Diet Quality and Sociodemographic, Lifestyle, and Health-Related Determinants among People with Depression in Spain: New Evidence from a Cross-Sectional Population-Based Study (2011–2017)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Source and Study Population
2.3. Variables
2.3.1. Diet Quality
2.3.2. Sociodemographic Variables
2.3.3. Health-Related Variables
2.3.4. Lifestyle Behavior
2.4. Ethical Aspects
2.5. Statistical Analysis
3. Results
3.1. Sociodemographic, Lifestyle Habits and Health-Related Variables
3.2. Diet Quality
3.3. Association between Sociodemographic, Lifestyle, and Health-Related Characteristics and Diet Quality
4. Discussion
4.1. Main Findings
4.2. Strengths and Limitations
4.3. Implications for Research and Practice
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Investing in Mental Health: Evidence for Action (2013). Available online: https://www.mhinnovation.net/sites/default/files/downloads/resource/WHO_Investing%20in%20Mental%20Health_eng.pdf (accessed on 25 March 2020).
- GBD 2017 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1859–1922. [Google Scholar] [CrossRef] [Green Version]
- Kessler, R.C.; Bromet, E.J. The epidemiology of depression across cultures. Annu. Rev. Public Health 2013, 34, 119–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penninx, B.W.; Milaneschi, Y.; Lamers, F.; Vogelzangs, N. Understanding the somatic consequences of depression: Biological mechanisms and the role of depression symptom profile. BMC Med. 2013, 11, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Mental Health Action Plan 2013–2020. Available online: https://apps.who.int/iris/bitstream/handle/10665/89966/9789241506021_eng.pdf?sequence=1 (accessed on 25 March 2020).
- Adjibade, M.; Assmann, K.E.; Andreeva, V.A.; Lemogne, C.; Hercberg, S.; Galán, P.; Kesse-Guyot, E. Prospective association between adherence to the Mediterranean diet and risk of depressive symptoms in the French SU.VI.MAX cohort. Eur. J. Nutr. 2018, 57, 1225–1235. [Google Scholar] [CrossRef] [PubMed]
- Dipnall, J.F.; Pasco, J.A.; Meyer, D.; Berk, M.; Williams, L.J.; Dodd, S.; Jacka, F.N. The association between dietary patterns, diabetes and depression. J. Affect. Disord. 2015, 174, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Gougeon, L.; Payette, H.; Morais, J.; Gaudreau, P.; Shatenstein, B.; Gray-Donald, K. Dietary patterns and incidence of depression in a cohort of community-dwelling older Canadians. J. Nutr. Health Aging 2015, 19, 431–436. [Google Scholar] [CrossRef]
- Tsai, H.-J. Dietary patterns and depressive symptoms in a Taiwanese population aged 53 years and over: Results from the Taiwan Longitudinal Study of Aging. Geriatr. Gerontol. Int. 2016, 16, 1289–1295. [Google Scholar] [CrossRef]
- Elstgeest, L.E.M.; Winkens, L.H.H.; Penninx, B.W.J.H.; Brouwer, I.A.; Visser, M. Associations of depressive symptoms and history with three a priori diet quality indices in middle-aged and older adults. J. Affect Disord. 2019, 249, 394–403. [Google Scholar] [CrossRef]
- Ruusunen, A.; Lehto, S.M.; Mursu, J.; Tolmunen, T.; Tuomainen, T.-P.; Kauhanen, J.; Voutilainen, S. Dietary patterns are associated with the prevalence of elevated depressive symptoms and the risk of getting a hospital discharge diagnosis of depression in middle-aged or older Finnish men. J. Affect. Disord. 2014, 159, 1–6. [Google Scholar] [CrossRef]
- Flórez, K.R.; Dubowitz, T.; Ghosh-Dastidar, M.B.; Beckman, R.; Collins, R.L. Associations between depressive symptomatology, diet, and body mass index among participants in the supplemental nutrition assistance program. J. Acad. Nutr. Diet. 2015, 115, 1102–1108. [Google Scholar] [CrossRef] [Green Version]
- Gibson-Smith, D.; Bot, M.; Brouwer, I.A.; Visser, M.; Penninx, B.W. Diet quality in persons with and without depressive and anxiety disorders. J. Psychiatr. Res. 2018, 106, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Thomas-Odenthal, F.; Molero, P.; van der Does, W.; Molendijk, M. Impact of review method on the conclusions of clinical reviews: A systematic review on dietary interventions in depression as a case in point. PLoS ONE 2020, 15, e0238131. [Google Scholar] [CrossRef] [PubMed]
- Appelhans, B.M.; Whited, M.C.; Schneider, K.L.; Ma, Y.; Oleski, J.L.; Merriam, P.A.; Waring, M.E.; Olendzki, B.C.; Mann, D.M.; Ockene, I.S.; et al. Depression severity, diet quality, and physical activity in women with obesity and depression. J. Acad. Nutr. Diet. 2012, 112, 693–698. [Google Scholar] [CrossRef] [Green Version]
- Whitaker, K.M.; Sharpe, P.A.; Wilcox, S.; Hutto, B.E. Depressive symptoms are associated with dietary intake but not physical activity among overweight and obese women from disadvantaged neighborhoods. Nutr. Res. 2014, 34, 294–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nucci, D.; Fatigoni, C.; Amerio, A.; Odone, A.; Gianfredi, V. Red and processed meat consumption and risk of depression: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2020, 17, 6686. [Google Scholar] [CrossRef]
- Jeffery, R.W.; Linde, J.A.; Simon, G.E.; Ludman, E.J.; Rohde, P.; Ichikawa, L.E.; Finch, E.A. Reported food choices in older women in relation to body mass index and depressive symptoms. Appetite 2009, 52, 238–240. [Google Scholar] [CrossRef] [Green Version]
- Payne, M.E.; Steck, S.E.; George, R.R.; Steffens, D.C. Fruit, vegetable, and antioxidant intakes are lower in older adults with depression. J. Acad. Nutr. Diet. 2012, 112, 2022–2027. [Google Scholar] [CrossRef] [Green Version]
- Grases, G.; Colom, M.A.; Sanchis, P.; Grases, F. Possible relation between consumption of different food groups and depression. BMC Psychol. 2019, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Akbaraly, T.N.; Sabia, S.; Shipley, M.J.; Batty, G.D.; Kivimaki, M. Adherence to healthy dietary guidelines and future depressive symptoms: Evidence for sex differentials in the Whitehall II Study. Am. J. Clin. Nutr. 2013, 97, 419–427. [Google Scholar] [CrossRef]
- Yu, B.; He, H.; Zhang, Q.; Wu, H.; Du, H.; Liu, L.; Wang, C.; Shi, H.; Xia, Y.; Guo, X.; et al. Soft drink consumption is associated with depressive symptoms among adults in China. J. Affect. Disord. 2015, 172, 422–427. [Google Scholar] [CrossRef]
- Kang, D.; Kim, Y.; Je, Y. Non-alcoholic beverage consumption and risk of depression: Epidemiological evidence from observational studies. Eur. J. Clin. Nutr. 2018, 72, 1506–1516. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Cheng, L.; Jiang, W. Sugar-sweetened beverages consumption and the risk of depression: A meta-analysis of observational studies. J. Affect. Disord. 2019, 245, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Lorant, V.; Deliège, D.; Eaton, W.; Robert, A.; Philippot, P.; Ansseau, M. Socioeconomic inequalities in depression: A meta-analysis. Am. J. Epidemiol. 2003, 157, 98–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boone-Heinonen, J.; Diez Roux, A.V.; Kiefe, C.I.; Lewis, C.E.; Guilkey, D.K.; Gordon-Larsen, P. Neighborhood socioeconomic status predictors of physical activity through young to middle adulthood: The CARDIA study. Soc. Sci. Med. 2011, 72, 641–649. [Google Scholar] [CrossRef] [Green Version]
- Larson, N.I.; Story, M.T.; Nelson, M.C. Neighborhood environments: Disparities in access to healthy foods in the US. Am. J. Prev. Med. 2009, 36, 74–81. [Google Scholar] [CrossRef]
- Bernstein, A.M.; Bloom, D.E.; Rosner, B.A.; Franz, M.; Willett, W.C. Relation of food cost to healthfulness of diet among US women. Am. J. Clin. Nutr. 2010, 92, 1197–1203. [Google Scholar] [CrossRef] [Green Version]
- Wise, L.A.; Adams-Campbell, L.L.; Palmer, J.R.; Rosenberg, L. Leisure time physical activity in relation to depressive symptoms in the Black Women’s Health Study. Ann. Behav. Med. 2006, 32, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Beydoun, M.A.; Wang, Y. Pathways linking socioeconomic status to obesity through depression and lifestyle factors among young US adults. J. Affect. Disord. 2010, 123, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Molendijk, M.; Molero, P.; Ortuño Sánchez-Pedreño, F.; Van der Does, W.; Martínez González, M.A. Diet quality and depression risk: A systematic review and dose-response meta-analysis of prospective studies. J. Affect. Disord. 2018, 226, 346–354. [Google Scholar] [CrossRef] [Green Version]
- van Zoonen, K.; Buntrock, C.; Ebert, D.D.; Smit, F.; Reynolds, C.F.; Beekman, A.T.F.; Cuijpers, P. Preventing the onset of major depressive disorder: A meta-analytic review of psychological interventions. Int. J. Epidemiol. 2014, 43, 318–329. [Google Scholar] [CrossRef]
- Fournier, J.C.; DeRubeis, R.J.; Hollon, S.D.; Dimidjian, S.; Amsterdam, J.D.; Shelton, R.C.; Fawcett, J. Antidepressant drug effects and depression severity: A patient-level meta-analysis. JAMA 2010, 303, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, G.Y.; Tam, W.W.; Lu, Y.; Ho, C.S.; Zhang, M.W.; Ho, R.C. Prevalence of depression in the community from 30 countries between 1994 and 2014. Sci. Rep. 2018, 8, 2861. [Google Scholar] [CrossRef] [PubMed]
- Commonwealth Department of Health and Aged Care & Australian Institute of Health and Welfare (AIHW). NHPA Report on Mental Health: A Report Focusing on Depression 1998, Summary. Available online: https://www.aihw.gov.au/reports/mental-health-services/nhpa-report-mental-health-focus-depression-1998/contents/table-of-contents (accessed on 2 April 2020).
- Lai, J.S.; Oldmeadow, C.; Hure, A.J.; McEvoy, M.; Byles, J.; Attia, J. Longitudinal diet quality is not associated with depressive symptoms in a cohort of middle-aged Australian women. Br. J. Nutr. 2016, 115, 842–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNaughton, S.A. Dietary patterns and diet quality: Approaches to assessing complex exposures in nutrition. Australas. Epidemiol. 2010, 17, 35–37. [Google Scholar]
- Spanish Society of Community Nutrition (SSCN). Healthy Dietary Guidelines (2014). Available online: http://www.nutricioncomunitaria.org/es/otras-publicaciones (accessed on 2 April 2020).
- Ministerio de Sanidad Servicios Sociales e Igualdad, Instituto Nacional de Estadística. Encuesta Nacional de Salud España ENSE 2011/12; Ministerio de Sanidad, Servicios Sociales e Igualdad: Madrid, Spain, 2013. Available online: https://www.mscbs.gob.es/estadEstudios/estadisticas/encuestaNacional/encuesta2011.htm (accessed on 25 May 2020).
- Ministerio de Sanidad Servicios Sociales e Igualdad, Instituto Nacional de Estadística. Encuesta Europea de Salud en España EESE 2014; Ministerio de Sanidad, Servicios Sociales e Igualdad: Madrid, Spain, 2015. Available online: https://www.mscbs.gob.es/estadEstudios/estadisticas/EncuestaEuropea/Enc_Eur_Salud_en_Esp_2014.htm (accessed on 25 May 2020).
- Ministerio de Sanidad Servicios Sociales e Igualdad, Instituto Nacional de Estadística. Encuesta Nacional de Salud España ENSE 2017; Ministerio de Sanidad, Servicios Sociales e Igualdad: Madrid, Spain, 2018. Available online: https://www.mscbs.gob.es/estadEstudios/estadisticas/encuestaNacional/encuesta2017.htm (accessed on 25 May 2020).
- Norte Navarro, A.; Ortiz Moncada, R. Spanish diet quality according to the healthy eating index. Nutr. Hosp. 2011, 26, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Domingo-Salvany, A.; Bacigalupe, A.; Carrasco, J.M.; Espelt, A.; Ferrando, J.; Borrell, C. Proposals for social class classification based on the Spanish National Classification of Occupations 2011 using neo-Weberian and neo-Marxist approaches. Gac. Sanit. 2011, 27, 263–272. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Body Mass Index (BMI). Available online: http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 10 June 2020).
- Jacka, F.N.; Cherbuin, N.; Anstey, K.J.; Butterworth, P. Does reverse causality explain the relationship between diet and depression? J. Affect. Disord. 2015, 175, 248–250. [Google Scholar] [CrossRef]
- Bayes, J.; Schloss, J.; Sibbritt, D. Investigation into the diets and nutritional knowledge of young men with depression: The MENDDS survey. Nutrition 2020, 78, 110946. [Google Scholar] [CrossRef]
- Sánchez Villegas, A.; Toledo, E.; de Irala, J.; Ruiz Canela, M.; Pla Vidal, J.; Martínez González, M.A. Fast-food and commercial baked good consumption and the risk of depression. Public Health Nutr. 2012, 15, 424–432. [Google Scholar] [CrossRef] [Green Version]
- Marozoff, S.; Veugelers, P.J.; Dabravolskaj, J.; Eurich, D.T.; Ye, M.; Maximova, K. Diet quality and health service utilization for depression: A prospective investigation of adults in Alberta’s Tomorrow Project. Nutrients 2020, 12, 2437. [Google Scholar] [CrossRef]
- Lai, J.S.; Hiles, S.; Bisquera, A.; Hure, A.J.; McEvoy, M.; Attia, J. A systematic review and meta-analysis of dietary patterns and depression in community-dwelling adults. Am. J. Clin. Nutr. 2014, 99, 181–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Lv, M.-R.; Wei, Y.J.; Sun, L.; Zhang, J.-X.; Zhang, H.-G.; Li, B. Dietary patterns and depression risk: A meta-analysis. Psychiatry Res. 2017, 253, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Lassale, C.; Batty, G.D.; Baghdadli, A.; Jacka, F.; Sánchez Villegas, A.; Kivimäki, M.; Akbaraly, T. Healthy dietary indices and risk of depressive outcomes: A systematic review and meta-analysis of observational studies. Mol. Psychiatry 2019, 24, 965–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolaou, M.; Colpo, M.; Vermeulen, E.; Elstgeest, L.E.M.; Cabout, M.; Gibson-Smith, D.; Knuppel, A.; Sini, G.; Schoenaker, D.A.; Mishra, G.D. Association of a priori dietary patterns with depressive symptoms: A harmonized meta-analysis of observational studies. Psychol. Med. 2019, 50, 1872–1883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacka, F.N.; O’Neil, A.; Opie, R.; Itsiopoulos, C.; Cotton, S.; Mohebbi, M.; Castle, D.; Dash, S.; Mihalopoulos, C.; Chatterton, M.L.; et al. A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’ trial). BMC Med. 2017, 15, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molendijk, M.L.; Fried, E.I.; van der Does, W. The SMILES trial: Do undisclosed recruitment practices explain the remarkably large effect? BMC Med. 2018, 16, 243. [Google Scholar] [CrossRef] [PubMed]
- Hiza, H.A.B.; Casavale, K.O.; Guenther, P.M.; Davis, C.A. Diet quality of Americans differs by age, sex, race/ethnicity, income, and education level. J. Acad. Nutr. Diet. 2013, 113, 297–306. [Google Scholar] [CrossRef]
- Wang, D.D.; Leung, C.W.; Li, Y.; Ding, E.L.; Chiuve, S.E.; Hu, F.B.; Willett, W.C. Trends in dietary quality among adults in the United States, 1999 through 2010. JAMA Intern. Med. 2014, 174, 1587–1595. [Google Scholar] [CrossRef]
- van Lee, L.; Geelen, A.; Kiefte-de Jong, J.C.; Witteman, J.C.M.; Hofman, A.; Vonk, N.; Jankovic, N.; van Huysduynen, E.H.; de Vries, J.H.M.; van’t Veer, P.; et al. Adherence to the Dutch dietary guidelines is inversely associated with 20-year mortality in a large prospective cohort study. Eur. J. Clin. Nutr. 2016, 70, 262–268. [Google Scholar] [CrossRef]
- Munt, A.; Partridge, S.; Allman-Farinelli, M. The barriers and enablers of healthy eating among young adults: A missing piece of the obesity puzzle: A scoping review. Obes. Rev. 2017, 18, 1–17. [Google Scholar] [CrossRef]
- Rothgerber, H. Real men don’t eat (vegetable) quiche: Masculinity and the justification of meat consumption. Psychol. Men Masc. 2013, 14, 363–375. [Google Scholar] [CrossRef] [Green Version]
- Valdez, L.A.; Amezquita, A.; Hooker, S.P.; Garcia, D.O. Mexican-origin male perspectives of diet-related behaviors associated with weight management. Int. J. Obes. 2017, 41, 1824–1830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, C.; Avenell, A.; Boachie, C.; Stewart, F.; Archibald, D.; Douglas, F.; Hoddinott, P.; van Teijlingen, E.; Boyers, D. Should weight loss and maintenance programmes be designed differently for men? A systematic review of long-term randomised controlled trials presenting data for men and women: The ROMEO project. Obes. Res. Clin. Pract. 2016, 10, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Campos, L.; Bernardes, S.; Godinho, C. Food as a way to convey masculinities: How conformity to hegemonic masculinity norms influences men’s and women’s food consumption. J. Health Psychol. 2020, 25, 1842–1856. [Google Scholar] [CrossRef]
- VanKim, N.A.; Corliss, H.L.; Jun, H.-J.; Calzo, J.P.; AlAwadhi, M.; Austin, S.B. Gender expression and sexual orientation differences in diet quality and eating habits from adolescence to young adulthood. J. Acad. Nutr. Diet. 2019, 119, 2028–2040. [Google Scholar] [CrossRef]
- Lee, J.; Allen, J. Gender differences in healthy and unhealthy food consumption and its relationship with depression in young adulthood. Community Ment. Health J. 2020. [Google Scholar] [CrossRef]
- Kumar, G.S.; Pan, L.; Park, S.; Lee-Kwan, S.H.; Onufrak, S.; Blanck, H.M. Sugar-sweetened beverage consumption among adults 18 states. MMWR. Morb. Mortal. Wkly. Rep. 2014, 63, 686–690. [Google Scholar]
- Park, S.; Pan, L.; Sherry, B.; Blanck, H.M. Consumption of sugar-sweetened beverages among US adults in 6 states: Behavioral Risk Factor Surveillance System, 2011. Prev. Chronic Dis. 2014, 11, E65. [Google Scholar] [CrossRef] [Green Version]
- Nour, M.; Sui, Z.; Grech, A.; Rangan, A.; McGeechan, K.; Allman-Farinelli, M. The fruit and vegetable intake of young Australian adults: A population perspective. Public Health Nutr. 2017, 20, 2499–2512. [Google Scholar] [CrossRef] [Green Version]
- Stark Casagrande, S.; Wang, Y.; Anderson, C.; Gary, T.L. Have Americans increased their fruit and vegetable intake? The trends between 1988 and 2002. Am. J. Prev. Med. 2007, 32, 257–263. [Google Scholar] [CrossRef]
- Sakai, H.; Murakami, K.; Kobayashi, S.; Suga, H.; Sasaki, S. Food-based diet quality score in relation to depressive symptoms in young and middle-aged Japanese women. Br. J. Nutr. 2017, 117, 1674–1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.-Y.; Fu, S.-H.; Chen, K.-L.; Hsieh, P.-L.; Lin, P.-H. Relationships between depression, health-related behaviors, and internet addiction in female junior college students. PLoS ONE 2019, 14, e0220784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkerwi, A.A.; Vernier, C.; Sauvageot, N.; Crichton, G.E.; Elias, M.F. Demographic and socioeconomic disparity in nutrition: Application of a novel Correlated Component Regression approach. BMJ Open 2015, 5, e006814. [Google Scholar] [CrossRef] [Green Version]
- Díaz Méndez, C.; García Espejo, I. Social inequalities in following official guidelines on healthy diet during the period of economic crisis in Spain. Int. J. Health Serv. 2019, 49, 582–605. [Google Scholar] [CrossRef] [PubMed]
- Grimaccia, E.; Naccarato, A. Food insecurity in Europe: A gender perspective. Soc. Indic. Res. 2020, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Errisuriz, V.L.; Delfausse, L.; Villatoro, A.P.; McDaniel, M.D.; Esparza, L.; Parra Medina, D. Depression and physical activity affect diet quality of foreign-born latina women living on the U.S.-Mexico Border. Nutrients 2019, 11, 1254. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Ory, M.G.; Yoon, J.; Forjuoh, S.N. Neighborhood walking among overweight and obese adults: Age variations in barriers and motivators. J. Community Health 2013, 38, 12–22. [Google Scholar] [CrossRef]
- Vaughan, C.A.; Ghosh-Dastidar, M.; Dubowitz, T. Attitudes and barriers to healthy diet and physical activity: A latent profile analysis. Health Educ. Behav. 2018, 45, 381–393. [Google Scholar] [CrossRef]
- Cleare, A.; Pariante, C.M.; Young, A.H.; Anderson, I.M.; Christmas, D.; Cowen, P.J.; Dickens, C.; Ferrier, I.N.; Geddes, J.; Gilbody, S.; et al. Evidence-based guidelines for treating depressive disorders with antidepressants: A revision of the 2008 British Association for Psychopharmacology guidelines. J. Psychopharmacol. 2015, 29, 459–525. [Google Scholar] [CrossRef]
- Knapen, J.; Vancampfort, D.; Moriën, Y.; Marchal, Y. Exercise therapy improves both mental and physical health in patients with major depression. Disabil. Rehabil. 2015, 37, 1490–1495. [Google Scholar] [CrossRef]
- Rebar, A.L.; Stanton, R.; Geard, D.; Short, C.; Duncan, M.J.; Vandelanotte, C. A meta-meta-analysis of the effect of physical activity on depression and anxiety in non-clinical adult populations. Health Psychol. Rev. 2015, 9, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Stanton, R.; Reaburn, P. Exercise and the treatment of depression: A review of the exercise program variables. J. Sci. Med. Sport 2014, 17, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Schuch, F.B.; Vancampfort, D.; Richards, J.; Rosenbaum, S.; Ward, P.B.; Stubbs, B. Exercise as a treatment for depression: A meta-analysis adjusting for publication bias. J. Psychiatr. Res. 2016, 77, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Jacka, F.N.; Rothon, C.; Taylor, S.; Berk, M.; Stansfeld, S.A. Diet quality and mental health problems in adolescents from East London: A prospective study. Soc. Psychiatry Psychiatr. Epidemiol. 2013, 48, 1297–1306. [Google Scholar] [CrossRef] [PubMed]
- Malhi, G.S.; Bassett, D.; Boyce, P.; Bryant, R.; Fitzgerald, P.B.; Fritz, K.; Hopwood, M.; Lyndon, B.; Mulder, R.; Murray, G.; et al. Royal Australian and New Zealand College of Psychiatrists clinical practice guidelines for mood disorders. Aust. N. Z. J. Psychiatry 2015, 49, 1–185. [Google Scholar] [CrossRef] [PubMed]
- Preston, A.M. Cigarette smoking-nutritional implications. Prog. Food Nutr. Sci. 1991, 15, 183–217. [Google Scholar]
- Midgette, A.S.; Baron, J.A.; Rohan, T.E. Do cigarette smokers have diets that increase their risks of coronary heart disease and cancer? Am. J. Epidemiol. 1993, 137, 521–529. [Google Scholar] [CrossRef]
- Subar, A.F.; Harlan, L.C. Nutrient and food group intake by tobacco use status: The 1987 National Health Interview Survey. Ann. N. Y. Acad. Sci. 1993, 686, 310–321. [Google Scholar] [CrossRef]
- Dallongeville, J.; Marécaux, N.; Fruchart, J.C.; Amouyel, P. Cigarette smoking is associated with unhealthy patterns of nutrient intake: A meta-analysis. J. Nutr. 1998, 128, 1450–1457. [Google Scholar] [CrossRef] [Green Version]
- Dyer, A.R.; Elliott, P.; Stamler, J.; Chan, Q.; Ueshima, H.; Zhou, B.F. Dietary intake in male and female smokers, ex-smokers, and never smokers: The INTERMAP study. J. Hum. Hypertens. 2003, 17, 641–654. [Google Scholar] [CrossRef] [Green Version]
- Alkerwi, A.; Sauvageot, N.; Nau, A.; Lair, M.-L.; Donneau, A.-F.; Albert, A.; Guillaume, M. Population compliance with national dietary recommendations and its determinants: Findings from the ORISCAV-LUX study. Br. J. Nutr. 2012, 108, 2083–2092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Northrop-Clewes, C.A.; Thurnham, D.I. Monitoring micronutrients in cigarette smokers. Clin. Chim. Acta. 2007, 377, 14–38. [Google Scholar] [CrossRef] [PubMed]
- Pot, G.K.; Richards, M.; Prynne, C.J.; Stephen, A.M. Development of the Eating Choices Index (ECI): A four-item index to measure healthiness of diet. Public Health Nutr. 2014, 17, 2660–2666. [Google Scholar] [CrossRef] [Green Version]
- Alkerwi, A.; Baydarlioglu, B.; Sauvageot, N.; Stranges, S.; Lemmens, P.; Shivappa, N.; Hébert, J.R. Smoking status is inversely associated with overall diet quality: Findings from the ORISCAV-LUX study. Clin. Nutr. 2017, 36, 1275–1282. [Google Scholar] [CrossRef] [PubMed]
- Breslow, R.A.; Chen, C.M.; Graubard, B.I.; Jacobovits, T.; Kant, A.K. Diets of drinkers on drinking and nondrinking days: NHANES 2003–2008. Am. J. Clin. Nutr. 2013, 97, 1068–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Andrade, S.C.; Nogueira Previdelli, Á.; Galvão Cesar, C.L.; Lobo Marchioni, D.M.; Fisberg, R.M. Trends in diet quality among adolescents, adults and older adults: A population-based study. Prev. Med. Rep. 2016, 4, 391–396. [Google Scholar] [CrossRef] [Green Version]
- Yeomans, M.R.; Caton, S.; Hetherington, M.M. Alcohol and food intake. Curr. Opin. Clin. Nutr. Metab. Care. 2003, 6, 639–644. [Google Scholar] [CrossRef]
- Kesse, E.; Clavel–Chapelon, F.; Slimani, N.; van Liere, M. Do eating habits differ according to alcohol consumption? Results of a study of the French cohort of the European Prospective Investigation into Cancer and Nutrition (E3N-EPIC). Am. J. Clin. Nutr. 2001, 74, 322–327. [Google Scholar] [CrossRef]
- Boden, J.M.; Fergusson, D.M. Alcohol and depression. Addiction 2011, 106, 906–914. [Google Scholar] [CrossRef]
- Awaworyi Churchill, S.; Farrell, L. Alcohol and depression: Evidence from the 2014 health survey for England. Drug Alcohol Depend. 2017, 180, 86–92. [Google Scholar] [CrossRef]
- Gémes, K.; Forsell, Y.; Janszky, I.; László, K.D.; Lundin, A.; Ponce de León, A.; Mukamal, K.J.; Moller, J. Moderate alcohol consumption and depression—A longitudinal population-based study in Sweden. Acta Psychiatr. Scand. 2019, 139, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Winpenny, E.M.; van Harmelen, A.-L.; White, M.; van Sluijs, E.M.; Goodyer, I.M. Diet quality and depressive symptoms in adolescence: No cross-sectional or prospective associations following adjustment for covariates. Public Health Nutr. 2018, 21, 2376–2384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pabayo, R.; Dias, J.; Hemenway, D.; Molnar, B.E. Sweetened beverage consumption is a risk factor for depressive symptoms among adolescents living in Boston, Massachusetts, USA. Public Health Nutr. 2016, 19, 3062–3069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Huang, X.; Xiao, Y.; Jing, D.; Huang, Y.; Chen, L.; Luo, D.; Chen, X.; Shen, M. Daily intake of soft drinks is associated with symptoms of anxiety and depression in Chinese adolescents. Public Health Nutr. 2019, 22, 2553–2560. [Google Scholar] [CrossRef] [PubMed]
- Imamura, F.; O’Connor, L.; Ye, Z.; Mursu, J.; Hayashino, Y.; Bhupathiraju, S.N.; Forouhi, N.G. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: Systematic review, meta-analysis, and estimation of population attributable fraction. BMJ 2015, 351, h3576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Je, Y. Prospective association of sugar-sweetened and artificially sweetened beverage intake with risk of hypertension. Arch. Cardiovasc. Dis. 2016, 109, 242–253. [Google Scholar] [CrossRef]
- Bernabé, E.; Vehkalahti, M.M.; Sheiham, A.; Aromaa, A.; Suominen, A.L. Sugar-sweetened beverages and dental caries in adults: A 4-year prospective study. J. Dent. 2014, 42, 952–958. [Google Scholar] [CrossRef]
- Moynihan, P.J.; Kelly, S.A.M. Effect on caries of restricting sugars intake: Systematic review to inform WHO guidelines. J. Dent. Res. 2014, 93, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Luger, M.; Lafontan, M.; Bes-Rastrollo, M.; Winzer, E.; Yumuk, V.; Farpour-Lambert, N. Sugar-sweetened beverages and weight gain in children and adults: A systematic review from 2013 to 2015 and a comparison with previous studies. Obes. Facts 2017, 10, 674–693. [Google Scholar] [CrossRef]
- Sisti, J.S.; Mezzacca, T.A.; Anekwe, A.; Farley, S.M. Examining trends in beverage sales in New York City during comprehensive efforts to reduce sugary drink consumption, 2010–2015. J. Community Health 2020. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Together Let’s Beat NCDs. Taxes on Sugary Drinks: Why Do It? 2017. Available online: https://apps.who.int/iris/bitstream/handle/10665/260253/WHO-NMH-PND-16.5Rev.1-eng.pdf?sequence=1&isAllowed=y (accessed on 10 October 2020).
- Vall Castelló, J.; López Casasnovas, G. Impact of SSB taxes on consumption; Universitat Pompeu Fabra: Barcelona, Spain, 2018. [Google Scholar]
- Perera, T.; Russo, C.; Takata, Y.; Bobe, G. Legume consumption patterns in US Adults: National Health and Nutrition Examination Survey (NHANES) 2011-2014 and Bean, Lentils, Peas (BLP) 2017 Survey. Nutrients 2020, 12, 1237. [Google Scholar] [CrossRef] [PubMed]
- Suga, H.; Asakura, K.; Kobayashi, S.; Nojima, M.; Sasaki, S.; the Three-generation Study of Women on Diets and Health Study Group. Association between habitual tryptophan intake and depressive symptoms in young and middle-aged women. J. Affect. Disord. 2018, 231, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.; Je, Y. A comparative study of dietary habits and nutritional intakes among Korean adults according to current depression status. Asia Pac. Psychiatry 2017, 10, e12321. [Google Scholar] [CrossRef] [PubMed]
- Yusta Boyo, M.J.; Bermejo, L.M.; García Solano, M.; López Sobaler, A.M.; Ortega, R.M.; García Pérez, M.; Dal-Re Saavedra, M.Á. Sugar content in processed foods in Spain and a comparison of mandatory nutrition labelling and laboratory values. Nutrients 2020, 12, 1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, Y.; Wang, N.; Yu, B.; Zhang, Q.; Liu, L.; Meng, G.; Wu, H.; Du, H.; Shi, H.; Guo, X.; et al. Dietary patterns are associated with depressive symptoms among Chinese adults: A case–control study with propensity score matching. Eur. J. Nutr. 2017, 56, 2577–2587. [Google Scholar] [CrossRef] [PubMed]
- Quirk, S.E.; Williams, L.J.; O’Neil, A.; Pasco, J.A.; Jacka, F.N.; Housden, S.; Berk, M.; Brennan, S.L. The association between diet quality, dietary patterns and depression in adults: A systematic review. BMC Psychiatry 2013, 13, 175. [Google Scholar] [CrossRef] [Green Version]
- Tahmassebi, J.F.; BaniHani, A. Impact of soft drinks to health and economy: A critical review. Eur. Arch. Paediatr. Dent. 2020, 21, 109–117. [Google Scholar] [CrossRef] [Green Version]
Variables | Participants with a Self-Reported Diagnosis of Depression n = 3217 (%) | Participants without a Self-Reported Diagnosis of Depression n = 39,063 (%) | p-Value | ||
---|---|---|---|---|---|
Gender | <0.001 | ||||
Female | 2209 (68.67%) | 19,130 (48.97%) | |||
Male | 1008 (31.33%) | 19,933 (51.03%) | |||
Age group | <0.001 | ||||
16–24 years old | 52 (1.61%) | 3726 (9.54%) | |||
25–44 years old | 846 (26.30%) | 17,535 (44.89%) | |||
45–64 years old | 2319 (72.09%) | 17,802 (45.57%) | |||
Marital status | <0.001 | ||||
Single | 779 (24.21%) | 13,041 (33.38%) | |||
Married | 1627 (50.58%) | 22,207 (56.85%) | |||
Widowed | 265 (8.24%) | 799 (2.05%) | |||
Separated/Divorced | 546 (16.97%) | 3016 (7.72%) | |||
Level of education | <0.001 | ||||
Without studies | 272 (8.46%) | 1361 (3.48%) | |||
Primary | 636 (19.77%) | 4023 (10.30%) | |||
Secondary or PT | 1948 (60.55%) | 24,672 (63.16%) | |||
University | 361 (11.22%) | 9007 (23.06%) | |||
Nationality | <0.001 | ||||
Spanish | 3068 (95.37%) | 35,789 (91.62%) | |||
Foreign | 149 (4.63%) | 3274 (8.38%) | |||
Size of town of residence | 0.71 | ||||
<10,000 inhabitants | 693 (21.54%) | 8527 (21.83%) | |||
≥10,000 inhabitants | 2524 (78.46%) | 30,536 (78.17%) | |||
Social class | <0.001 | ||||
Classes I and II | 384 (11.94%) | 8531 (21.84%) | |||
Classes III and IV | 967 (30.06%) | 13,561 (34.72%) | |||
Classes V and VI | 1866 (58.00%) | 16,971 (43.44%) | |||
Body Mass Index | <0.001 | ||||
Underweight | 64 (1.99%) | 917 (2.35%) | |||
Normal weight | 1221 (37.95%) | 18,922 (48.44%) | |||
Overweight | 1189 (36.96%) | 13,448 (34.43%) | |||
Obese | 743 (23.10%) | 5776 (14.78%) | |||
Current smoking habit | <0.001 | ||||
Yes | 1198 (37.24%) | 12,146 (31.09%) | |||
No | 2019 (62.76%) | 26,917 (68.91%) | |||
Consumption of alcoholic beverages in the past 12 months prior to the survey | <0.001 | ||||
Yes | 1638 (50.92%) | 26,911 (68.89%) | |||
No | 1579 (49.08%) | 12,152 (31.11%) | |||
Physical activity in main activity | <0.001 | ||||
Physically active | 443 (13.77%) | 7647 (19.58%) | |||
Not physically active | 2774 (86.23%) | 31,416 (80.42%) | |||
Number of days in the last 7 days when the respondent had walked for at least 10 min at a time (maximum 7 days) | M | SD | M | SD | <0.001 |
4.29 | 2.92 | 4.64 | 2.81 |
Variables | Participants with a Self-Reported Diagnosis of Depression n = 3217 (%) | Participants without a Self-Reported Diagnosis of Depression n = 39,063 (%) | p-Value |
---|---|---|---|
Frequency of consumption of bread or grains | <0.001 | ||
Never or hardly ever | 108 (3.36) | 718 (1.84) | |
Less than once a week | 73 (2.27) | 671 (1.72) | |
Once or twice a week | 129 (4.00) | 1564 (4.00) | |
Three or more times a week, but not daily | 254 (7.90) | 3579 (9.16) | |
Daily | 2653 (82.47) | 32,531 (83.28) | |
Frequency of consumption of leafy greens, salads and vegetables | <0.001 | ||
Never or hardly ever | 61 (1.90) | 469 (1.20) | |
Less than once a week | 99 (3.07) | 925 (2.37) | |
Once or twice a week | 403 (12.53) | 4548 (11.64) | |
Three or more times a week, but not daily | 1228 (38.17) | 16,061 (41.12) | |
Daily | 1426 (44.33) | 438 (43.67) | |
Frequency of fresh fruit (excluding juices) consumption | <0.001 | ||
Never or hardly ever | 156 (4.85) | 1315 (3.37) | |
Less than once a week | 166 (5.16) | 1491 (3.82) | |
Once or twice a week | 305 (9.48) | 4017 (10.28) | |
Three or more times a week, but not daily | 597 (18.56) | 8519 (21.81) | |
Daily | 1993 (61.95) | 23,721 (60.72) | |
Frequency of consumption of dairy products (milk, cheese, yoghurt) | <0.001 | ||
Never or hardly ever | 124 (3.85) | 990 (2.54) | |
Less than once a week | 76 (2.36) | 803 (2.06) | |
Once or twice a week | 125 (3.89) | 1525 (3.90) | |
Three or more times a week, but not daily | 240 (7.46) | 3497 (8.95) | |
Daily | 2652 (82.44) | 32,248 (82.55) | |
Frequency of meat (chicken, beef, pork, lamb, etc.) consumption | <0.001 | ||
Never or hardly ever | 56 (1.74) | 443 (1.13) | |
Less than once a week | 130 (4.04) | 693 (1.77) | |
Once or twice a week | 972 (30.22) | 9585 (24.54) | |
Three or more times a week, but not daily | 1807 (56.17) | 24,380 (62.41) | |
Daily | 252 (7.83) | 3962 (10.15) | |
Frequency of legumes consumption | 0.01 | ||
Never or hardly ever | 91 (2.83) | 956 (2.45) | |
Less than once a week | 370 (11.50) | 4236 (10.85) | |
Once or twice a week | 1890 (58.75) | 23,970 (61.36) | |
Three or more times a week, but not daily | 820 (25.49) | 9507 (24.34) | |
Daily | 46 (1.43) | 394 (1.00) | |
Frequency of consumption of cold meats and cuts | <0.001 | ||
Never or hardly ever | 449 (13.96) | 3868 (9.90) | |
Less than once a week | 647 (20.11) | 6305 (16.14) | |
Once or twice a week | 951 (29.56) | 11,627 (29.76) | |
Three or more times a week, but not daily | 784 (24.37) | 11,694 (29.94) | |
Daily | 386 (12.00) | 5569 (14.26) | |
Frequency of consumption of sweets (biscuits, pastries, jams, cereals with sugar, sweets, etc.) | <0.001 | ||
Never or hardly ever | 574 (17.84) | 5528 (14.15) | |
Less than once a week | 596 (18.53) | 6550 (16.77) | |
Once or twice a week | 626 (19.46) | 8453 (21.64) | |
Three or more times a week, but not daily | 515 (16.01) | 7596 (19.44) | |
Daily | 906 (28.16) | 10,936 (28.00) | |
Frequency of consumption of soft drinks with sugar | <0.001 | ||
Never or hardly ever | 1606 (49.92) | 15,503 (39.69) | |
Less than once a week | 643 (19.99) | 7911 (20.25) | |
Once or twice a week | 383 (11.91) | 6920 (17.72) | |
Three or more times a week, but not daily | 261 (8.11) | 4247 (10.87) | |
Daily | 324 (10.07) | 4482 (11.47) | |
Diet quality | <0.001 | ||
Poor diet quality | 98 (3.05) | 1060 (2.71) | |
Diet in need of improvement | 2114 (65.71) | 27,448 (70.27) | |
Good diet quality | 1005 (31.24) | 10,555 (27.02) |
Variables | 2011/2012 n = 930 (%) | 2014 n = 1168 (%) | 2017 n = 1119 (%) | Β | R2 | p-Value |
---|---|---|---|---|---|---|
Frequency of consumption of bread or grains | ||||||
Never or hardly ever | 35 (3.76) | 40 (3.43) | 33 (2.95) | −0.14 | 0.99 | 0.07 |
Less than once a week | 24 (2.58) | 30 (2.57) | 19 (1.70) | −0.15 | 0.76 | 0.33 |
Once or twice a week | 47 (5.06) | 38 (3.25) | 44 (3.93) | −0.19 | 0.38 | 0.58 |
Three or more times a week, but not daily | 57 (6.13) | 109 (9.33) | 88 (7.86) | 0.29 | 0.29 | 0.64 |
Daily | 767 (82.47) | 951 (81.42) | 935 (83.56) | 0.18 | 0.26 | 0.66 |
Frequency of consumption of leafy greens, salads and vegetables | ||||||
Never or hardly ever | 22 (2.36) | 24 (2.05) | 15 (1.34) | −0.17 | 0.95 | 0.14 |
Less than once a week | 36 (3.87) | 31 (2.65) | 32 (2.86) | −0.17 | 0.60 | 0.44 |
Once or twice a week | 125 (13.44) | 149 (12.76) | 129 (11.53) | −0.32 | 0.97 | 0.10 |
Three or more times a week, but not daily | 309 (33.23) | 452 (38.70) | 467 (41.73) | 1.42 | 0.97 | 0.10 |
Daily | 438 (47.10) | 512 (43.84) | 476 (42.54) | −0.76 | 0.94 | 0.15 |
Frequency of fresh fruit (excluding juices) consumption | ||||||
Never or hardly ever | 67 (7.21) | 41 (3.51) | 48 (4.29) | −0.49 | 0.56 | 0.46 |
Less than once a week | 45 (4.84) | 49 (4.19) | 72 (6.43) | 0.27 | 0.48 | 0.52 |
Once or twice a week | 88 (9.46) | 103 (8.82) | 114 (10.19) | 0.12 | 0.28 | 0.64 |
Three or more times a week, but not daily | 136 (14.62) | 242 (20.72) | 219 (19.57) | 0.83 | 0.58 | 0.45 |
Daily | 594 (63.87) | 733 (62.76) | 666 (59.52) | −0.72 | 0.93 | 0.18 |
Frequency of consumption of dairy products (milk, cheese, yoghurt) | ||||||
Never or hardly ever | 43 (4.62) | 43 (3.68) | 38 (3.40) | −0.20 | 0.91 | 0.19 |
Less than once a week | 17 (1.83) | 32 (2.74) | 27 (2.41) | 0.10 | 0.40 | 0.57 |
Once or twice a week | 30 (3.23) | 50 (4.28) | 45 (4.02) | 0.13 | 0.52 | 0.49 |
Three or more times a week, but not daily | 47 (5.05) | 105 (8.99) | 88 (7.86) | 0.47 | 0.48 | 0.51 |
Daily | 793 (85.27) | 938 (80.31) | 921 (82.31) | −0.49 | 0.35 | 0.60 |
Frequency of meat (chicken, beef, pork, lamb, etc.) consumption | ||||||
Never or hardly ever | 22 (2.37) | 13 (1.11) | 21 (1.88) | −0.08 | 0.15 | 0.75 |
Less than once a week | 40 (4.30) | 50 (4.28) | 40 (3.57) | −0.12 | 0.77 | 0.32 |
Once or twice a week | 304 (32.69) | 346 (29.62) | 322 (28.78) | −0.65 | 0.90 | 0.20 |
Three or more times a week, but not daily | 493 (53.01) | 671 (57.45) | 643 (57.46) | 0.74 | 0.75 | 0.33 |
Daily | 71 (7.63) | 88 (7.54) | 93 (8.31) | 0.11 | 0.65 | 0.40 |
Frequency of consumption of legumes | ||||||
Never or hardly ever | 39 (4.19) | 33 (2.83) | 19 (1.70) | −0.42 | 1.00 | 0.03 |
Less than once a week | 113 (12.15) | 131 (11.21) | 126 (11.26) | −0.15 | 0.71 | 0.36 |
Once or twice a week | 538 (57.85) | 662 (56.68) | 690 (61.66) | 0.63 | 0.54 | 0.48 |
Three or more times a week, but not daily | 222 (23.87) | 330 (28.25) | 268 (23.95) | 0.01 | 0.00 | 0.99 |
Daily | 18 (1.94) | 12 (1.03) | 16 (1.43) | −0.09 | 0.31 | 0.62 |
Frequency of consumption of cold meats and cuts | ||||||
Never or hardly ever | 195 (20.96) | 132 (11.30) | 122 (10.90) | −1.68 | 0.78 | 0.31 |
Less than once a week | 198 (21.29) | 250 (21.41) | 199 (17.79) | −0.58 | 0.72 | 0.35 |
Once or twice a week | 255 (27.42) | 367 (31.42) | 329 (29.40) | 0.33 | 0.25 | 0.67 |
Three or more times a week, but not daily | 151 (16.24) | 289 (24.74) | 344 (30.74) | 2.42 | 0.99 | 0.06 |
Daily | 131 (14.09) | 130 (11.13) | 125 (11.17) | −0.49 | 0.74 | 0.34 |
Frequency of consumption of sweets (biscuits, pastries, jams, cereals with sugar, sweets, etc.) | ||||||
Never or hardly ever | 245 (26.34) | 180 (15.41) | 149 (13.31) | −2.17 | 0.87 | 0.24 |
Less than once a week | 158 (16.99) | 212 (18.15) | 226 (20.20) | 0.54 | 0.98 | 0.10 |
Once or twice a week | 131 (14.09) | 238 (20.38) | 257 (22.97) | 1.48 | 0.95 | 0.15 |
Three or more times a week, but not daily | 99 (10.64) | 217 (18.58) | 199 (17.78) | 1.19 | 0.67 | 0.39 |
Daily | 297 (31.94) | 321 (27.48) | 288 (25.74) | −1.03 | 0.94 | 0.16 |
Frequency of consumption of soft drinks with sugar | ||||||
Never or hardly ever | 527 (56.67) | 539 (46.15) | 540 (48.26) | −1.40 | 0.57 | 0.45 |
Less than once a week | 139 (14.95) | 256 (21.92) | 248 (22.16) | 1.20 | 0.77 | 0.31 |
Once or twice a week | 94 (10.11) | 140 (11.99) | 149 (13.31) | 0.53 | 0.99 | 0.06 |
Three or more times a week, but not daily | 63 (6.77) | 115 (9.84) | 83 (7.42) | 0.11 | 0.04 | 0.87 |
Daily | 107 (11.50) | 118 (10.10) | 99 (8.85) | −0.44 | 1.00 | 0.02 |
Diet quality | ||||||
Poor diet quality | 25 (2.69) | 45 (3.85) | 28 (2.50) | −0.03 | 0.02 | 0.92 |
Diet in need of improvement | 529 (56.88) | 798 (68.32) | 787 (70.33) | 2.24 | 0.86 | 0.24 |
Good diet quality | 376 (40.43) | 325 (27.83) | 304 (27.17) | −2.21 | 0.79 | 0.31 |
Variables | Individuals with a Self-Reported Diagnosis of Depression (N = 3217) | |||||
---|---|---|---|---|---|---|
Poor/Need Improvement Diet (n = 2212) | ||||||
n (%) | OR (CI 95%) | p-Value | ORa (CI 95%) 1 | p-Value | ||
Gender | ||||||
Female | 1444 (65.37%) | Reference | Reference | |||
Male | 768 (76.19%) | 1.70 (1.43–2.01) | <0.001 | 1.47 (1.23–1.76) | <0.01 | |
Age group (years) | <0.01 <0.001 | |||||
16–24 | 45 (86.54%) | 3.71 (1.67–8.27) | <0.01 | 3.05 (1.24–6.95) | ||
25–44 | 697 (82.39%) | 2.70 (2.22–3.29) | <0.001 | 2.32 (1.89–2.86) | ||
45–64 | 1470 (63.39%) | Reference | Reference | |||
Marital status | 0.34 0.27 <0.01 | |||||
Single | 621 (79.72%) | 0.72 (0.56–0.93) | 0.01 | 0.88 (0.67–1.15) | ||
Married | 1061 (65.21%) | Reference | Reference | |||
Widowed | 152 (57.36%) | 1.20 (0.97–1.48) | 0.09 | 1.13 (0.91–1.41) | ||
Separated/divorced | 378 (69.23%) | 2.10 (1.71–2.57) | <0.001 | 1.41 (1.13–1.75) | ||
Social class | ||||||
Social classes I and II | 265 (69.01%) | 0.99 (0.78–1.26) | 0.94 | |||
Social classes III and IV | 656 (67.84%) | 0.93 (0.80–1.11) | 0.46 | |||
Social classes V and VI | 1291 (69.19%) | Reference | ||||
Level of education | ||||||
Without studies | 188 (69.12%) | 0.94 (0.71–1.23) | 0.63 | |||
Primary | 407 (63.99%) | 0.74 (0.62–0.90) | <0.01 | |||
Secondary or PT | 1374 (70.53%) | Reference | ||||
University | 243 (67.31%) | 0.86 (0.68–1.10) | 0.22 | |||
Nationality | ||||||
Spanish | 2094 (68.25%) | Reference | <0.01 | |||
Foreigner | 118 (79.19%) | 1.78 (1.18–2.65) | ||||
Size of town of residence | ||||||
≤10,000 inhabitants | 462 (66.67%) | 0.89 (0.74–1.06) | 0.18 | |||
>10,000 inhabitants | 1750 (69.33%) | Reference | ||||
Body mass index | ||||||
Underweight | 52 (81.25%) | 1.75 (0.92–3.32) | 0.09 | |||
Normal weight | 870 (71.25%) | Reference | ||||
Overweight | 797 (67.03%) | 0.80 (0.65–0.97) | 0.02 | |||
Obesity | 493 (66.35%) | 0.82 (0.69–0.98) | 0.03 | |||
Self-perceived health status | ||||||
Very good | 90 (74.38%) | 1.28 (0.83–1.95) | 0.26 | |||
Good | 599 (67.68%) | 0.92 (0.77–1.11) | 0.37 | |||
Fair | 920 (69.49%) | Reference | ||||
Poor | 541 (69.38%) | 0.99 (0.81–1.22) | 0.96 | |||
Very poor | 152 (64.14%) | 0.79 (0.59–1.06) | 0.10 | |||
Current smoking habit | <0.001 | |||||
Yes | 931 (77.71%) | 2.01 (1.71–2.37) | <0.001 | 1.70 (1.43–2.02) | ||
No | 1281 (63.45%) | Reference | Reference | |||
Consumption of alcoholic beverages in the past 12 months prior to the survey | <0.01 | |||||
Yes | 1184 (72.28%) | Reference | Reference | |||
No | 1028 (65.10%) | 0.72 (0.32–0.83) | <0.001 | 0.80 (0.69–0.94) | ||
Physical activity in main activity | ||||||
Physically active in main activity | 299 (67.49%) | 0.94 (0.75–1.16) | 0.54 | |||
Not physically active in main activity | 1913 (68.96%) | Reference | ||||
Physical activity during leisure time | ||||||
Yes | 1130 (66.90%) | Reference | ||||
No | 1082 (70.81%) | 1.20 (1.03–1.40) | 0.02 | |||
Number of days in the last 7 days when the respondent walked for at least 10 min at a time | M | SD | 0.96 (0.93–0.98) | <0.01 | 0.95 (0.92–0.97) | <0.001 |
4.17 | 2.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cebrino, J.; Portero de la Cruz, S. Diet Quality and Sociodemographic, Lifestyle, and Health-Related Determinants among People with Depression in Spain: New Evidence from a Cross-Sectional Population-Based Study (2011–2017). Nutrients 2021, 13, 106. https://doi.org/10.3390/nu13010106
Cebrino J, Portero de la Cruz S. Diet Quality and Sociodemographic, Lifestyle, and Health-Related Determinants among People with Depression in Spain: New Evidence from a Cross-Sectional Population-Based Study (2011–2017). Nutrients. 2021; 13(1):106. https://doi.org/10.3390/nu13010106
Chicago/Turabian StyleCebrino, Jesús, and Silvia Portero de la Cruz. 2021. "Diet Quality and Sociodemographic, Lifestyle, and Health-Related Determinants among People with Depression in Spain: New Evidence from a Cross-Sectional Population-Based Study (2011–2017)" Nutrients 13, no. 1: 106. https://doi.org/10.3390/nu13010106
APA StyleCebrino, J., & Portero de la Cruz, S. (2021). Diet Quality and Sociodemographic, Lifestyle, and Health-Related Determinants among People with Depression in Spain: New Evidence from a Cross-Sectional Population-Based Study (2011–2017). Nutrients, 13(1), 106. https://doi.org/10.3390/nu13010106