Alleles Reveal Partial East African Ancestry of Southern African Khoe Pastoralists. Curr. Biol. 2014, 24, 852–858. [Google Scholar] [CrossRef] [Green Version]
- Imtiaz, F.; Savilahti, E.; Sarnesto, A.; Trabzuni, D.; Al-Kahtani, K.; Kagevi, I.; Rashed, M.S.; Meyer, B.F.; Jarvela, I. The T/G 13915 variant upstream of the lactase gene (LCT) is the founder allele of lactase persistence in an urban Saudi population. J. Med. Genet. 2007, 44, e89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerbault, P. The Onset of Lactase Persistence in Europe. Hum. Hered. 2013, 76, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Gerbault, P.; Moret, C.; Currat, M.; Sanchez-Mazas, A. Impact of Selection and Demography on the Diffusion of Lactase Persistence. PLoS ONE 2009, 4, e6369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allentoft, M.E.; Sikora, M.; Sjögren, K.G.; Rasmussen, S.; Rasmussen, M.; Stenderup, J.; Damgaard, P.B.; Schroeder, H.; Ahlström, T.; Vinner, L.; et al. Population genomics of Bronze Age Eurasia. Nature 2015, 522, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Bersaglieri, T.; Sabeti, P.C.; Patterson, N.; Vanderploeg, T.; Schaffner, S.F.; Drake, J.A.; Rhodes, M.; Reich, D.E.; Hirschhorn, J.N. Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet. 2004, 74, 1111–1120. [Google Scholar] [CrossRef] [Green Version]
- Itan, Y.; Powell, A.; Beaumont, M.A.; Burger, J.; Thomas, M.G. The Origins of Lactase Persistence in Europe. PLoS Comput. Biol. 2009, 5, e1000491. [Google Scholar] [CrossRef] [Green Version]
- Mathieson, I.; Lazaridis, I.; Rohland, N.; Mallick, S.; Patterson, N.; Roodenberg, S.A.; Harney, E.; Stewardson, K.; Fernandes, D.; Novak, M.; et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 2015, 528, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Schlebusch, C.M.; Sjödin, P.; Skoglund, P.; Jakobsson, M. Stronger signal of recent selection for lactase persistence in Maasai than in Europeans. Eur. J. Hum. Genet. 2013, 21, 550–553. [Google Scholar] [CrossRef] [Green Version]
- Plantinga, T.S.; Alonso, S.; Izagirre, N.; Hervella, M.; Fregel, R.; van der Meer, J.W.; Netea, M.G.; de la Rúa, C. Low prevalence of lactase persistence in Neolithic South-West Europe. Eur. J. Hum. Genet. 2012, 20, 778–782. [Google Scholar] [CrossRef] [Green Version]
- Mathieson, I.; Lazaridis, I.; Rohland, N.; Mallick, S.; Patterson, N.; Alpaslan Roodenberg, S.; Harney, E.; Stewardson, K.; Fernandes, D.; Novak, M.; et al. Eight thousand years of natural selection in Europe. bioRxiv 2015, 016477. [Google Scholar] [CrossRef]
- Witas, H.W.; Płoszaj, T.; Jędrychowska-Dańska, K.; Witas, P.J.; Masłowska, A.; Jerszyńska, B.; Kozłowski, T.; Osipowicz, G. Hunting for the LCT-13910*T Allele between the Middle Neolithic and the Middle Ages Suggests Its Absence in Dairying LBK People Entering the Kuyavia Region in the 8th Millennium BP. PLoS ONE 2015, 10, e0122384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabeti, P.C.; Schaffner, S.F.; Fry, B.; Lohmueller, J.; Varilly, P.; Shamovsky, O.; Palma, A.; Mikkelsen, T.S.; Altshuler, D.; Lander, E.S. Positive natural selection in the human lineage. Science 2006, 312, 1614–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedrick, P.W. Population genetics of malaria resistance in humans. Heredity 2011, 107, 283–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilde, S.; Timpson, A.; Kirsanow, K.; Kaiser, E.; Kayser, M.; Unterländer, M.; Hollfelder, N.; Potekhina, I.D.; Schier, W.; Thomas, M.G.; et al. Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5000 y. Proc. Natl. Acad. Sci. USA 2014, 111, 4832–4837. [Google Scholar] [CrossRef] [Green Version]
- Wiley, A.S. Lactose intolerance. Evol. Med. Public Health 2020, 2020, 47–48. [Google Scholar] [CrossRef] [Green Version]
- Segurel, L.; Guarino-Vignon, P.; Marchi, N.; Lafosse, S.; Laurent, R.; Bon, C.; Fabre, A.; Hegay, T.; Heyer, E. Why and when was lactase persistence selected for? Insights from Central Asian herders and ancient DNA. PLoS Biol. 2020, 18, e3000742. [Google Scholar] [CrossRef]
- Durham, W.H. Coevolution: Genes, Culture, and Human Diversity; Stanford University Press: Palo Alto, CA, USA, 1991; ISBN 0804721564. [Google Scholar]
- Ranciaro, A.; Campbell, M.C.; Hirbo, J.B.; Ko, W.Y.; Froment, A.; Anagnostou, P.; Kotze, M.J.; Ibrahim, M.; Nyambo, T.; Omar, S.A.; et al. Genetic origins of lactase persistence and the spread of pastoralism in Africa. Am. J. Hum. Genet. 2014, 94, 496–510. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.; Diop, M.; Kodjovi, M.; Rozier, J. Lactose intolerance in adults in Senegal. C. R. Seances Soc. Biol. Fil. 1980, 174, 983–992. [Google Scholar]
- Kuchay, R.A.H. New insights into the molecular basis of lactase non-persistence/persistence: A brief review. Drug Discov. Ther. 2020, 14, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Swallow, D.M.; Troelsen, J.T. Escape from epigenetic silencing of lactase expression is triggered by a single-nucleotide change. Nat. Struct. Mol. Biol. 2016, 23, 505–507. [Google Scholar] [CrossRef]
- Oh, E.; Jeremian, R.; Oh, G.; Groot, D.; Susic, M.; Lee, K.; Foy, K.; Laird, P.W.; Petronis, A.; Labrie, V. Transcriptional heterogeneity in the lactase gene within cell-type is linked to the epigenome. Sci. Rep. 2017, 7, 41843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Misselwitz, B.; Dai, N.; Fox, M. Lactose intolerance in adults: Biological mechanism and dietary management. Nutrients 2015, 7, 8020–8035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leis, R.; de Castro, M.-J.; de Lamas, C.; Picáns, R.; Couce, M.L. Effects of Prebiotic and Probiotic Supplementation on Lactase Deficiency and Lactose Intolerance: A Systematic Review of Controlled Trials. Nutrients 2020, 12, 1487. [Google Scholar] [CrossRef] [PubMed]
- Lomer, M.C.E.; Parkes, G.C.; Sanderson, J.D. Review article: Lactose intolerance in clinical practice - myths and realities. Aliment. Pharmacol. Ther. 2007, 27, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Hertzler, S.R.; Savaiano, D.A. Colonic adaptation to daily lactose feeding in lactose maldigesters reduces lactose intolerance. Am. J. Clin. Nutr. 1996, 64, 232–236. [Google Scholar] [CrossRef]
- Szilagyi, A. Adaptation to Lactose in Lactase Non Persistent People: Effects on Intolerance and the Relationship between Dairy Food Consumption and Evalution of Diseases. Nutrients 2015, 7, 6751–6779. [Google Scholar] [CrossRef] [Green Version]
SNP | RS-id | Additional Information |
---|---|---|
−14010:G>C ** | rs145946881 | Widely studied and associated |
−14009:T>G ** | rs869051967 | Widely studied and associated |
−13915:T>G ** | rs41380347 | Widely studied and associated |
−13910:C>T ** | rs4988235 | Widely studied and associated |
−13907:C>G ** | rs41525747 | Widely studied and associated |
−22.018:G>A | rs182549 | In complete LD with the causal −14010:G>C |
−14011:C>T * | rs4988233 | |
−13906:T>A | ||
−13779:G>C * | rs527991977 | |
−13744:C>G | ||
−13730:T>G | rs4954492 | |
−13603:C>T | rs56348046 | |
−13495:C>T | rs4954490 | |
−13914:G>A | Rare variant (q < 5%) | |
−14062:G>A | Rare variant (q < 5%) | |
−14028:T>C | rs759157971 | Rare variant (q < 5%) |
−13753:C>T | Rare variant (q < 5%) | |
−13693:G>A | Rare variant (q < 5%) | |
−13806:A>G | ss820496565 | Rare variant (q < 5%) |
−13964:C>A | Rare variant (q < 5%) | |
−13771:A>G | Rare variant (q < 5%) | |
−14010 G>A | rs145946881 | Rare variant (q < 5%) |
−13926 A>C | Rare variant (q < 5%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anguita-Ruiz, A.; Aguilera, C.M.; Gil, Á. Genetics of Lactose Intolerance: An Updated Review and Online Interactive World Maps of Phenotype and Genotype Frequencies. Nutrients 2020, 12, 2689. https://doi.org/10.3390/nu12092689
Anguita-Ruiz A, Aguilera CM, Gil Á. Genetics of Lactose Intolerance: An Updated Review and Online Interactive World Maps of Phenotype and Genotype Frequencies. Nutrients. 2020; 12(9):2689. https://doi.org/10.3390/nu12092689
Chicago/Turabian StyleAnguita-Ruiz, Augusto, Concepción M. Aguilera, and Ángel Gil. 2020. "Genetics of Lactose Intolerance: An Updated Review and Online Interactive World Maps of Phenotype and Genotype Frequencies" Nutrients 12, no. 9: 2689. https://doi.org/10.3390/nu12092689
APA StyleAnguita-Ruiz, A., Aguilera, C. M., & Gil, Á. (2020). Genetics of Lactose Intolerance: An Updated Review and Online Interactive World Maps of Phenotype and Genotype Frequencies. Nutrients, 12(9), 2689. https://doi.org/10.3390/nu12092689