Late Eating Is Associated with Obesity, Inflammatory Markers and Circadian-Related Disturbances in School-Aged Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Classification of Late (LDE) and Early (EDE) Dinner Eaters
2.3. Anthropometric Measures and Body Composition
2.4. Sleep
2.5. Chronotype
2.6. Saliva Determinations
2.7. Activity and Temperature Variables
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 2 September 2020).
- Ryder, J.R.; Fox, C.K.; Kelly, A.S. Treatment Options for Severe Obesity in the Pediatric Population: Current Limitations and Future Opportunities. Obes. Silver Spring 2018, 26, 951–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turek, F.W.; Joshu, C.; Kohsaka, A.; Lin, E.; Ivanova, G.; McDearmon, E. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 2005, 308, 1043–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenvers, D.J.; Scheer, F.; Schrauwen, P.; la Fleur, S.E.; Kalsbeek, A. Circadian clocks and insulin resistance. Nat. Rev. Endocrinol. 2019, 15, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Minguez, J.; Gomez-Abellan, P.; Garaulet, M. Circadian rhythms, food timing and obesity. Proc. Nutr. Soc. 2016, 75, 501–511. [Google Scholar] [CrossRef] [Green Version]
- Corbalan-Tutau, M.D.; Gomez-Abellan, P.; Madrid, J.A.; Canteras, M.; Ordovas, J.M.; Garaulet, M. Toward a chronobiological characterization of obesity and metabolic syndrome in clinical practice. Clin. Nutr. 2015, 34, 477–483. [Google Scholar] [CrossRef]
- Ortiz-Tudela, E.; Innominato, P.F.; Rol, M.A.; Levi, F.; Madrid, J.A. Relevance of internal time and circadian robustness for cancer patients. BMC Cancer 2016, 16, 285. [Google Scholar] [CrossRef] [Green Version]
- Yoshizawa, J.M.; Schafer, C.A.; Schafer, J.J.; Farrell, J.J.; Paster, B.J.; Wong, D.T. Salivary biomarkers: Toward future clinical and diagnostic utilities. Clin. Microbiol. Rev. 2013, 26, 781–791. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.; Garaulet, M.; Scheer, F. Meal timing and obesity: Interactions with macronutrient intake and chronotype. Int. J. Obes. Lond. 2019, 43, 1701–1711. [Google Scholar] [CrossRef]
- McHill, A.W.; Phillips, A.J.; Czeisler, C.A.; Keating, L.; Yee, K.; Barger, L.K.; Garaulet, M.; Scheer, F.A.; Klerman, E.B. Later circadian timing of food intake is associated with increased body fat. Am. J. Clin. Nutr. 2017, 106, 1213–1219. [Google Scholar] [CrossRef]
- Baron, K.G.; Reid, K.J.; Kern, A.S.; Zee, P.C. Role of sleep timing in caloric intake and BMI. Obes. Silver Spring 2011, 19, 1374–1381. [Google Scholar] [CrossRef]
- Nakajima, K.; Suwa, K. Association of hyperglycemia in a general Japanese population with late-night-dinner eating alone, but not breakfast skipping alone. J. Diabetes. Metab. Disord. 2015, 14, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Minguez, J.; Saxena, R.; Bandin, C.; Scheer, F.A.; Garaulet, M. Late dinner impairs glucose tolerance in MTNR1B risk allele carriers: A randomized, cross-over study. Clin. Nutr. 2018, 37, 1133–1140. [Google Scholar] [CrossRef] [PubMed]
- Nyangasa, M.A.; Buck, C.; Kelm, S.; Sheikh, M.A.; Brackmann, K.L.; Hebestreit, A. Association between cardiometabolic risk factors and body mass index, waist circumferences and body fat in a Zanzibari cross-sectional study. BMJ Open 2019, 9, e025397. [Google Scholar] [CrossRef] [PubMed]
- Lopes, T.; Borba, M.E.; Lopes, R.; Fisberg, R.M.; Lemos Paim, S.; Vasconcelos Teodoro, V.; Zalcman Zimberg, I.; Crispim, C.A. Eating Late Negatively Affects Sleep Pattern and Apnea Severity in Individuals With Sleep Apnea. J. Clin. Sleep Med. 2019, 15, 383–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoncheva, Y.N.; Castellanos, F.X.; Pizinger, T.; Kovtun, K.; St-Onge, M.P. Sleep and meal-time misalignment alters functional connectivity: A pilot resting-state study. Int. J. Obes. Lond. 2016, 40, 1813–1816. [Google Scholar] [CrossRef] [Green Version]
- Eng, S.; Wagstaff, D.A.; Kranz, S. Eating late in the evening is associated with childhood obesity in some age groups but not in all children: The relationship between time of consumption and body weight status in U.S. children. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Coulthard, J.D.; Pot, G.K. The timing of the evening meal: How is this associated with weight status in UK children? Br. J. Nutr. 2016, 115, 1616–1622. [Google Scholar] [CrossRef] [Green Version]
- Barraco, G.M.; Martinez-Lozano, N.; Vales-Villamarin, C.; Del Carmen Blaya, M.; Rios, R.; Madrid, J.A.; Fardy, P.; Garaulet, M. Circadian health differs between boys and girls as assessed by non-invasive tools in school-aged children. Clin. Nutr. 2019, 38, 774–781. [Google Scholar] [CrossRef]
- Garaulet, M.; Madrid, J.A. Methods for monitoring the functional status of the circadian system in dietary surveys studies: Application criteria and interpretation of results. Nutr. Hosp. 2015, 31 (Suppl. S3), 279–289. [Google Scholar] [CrossRef]
- Perez-Llamas, F.; Garaulet, M.; Torralba, C.; Zamora, S. Development of a current version of a software application for research and practice in human nutrition (GRUNUMUR 2.0). Nutr. Hosp. 2012, 27, 1576–1582. [Google Scholar] [CrossRef]
- Moreiras, O.; Carvajal, A.; Cabrera, L. (Table of Composition of Spanish Foods) Tablas De Composición De Alimentos (In Spanish). 1995. [Google Scholar]
- Cole, T.J.; Flegal, K.M.; Nicholls, D.; Jackson, A.A. Body mass index cut offs to define thinness in children and adolescents: International survey. BMJ 2007, 335, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Azevedo, C.; Sousa, I.; Paul, K.; MacLeish, M.; Mondejar, M.; Sarabia, J.; Madrid, J. Teaching chronobiology and sleep habits in school and university. Mindbraineduc 2008, 2, 34–47. [Google Scholar] [CrossRef]
- Ortiz-Tudela, E.; Martinez-Nicolas, A.; Campos, M.; Rol, M.A.; Madrid, J.A. A new integrated variable based on thermometry, actimetry and body position (TAP) to evaluate circadian system status in humans. PLoS Comput. Biol. 2010, 6, e1000996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roenneberg, T.; Kuehnle, T.; Juda, M.; Kantermann, T.; Allebrandt, K.; Gordijn, M.; Merrow, M. Epidemiology of the human circadian clock. Sleep Med. Rev. 2007, 11, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Prieto, M.D.; Tebar, F.J.; Nicolas, F.; Larque, E.; Zamora, S.; Garaulet, M. Cortisol secretary pattern and glucocorticoid feedback sensitivity in women from a Mediterranean area: Relationship with anthropometric characteristics, dietary intake and plasma fatty acid profile. Clin. Endocrinol. Oxf. 2007, 66, 185–191. [Google Scholar] [CrossRef]
- Ortiz-Tudela, E.; Martinez-Nicolas, A.; Albares, J.; Segarra, F.; Campos, M.; Estivill, E.; Rol, M.A.; Madrid, J.A. Ambulatory circadian monitoring (ACM) based on thermometry, motor activity and body position (TAP): A comparison with polysomnography. Physiol. Behav. 2014, 126, 30–38. [Google Scholar] [CrossRef]
- Sarabia, J.A.; Rol, M.A.; Mendiola, P.; Madrid, J.A. Circadian rhythm of wrist temperature in normal-living subjects A candidate of new index of the circadian system. Physiol. Behav. 2008, 95, 570–580. [Google Scholar] [CrossRef]
- Bonmati-Carrion, M.A.; Middleton, B.; Revell, V.L.; Skene, D.J.; Rol, M.A.; Madrid, J.A. Validation of an innovative method, based on tilt sensing, for the assessment of activity and body position. Chronobiol. Int. 2015, 32, 701–710. [Google Scholar] [CrossRef]
- Li, L.; Zhang, S.; Huang, Y.; Chen, K. Sleep duration and obesity in children: A systematic review and meta-analysis of prospective cohort studies. J. Paediatr. Child. Health 2017, 53, 378–385. [Google Scholar] [CrossRef]
- Marginean, C.O.; Melit, L.E.; Ghiga, D.V.; Marginean, M.O. Early Inflammatory Status Related to Pediatric Obesity. Front. Pediatr. 2019, 7, 241. [Google Scholar] [CrossRef]
- Marti, A.; Morell-Azanza, L.; Rendo-Urteaga, T.; Garcia-Calzon, S.; Ojeda-Rodriguez, A.; Martin-Calvo, N.; Moreno-Aliaga, M.J.; Martinez, J.A.; Azcona-San Julian, M.C. Serum and gene expression levels of CT-1, IL-6, and TNF-alpha after a lifestyle intervention in obese children. Pediatr. Diabetes 2018, 19, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Goodson, J.M.; Kantarci, A.; Hartman, M.L.; Denis, G.V.; Stephens, D.; Hasturk, H.; Yaskell, T.; Vargas, J.; Wang, X.; Cugini, M.; et al. Metabolic disease risk in children by salivary biomarker analysis. PLoS ONE 2014, 9, e98799. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, I.; Zelzer, S.; Raggam, R.B.; Pruller, F.; Truschnig-Wilders, M.; Meinitzer, A.; Schnedl, W.J.; Horejsi, R.; Moller, R.; Weghuber, D.; et al. Link between leptin and interleukin-6 levels in the initial phase of obesity related inflammation. Transl. Res. 2012, 159, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Cetinkaya, M.; Ozkan, H.; Koksal, N.; Celebi, S.; Hacimustafaoglu, M. Comparison of serum amyloid A concentrations with those of C-reactive protein and procalcitonin in diagnosis and follow-up of neonatal sepsis in premature infants. J. Perinatol. 2009, 29, 225–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, E.S.; Ajani, U.A.; Mokdad, A.H. The metabolic syndrome and concentrations of C-reactive protein among U.S. youth. Diabetes Care 2005, 28, 878–881. [Google Scholar] [CrossRef] [Green Version]
- Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 2000, 21, 55–89. [Google Scholar] [CrossRef] [Green Version]
- Van de Werken, M.; Booij, S.H.; van der Zwan, J.E.; Simons, M.J.; Gordijn, M.C.; Beersma, D.G. The biological clock modulates the human cortisol response in a multiplicative fashion. Chronobiol. Int. 2014, 31, 572–580. [Google Scholar] [CrossRef]
- Corbalan-Tutau, M.D.; Madrid, J.A.; Ordovas, J.M.; Smith, C.E.; Nicolas, F.; Garaulet, M. Differences in daily rhythms of wrist temperature between obese and normal-weight women: Associations with metabolic syndrome features. Chronobiol. Int. 2011, 28, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Garaulet, M.; Qian, J.; Florez, J.C.; Arendt, J.; Saxena, R.; Scheer, F. Melatonin Effects on Glucose Metabolism: Time To Unlock the Controversy. Trends Endocrinol. Metab. 2020. [Google Scholar] [CrossRef]
- Sinha, R.; Gu, P.; Hart, R.; Guarnaccia, J.B. Food craving, cortisol and ghrelin responses in modeling highly palatable snack intake in the laboratory. Physiol. Behav. 2019, 208, 112563. [Google Scholar] [CrossRef]
- Vilela, S.; Oliveira, A.; Severo, M.; Lopes, C. Chrono-Nutrition: The Relationship between Time-of-Day Energy and Macronutrient Intake and Children’s Body Weight Status. J. Biol. Rhythm. 2019, 34, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Dashti, H.S.; Merino, J.; Lane, J.M.; Song, Y.; Smith, C.E.; Tanaka, T.; McKeown, N.M.; Tucker, C.; Sun, D.; Bartz, T.M.; et al. Genome-wide association study of breakfast skipping links clock regulation with food timing. Am. J. Clin. Nutr. 2019. [Google Scholar] [CrossRef] [PubMed]
- Scheer, F.A.; Morris, C.J.; Shea, S.A. The internal circadian clock increases hunger and appetite in the evening independent of food intake and other behaviors. Obes. Silver Spring 2013, 21, 421–423. [Google Scholar] [CrossRef] [PubMed]
- Challet, E. The circadian regulation of food intake. Nat. Rev. Endocrinol. 2019, 15, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Wehrens, S.M.T.; Christou, S.; Isherwood, C.; Middleton, B.; Gibbs, M.A.; Archer, S.N.; Skene, D.J.; Johnston, J.D. Meal Timing Regulates the Human Circadian System. Curr. Biol. 2017, 27, 1768–1775.e1763. [Google Scholar] [CrossRef] [Green Version]
- Krauchi, K. How is the circadian rhythm of core body temperature regulated? Clin. Auton. Res. 2002, 12, 147–149. [Google Scholar] [CrossRef]
- Roky, R.; Chapotot, F.; Hakkou, F.; Benchekroun, M.T.; Buguet, A. Sleep during Ramadan intermittent fasting. J. Sleep Res. 2001, 10, 319–327. [Google Scholar] [CrossRef]
- Morris, C.J.; Garcia, J.I.; Myers, S.; Yang, J.N.; Trienekens, N.; Scheer, F.A. The Human Circadian System Has a Dominating Role in Causing the Morning/Evening Difference in Diet-Induced Thermogenesis. Obes. Silver Spring 2015, 23, 2053–2058. [Google Scholar] [CrossRef] [Green Version]
- Driver, H.S.; Shulman, I.; Baker, F.C.; Buffenstein, R. Energy content of the evening meal alters nocturnal body temperature but not sleep. Physiol. Behav. 1999, 68, 17–23. [Google Scholar] [CrossRef]
- McCloskey, M.L.; Johnson, S.L.; Bekelman, T.A.; Martin, C.K.; Bellows, L.L. Beyond Nutrient Intake: Use of Digital Food Photography Methodology to Examine Family Dinnertime. J. Nutr. Educ. Behav. 2019, 51, 547–555.e1. [Google Scholar] [CrossRef] [PubMed]
Total | SD | LDE | SD | EDE | SD | p | |
---|---|---|---|---|---|---|---|
General characteristics | |||||||
N | 397 | 197 | 200 | ||||
Female (%) | 50.7 | 52.5 | 47.5 | 0.272 | |||
Overweight or Obesity (%) | 30.5 | 37.1 | 24 | 0.003 | |||
Age (y) | 10 | 1.2 | 10 | 1.2 | 10 | 1.2 | 0.159 |
Weight (kg) | 41.4 | 12.2 | 42.9 | 10.9 | 38.6 | 11.6 | <0.001 |
Height (m) | 1.45 | 10.4 | 1.47 | 9.9 | 1.43 | 10.4 | <0.001 |
BMI (kg/m2) | 19.4 | 3.9 | 19.6 | 3.5 | 18.7 | 3.8 | 0.004 |
BMI z-score | 1.1 | 2.1 | 1.4 | 2.1 | 0.8 | 2.1 | 0.003 |
Body fat (%) | 21.2 | 7.5 | 22.0 | 7.3 | 19.5 | 7.2 | 0.002 |
Waist circumference (cm) | 65.4 | 9.9 | 66.6 | 9.4 | 63.5 | 9.6 | 0.004 |
Timing of food intake | |||||||
Breakfast (h) | 08:33 | 0:27 | 08:35 | 00:29 | 08:31 | 00:24 | 0.109 |
Lunch (h) | 14:24 | 0:19 | 14:24 | 00:19 | 14:21 | 00:17 | 0.084 |
Dinner (h) | 21:07 | 0:31 | 21:31 | 00:19 | 20:43 | 00:18 | <0.001 |
Midpoint of food intake (h) | 14:49 | 0:21 | 15:03 | 00:17 | 14:37 | 00:16 | <0.001 |
Bedtime (h) | 22:49 | 0:39 | 23:04 | 00:34 | 22:36 | 00:35 | <0.001 |
Get up time (h) | 08:13 | 0:29 | 08:17 | 00:29 | 08:08 | 00:27 | 0.001 |
Food intake | |||||||
Breakfast (% of daily energy) | 17.2 | 6.4 | 16.3 | 4.8 | 18.4 | 7.5 | 0.002 |
Second breakfast (% of daily energy) | 10.6 | 4.2 | 10.7 | 4.3 | 10.5 | 4.2 | 0.672 |
Lunch (% of daily energy) | 32.6 | 5.9 | 32.8 | 5.6 | 32.2 | 6.2 | 0.338 |
After lunch (% of daily energy) | 12.1 | 5.5 | 12.5 | 5.5 | 11.8 | 5.4 | 0.267 |
Dinner (% of daily energy) | 27.7 | 6.4 | 28.0 | 6.0 | 27.4 | 6.7 | 0.384 |
Inflammatory Markers | TOTAL | LDE | EDE | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Median | 5% | 95% | Median | 5% | 95% | Median | 5% | 95% | p | |
Glucose mg/dL | 3.6 | 0.1 | 58.7 | 2.9 | 0.1 | 70.3 | 4.9 | 0.1 | 58.5 | 0.352 |
Insulin pg/mL | 12.1 | 3.8 | 107.1 | 9.8 | 3.8 | 169.7 | 12.1 | 3.8 | 103.3 | 0.413 |
Triglycerides mg/dL | 1.3 | 0.7 | 24.0 | 1.2 | 0.7 | 43.1 | 1.7 | 0.7 | 24.7 | 0.691 |
Leptin pg/mL | 20.1 | 19.0 | 22.0 | 20.1 | 19.0 | 22.9 | 19.0 | 19.0 | 22.5 | 0.861 |
CRP ng/mL | 3.2 | 0.2 | 42.7 | 4.4 | 0.2 | 42.7 | 1.8 | 0.2 | 44.3 | 0.009 |
IL1b pg/mL | 10.4 | 1.2 | 125.3 | 14.2 | 1.7 | 135.3 | 9.8 | 1.2 | 123.1 | 0.173 |
IL6 pg/mL | 0.9 | 0.4 | 8.4 | 1.1 | 0.4 | 14.1 | 0.9 | 0.4 | 6.8 | 0.036 |
IL8 pg/mL | 40.1 | 4.6 | 299.4 | 40.7 | 5.1 | 309.3 | 40.1 | 6.1 | 322.0 | 0.708 |
TNFα pg/mL | 0.7 | 0.3 | 4.8 | 0.7 | 0.3 | 5.1 | 0.7 | 0.3 | 3.9 | 0.876 |
MCP1 pg/mL | 44.6 | 12.1 | 222.1 | 44.6 | 15.4 | 331.1 | 41.3 | 8.4 | 216.5 | 0.802 |
NGF pg/mL | 0.5 | 0.3 | 0.7 | 0.5 | 0.3 | 0.8 | 0.5 | 0.3 | 0.6 | 0.877 |
HOMA-IR | 0.4 | 0.1 | 9.9 | 0.4 | 0.1 | 17.7 | 0.2 | 0.1 | 9.2 | 0.448 |
LDE | EDE | ||||
---|---|---|---|---|---|
n = 197 | n = 200 | ||||
Mean | SEM | Mean | SEM | p | |
Total Energy Intake (MJ/day) | 8.3 | 0.1 | 8.6 | 0.1 | 0.141 |
Midpoint of food intake | 15:03 | 00:01 | 14:37 | 00:01 | <0.001 |
Dinner duration (min) | 0.28 | 0.01 | 0.30 | 0.01 | 0.043 |
Time in bed (h) | 9.1 | 0.04 | 9.5 | 0.04 | <0.001 |
Objective sleep duration (h) | 7.8 | 0.07 | 7.7 | 0.07 | 0.244 |
Chronotype (sleep centre; MCTQ) (hh:mm) | 4:09 | 0:02 | 3:54 | 0:02 | 0.001 |
Evening-types (%) | 4.2 | 3.0 | 0.026 | ||
Average activity (°/min) | 46.3 | 0.4 | 46.7 | 0.4 | 0.503 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Lozano, N.; Tvarijonaviciute, A.; Ríos, R.; Barón, I.; Scheer, F.A.J.L.; Garaulet, M. Late Eating Is Associated with Obesity, Inflammatory Markers and Circadian-Related Disturbances in School-Aged Children. Nutrients 2020, 12, 2881. https://doi.org/10.3390/nu12092881
Martínez-Lozano N, Tvarijonaviciute A, Ríos R, Barón I, Scheer FAJL, Garaulet M. Late Eating Is Associated with Obesity, Inflammatory Markers and Circadian-Related Disturbances in School-Aged Children. Nutrients. 2020; 12(9):2881. https://doi.org/10.3390/nu12092881
Chicago/Turabian StyleMartínez-Lozano, Nuria, Asta Tvarijonaviciute, Rafael Ríos, Isabel Barón, Frank A. J. L. Scheer, and Marta Garaulet. 2020. "Late Eating Is Associated with Obesity, Inflammatory Markers and Circadian-Related Disturbances in School-Aged Children" Nutrients 12, no. 9: 2881. https://doi.org/10.3390/nu12092881
APA StyleMartínez-Lozano, N., Tvarijonaviciute, A., Ríos, R., Barón, I., Scheer, F. A. J. L., & Garaulet, M. (2020). Late Eating Is Associated with Obesity, Inflammatory Markers and Circadian-Related Disturbances in School-Aged Children. Nutrients, 12(9), 2881. https://doi.org/10.3390/nu12092881