Eight Days of Water-Only Fasting Promotes Favorable Changes in the Functioning of the Urogenital System of Middle-Aged Healthy Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. Assays
2.4. Data and Statistical Analysis
3. Results
4. Discussion
4.1. Changes in Maximum Urinary Flow Rate
4.2. Changes in Testicular and Prostate Volume
4.3. Impact of Hormone Changes on Testicular Volume Prostate Volume and Maximum Urinary Flow Rate
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Julia, C.; Peneau, S.; Andreeva, V.A.; Mejean, C.; Fezeu, L.; Galan, P.; Hercberg, S. Weight-loss strategies used by the general population: How are they perceived? PLoS ONE 2014, 9, e97834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Cabo, R.; Mattson, M.P. Effects of intermittent fasting on health, aging, and disease. N. Engl. J. Med. 2019, 383, 2541–2551. [Google Scholar] [CrossRef] [PubMed]
- Weindruch, R.; Sohal, R.S. Caloric intake and aging. N. Engl. J. Med. 1997, 337, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Weindruch, R.; Walford, R.L. The Retardation of Aging and Disease by Dietary Restriction; Charles, C., Ed.; Thomas: Springfield, IL, USA, 1988. [Google Scholar]
- Willcox, B.J.; Willcox, D.C. Caloric restriction, CR Mimetics, and healthy aging in Okinawa: Controversies and clinical implications. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 51–58. [Google Scholar] [CrossRef]
- Bartke, A.; Wright, J.C.; Mattison, J.A.; Ingram, D.K.; Miller, R.A.; Roth, G.S. Extending the lifespan of long-lived mice. Nature 2001, 414, 412. [Google Scholar] [CrossRef]
- Gredilla, R.; Barja, G. The role of oxidative stress in relation to caloric restriction and longevity. Endocrinology 2005, 146, 3713–3717. [Google Scholar] [CrossRef]
- Heilbronn, L.K.; Ravussin, E. Calorie restriction and aging: Review of the literature and implications for studies in humans. Am. J. Clin. Nutr. 2003, 78, 361–369. [Google Scholar] [CrossRef]
- Weiss, E.P.; Fontana, L. Caloric restriction: Powerful protection for the aging heart and vasculature. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, 1205–1219. [Google Scholar] [CrossRef] [Green Version]
- Goldhamer, A.C.; Lisle, D.J.; Parpia, B.; Anderson, S.V.; Campbell, T.C. Medically supervised water-only fasting in the treatment of hypertension. J. Manip. Physiol. Ther. 2001, 24, 335–339. [Google Scholar] [CrossRef] [Green Version]
- Muller, H.; de Toledo, F.W.; Resch, K.L. Fasting followed by vegetarian diet in patients with rheumatoid arthritis: A systematic review. Scand. J. Rheumatol. 2001, 30, 1–10. [Google Scholar] [CrossRef]
- Michalsen, A.; Li, C.; Kaiser, K.; Ludtke, R.; Meier, L.; Stange, R.; Kessler, C. In-patient treatment of fibromyalgia: A controlled nonrandomized comparison of conventional medicine versus integrative medicine including fasting therapy. Evid. Based. Complement. Med. 2013, 2013, 908610. [Google Scholar] [CrossRef] [PubMed]
- Michalsen, A.; Kuhlmann, M.K.; Ludtke, R.; Backer, M.; Langhorst, J.; Dobos, G.L. Prolonged fasting in patients with chronic pain syndromes leads to late mood-enhancement not related to weight loss and fasting-induced leptin depletion. Nutr. Neurosci. 2006, 9, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.J.; Enderle, J.; Pourhassan, M.; Braun, W.; Eggeling, B.; Lagerpusch, M.; Glüer, C.C.; Kehayias, J.J.; Kiosz, D.; Bosy-Westphal, A. Metabolic adaptation to caloric restriction and subsequent refeeding: The Minnesota Starvation Experiment revisited. Am. J. Clin. Nutr. 2015, 102, 807–819. [Google Scholar] [CrossRef]
- Horne, B.D.; Muhlestein, J.B.; Anderson, J.L. Health effects of intermittent fasting: Hormesis or harm? A systematic review. Am. J. Clin. Nutr. 2015, 102, 464–470. [Google Scholar] [CrossRef] [Green Version]
- Brick, D.J.; Gerweck, A.V.; Meenaghan, E.; Lawson, E.A.; Misra, M.; Fazeli, P.; Johnson, W.; Klibanski, A.; Miller, K.K. Determinants of IGF1 and GH across the weight spectrum: From anorexia nervosa to obesity. Eur. J. Endocrinol. 2010, 163, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Bove, R.M.; Brick, D.J.; Healy, B.C.; Mancuso, S.M.; Gerweck, A.V.; Bredella, M.A.; Sherman, J.C.; Miller, K.K. Metabolic and endocrine correlates of cognitive function in healthy young women. Obesity (Silver Spring) 2013, 21, 1343–1349. [Google Scholar] [CrossRef] [Green Version]
- Ruggenntii, P.; Abbate, M.; Ruggiero, B.; Rota, S.; Trillini, M.; Aparicio, C.; Parvanova, A.; Iliev, I.P.; Pisanu, G.; Perna, A.; et al. Study Group. Renal and systemic effects of calorie restriction in patients with type diabetes with abdominal obesity: A randomized controlled trial. Diabetes 2017, 66, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Sikorska, D.; Grzymisławska, M.; Roszak, M.; Gulbicka, P.; Korybalska, K.; Witowski, J. Simple obesity and renal function. J. Physiol. Pharmacol. 2017, 68, 175–180. [Google Scholar]
- Kanda, E.; Muneyuki, T.; Suwa, K.; Nakajima, K. Effects of weight loss speed on kidney function differ depending on body mass index in nondiabetic healthy people: A prospective cohort. PLoS ONE 2015, 10, e0143434. [Google Scholar] [CrossRef] [Green Version]
- Friedman, A.N.; Ogden, L.G.; Foser, G.D.; Klein, S.; Stein, R.; Miller, B.; Hill, J.O.; Brill, C.; Bailer, B.; Rosenbaum, D.R.; et al. Comparative effects of low-carbohydrate high protein versus low fat diets on kidney. Clin. J. Am. Soc. Nephrol. 2012, 7, 1103–1111. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Calcium and Magnesium in Drinking-Water. Public Health Significance; WHO Press: Geneva, Switzerland, 2009. [Google Scholar]
- Sabatier, M.; Grandvuillemin, A.; Kastenmayer, P.; Aeschliman, J.M.; Bouisset, F.; Arnaud, M.J.; Dumoulin, G.; Berthelot, A. Influence of the consumption pattern of magnesium from magnesium-rich mineral water on magnesium bioavailability. Br. J. Nutr. 2011, 106, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Bacciottini, L.; Tanini, A.; Falchetti, A.; Masi, L.; Franceschelli, F.; Pampaloni, B.; Giorgi, G.; Brandi, M.L. Calcium bioavailability from a calcium-rich mineral water, with some observations on method. J. Clin. Gastroenterol. 2004, 38, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Galan, P.; Arnaud, M.J.; Czernichow, S.; Delabroise, A.M.; Preziosi, P.; Bertrais, S.; Franchisseur, C.; Maurel, M.; Favier, A.; Hercberg, S. Contribution of mineral waters to dietary calcium and magnesium intake in a French adult population. J. Am. Diet. Assoc. 2002, 102, 1658–1662. [Google Scholar] [CrossRef]
- Karagulle, O.; Kleczka, T.; Vidal, C.; Candir, F.; Gundermann, G.; Kulpmann, W.R.; Gehrke, A.; Gutenbrunner, C. Magnesium absorption from mineral waters of different magnesium content in healthy subjects. Forsch. Komplementmed. 2006, 13, 9–14. [Google Scholar] [CrossRef]
- Luft, F.C.; Zemel, M.B.; Sowers, J.A.; Fineberg, N.S.; Weinberger, M.H. Sodium bicarbonate and sodium chloride: Effects on blood pressure and electrolyte homeostasis in normal and hypertensive man. J. Hypertens. 1990, 8, 663–670. [Google Scholar] [CrossRef]
- Rylander, R.; Tallheden, T.; Vormann, J. Magnesium intervention and blood pressure—A study on risk groups. Open J. Prev. Med. 2012, 2, 23–26. [Google Scholar] [CrossRef] [Green Version]
- Schoppen, S.; Perez-Granados, A.M.; Carbajal, A.; Oubina, P.; Sanchez-Muniz, F.J.; Gomez-Gerique, J.A.; Vaquero, M.P. A sodium-rich carbonated mineral water reduces cardiovascular risk in postmenopausal women. J. Nutr. 2004, 134, 1058–1063. [Google Scholar] [CrossRef]
- Toxqui, L.; Vaquero, M.P. An Intervention with Mineral Water Decreases Cardiometabolic Risk Biomarkers. A Crossover, Randomised, Controlled Trial with Two Mineral Waters in Moderately Hypercholesterolaemic Adults. Nutrients 2016, 8, 400. [Google Scholar] [CrossRef] [Green Version]
- Toxqui, L.; Perez-Granados, A.M.; Blanco-Rojo, R.; Vaquero, M.P. A sodium-bicarbonated mineral water reduces gallbladder emptying and postprandial lipaemia: A randomised four-way crossover study. Eur. J. Nutr. 2012, 51, 607–614. [Google Scholar] [CrossRef] [Green Version]
- Corradini, S.G.; Ferri, F.; Mordenti, M.; Iuliano, L.; Siciliano, M.; Burza, M.A.; Sordi, B.; Caciotti, B.; Pacini, M.; Poli, E.; et al. Beneficial effect of sulphate-bicarbonate-calcium water on gallstone risk and weight control. World J. Gastroenterol. 2012, 18, 930–937. [Google Scholar] [CrossRef]
- Parsons, J.K. Benign prostatic hyperplasia and male lower urinary tract symptoms: Epidemiology and risk factors. Curr. Bladder. Dysfunct. Rep. 2010, 5, 212–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skolarikos, A.; Thorpe, A.; Neal, D. Lower urinary tract symptoms and benign prostatic hyperplasia. Minerva Urol. Nefrol. 2004, 56, 109–122. [Google Scholar] [PubMed]
- Barbieri, M.; Ragno, E.; Benvenuti, E.; Zito, G.A.; Corsi, A.; Ferrucci, L.; Paolisso, G. New aspects of the insulin resistance syndrome: Impact on haematological parameters. Diabetologia 2001, 44, 1232–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossfeld, G.D.; Coakley, F.V. Benign prostatic hyperplasia: Clinical overview and value of diagnostic imaging. Radiol. Clin. North. Am. 2000, 38, 31–47. [Google Scholar] [CrossRef]
- Girman, C.J. Population-based studies of the epidemiology of benign prostatic hyperplasia. Br. J. Urol. 1998, 82, 34–43. [Google Scholar] [CrossRef]
- Thorpe, A.; Neal, D. Benign prostatic hyperplasia. Lancet 2003, 361, 1359–1367. [Google Scholar] [CrossRef] [Green Version]
- Roehrborn, C.G. BPH progression: Concept and key learning from MTOPS. ALTESS, COMBAT and ALF-ONE. BJU Int. 2008, 101, 17–21. [Google Scholar] [CrossRef]
- Wadie, B.S.; Badawi, A.M.; Ghoneim, M.A. The relationship of the International Prostate Symptom Score and objective parameters for diagnosing bladder outlet obstruction. Part II: The potential usefulness of artificial neural networks. J. Urol. 2001, 165, 35–37. [Google Scholar] [CrossRef]
- Bosch, J.L.; Hop, W.C.; Kirkels, W.J.; Schröder, F.H. The International Prostate Symptom Score in a community-based sample of men between 55 and 74 years of age: Prevalence and correlation of symptoms with age, prostate volume, flow rate and residual urine volume. Br. J. Urol. 1995, 75, 622–630. [Google Scholar] [CrossRef]
- Eckhardt, M.D.; van Venrooij, G.E.; Boon, T.A. Symptoms and quality of life versus age, prostate volume, and urodynamic parameters in 565 strictly selected men with lower urinary tract symptoms suggestive of benign prostatic hyperplasia. Urology 2001, 57, 695–700. [Google Scholar] [CrossRef]
- Van der Walt, C.L.E.; Heyns, C.F.; Groeneveld, A.E.; Edlin, R.S.; van Vuuren, S.P.J. Prospective comparison of a new visual prostate symptoms score versus the international prostate symptoms score in men with lower urinary tract symptoms. Urology 2011, 78, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Graves, S.; Cornu, J.N.; Gacci, M.; Gratzke, C.; Hermann, T.R.W.; Mamoulakis, C.; Rieken, M.; Speakman, M.J.; Tikkinen, K.A.O. European association of urology guidelines panel non-neurogenic male lower urinary tract symptoms. Eur. Urol. 2019, 67, 1099–1109. [Google Scholar]
- Gupta, D.K.; Gupta, S.; Jha, N. Correlation between visual prostate symptom score and uroflowmetry parameters in patients with benign enlargement of prostate. J. Nepalgunj. Med. Coll. 2015, 13, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Teillac, P.; Rozet, F.; Terrier, N.; Mongiat-Artus, P.; Rambeaud, J.J. Value of a visual analogue scale for evaluation of the severity of symptoms of benign prostate hyperplasia (BPH): Pilot study of 2 urological centres. Prog. Urol. 2004, 14, 493–500. [Google Scholar] [PubMed]
- Lotti, F.; Maggi, M. Ultrasound of the male genital tract in relation to male reproductive health. Hum. Update 2015, 21, 56–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieschlag, E.; Behre, H.M.; Nieschlag, S. Andrology: Male Reproductive Health and Dysfunction; Springer: Berlin/Heidelberg, Germany, 2009; p. 629. [Google Scholar]
- Ruiz-Olvera, S.F.; Rajmil, O.; Sanchez-Curbelo, J.R.; Vinay, J.; Rodriguez-Espinosa, J.; Ruiz-Castane, E. Association of serum testosterone levels and testicular volume in adult patients. Andrologia 2018, 50, e12933. [Google Scholar] [CrossRef]
- Lenz, S.; Giwercman, A.; Elsborg, A.; Cohr, K.H.; Jelnes, J.E.; Carlsen, E.; Skakkebaek, N.E. Ultrasonic testicular texture and size in 444 men from the general population: Correlation to semen quality. Eur. Urol. 1993, 24, 231–238. [Google Scholar] [CrossRef]
- Lenz, S.; Thomsen, J.K.; Giwercman, A.; Hertel, N.T.; Hertz, J.; Skakkebaek, N.E. Ultrasonic texture and volume of testicles in infertile men. Hum. Reprod. 1994, 9, 878–881. [Google Scholar] [CrossRef]
- Sakamoto, H.; Yajima, T.; Nagata, M.; Okumura, T.; Suzuki, K.; Ogawa, Y. Relationship between testicular size by ultrasonography and testicular function: Measurement of testicular length, width, and depth in patients with infertility. Int. J. Urol. 2008, 15, 529–533. [Google Scholar] [CrossRef]
- Volek, J.S.; Phinney, S.D. Art and Science of Low Carbohydrate Living; Beyond Obesity, LLC: Miami, FL, USA, 2011. [Google Scholar]
- Johnstone, A.M.; Horgan, G.W.; Murison, S.D.; Bremner, D.M.; Lobley, G.E. Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum. Am. J. Clin. Nutr. 2008, 87, 44–55. [Google Scholar] [CrossRef] [Green Version]
- Sansone, M.; Sansone, A.; Borrione, P.; Romanelli, F.; Di Luigi, L.; Paolo Sgrò, P. Effects of Ketone Bodies on Endurance Exercise. Curr. Sports Med. Rep. 2018, 17, 444–453. [Google Scholar] [CrossRef]
- Millward, D.J.; Garlick, P.J.; Nnanyelugo, D.O.; Waterlow, J.C. The relative importance of muscle protein synthesis and breakdown in the regulation of muscle mass. Biochem. J. 1976, 156, 185–188. [Google Scholar] [CrossRef]
- Bourguignon, A.; Rameau, A.; Toullec, G.; Romestaing, C.; Roussel, D. Increased mitochondrial energy efficiency in skeletal muscle after long-term fasting: Its relevance to animal performance. J. Exp. Biol. 2017, 220, 2445–2451. [Google Scholar] [CrossRef] [Green Version]
- Kjeldsen-Kragh, J.; Haugen, M.; Borchgrevink, C.F.; Laerum, E.; Eek, M.; Mowinkel, P.; Hovi, K.; Forre, O. Controlled trial of fasting and one-year vegetarian diet in rheumatoid arthritis. Lancet 1991, 338, 899–902. [Google Scholar] [CrossRef]
- Horne, B.D.; Muhlestein, J.B.; Lappe, D.L.; May, H.T.; Carlquist, J.F.; Galenko, O.; Brunisholz, K.D.; Anderson, J.L. Randomized cross-over trial of short-term water-only fasting: Metabolic and cardiovascular consequences. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1050–1057. [Google Scholar] [CrossRef]
- Li, C.; Ostermann, T.; Hardt, M.; Ludtke, R.; Broecker-Preuss, M.; Dobos, G.; Michalsen, A. Metabolic and psychological response to 7-day fasting in obese patients with and without metabolic syndrome. Forsch. Komplementmed. 2013, 20, 413–420. [Google Scholar] [CrossRef]
- Schmidt, S.; Stange, R.; Lischka, E.; Kiehntopf, M.; Deufel, T.; Loth, D.; Uhlemann, C. Uncontrolled clinical study of the efficacy of ambulant fasting in patients with osteoarthritis. Forsch. Komplementmed. 2010, 17, 87–94. [Google Scholar] [CrossRef]
- Norman, R.W.; Nickel, J.C.; Fish, D.; Pickett, S.N. ‘Prostate-related symptoms’ in Canadian men 50 years of age or older: Prevalence and relationships among symptoms. Br. J. Urol. 1994, 74, 542–550. [Google Scholar] [CrossRef]
- Roehrborn, C.G.; Marks, L.; Harkaway, R. Enlarged prostate: A landmark national survey of its prevalence and impact on US men and their partners. Prostate Cancer Prostatic Dis. 2006, 9, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Logie, J.; Clifford, G.M.; Farmer, R.D. Incidence, prevalence and management of lower urinary tract symptoms in men in the UK. BJU Int. 2005, 95, 557–562. [Google Scholar] [CrossRef]
- Andersson, S.O.; Rashidkhani, B.; Karlberg, L.; Wolk, A.; Johansson, J.E. Prevalence of lower urinary tract symptoms in men aged 45-79 years: A population-based study of 40,000 Swedish men. BJU Int. 2004, 94, 327–331. [Google Scholar] [CrossRef]
- McNaughton-Collins, M.; Barry, M.J. Managing patients with lower urinary tract symptoms suggestive of benign prostatic hyperplasia. Am. J. Med. 2005, 118, 1331–1339. [Google Scholar] [CrossRef]
- Madersbacher, S.; Klingler, H.C.; Schatzl, G.; Stulnig, T.; Schmidbauer, C.P.; Marberger, M. Age related urodynamic changes in patients with benign prostatic hyperplasia. J. Urol. 1996, 156, 1662–1667. [Google Scholar] [CrossRef]
- Tiwari, R.; Ng, M.Y.; Neo, S.H.; Mangat, R.; Ho, H. Prospective validation of a novel visual analogue uroflowmetry score (VAUS) in 1000 men with lower urinary tract symptoms (LUTS). World. J. Urol. 2019, 38, 1267–1273. [Google Scholar] [CrossRef]
- Sener, N.C.; Zengin, K.; Ozturk, U.; Bas, O.; Ercil, H.; Ekici, M.; Yalcin, M.E. The impact of metabolic syndrome on the outcomes of transurethral resection of the prostate. J. Endourol. 2015, 29, 340–343. [Google Scholar] [CrossRef]
- Heyns, C.F.; Groeneveld, A.E.; van der Walt, C.L.E. Correlation between a new visual prostate symptoms score (VPSS) and uroflowmetry parameters in men with lower urinary tract symptoms. S. Afr. Med. J. 2012, 102, 237–240. [Google Scholar]
- Berry, S.J.; Coffey, D.S.; Walsh, P.C.; Ewing, L.L. The development of human benign prostatic hyperplasia with age. J. Urol. 1984, 132, 474–479. [Google Scholar] [CrossRef]
- Mbaeri, T.U.; Orakwe, J.C.; Nwofor, A.M.E.; Oranusi, C.K.; Mbonu, O.O. Ultrasound measurements of testicular volume: Comparing the three common formulas with the true testicular volume determined by water displacement. Afr. J. Urol. 2013, 19, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Condorelli, R.; Calogero, A.E.; La Vignera, S. Relationship between testicular volume and conventional or nonconventional sperm parameters. Int. J. Endocrinol. 2013, 145792. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, A.M.; Goemaere, S.; El-Garem, Y.; Van Pottelbergh, I.; Comhaire, F.H.; Kaufman, J.M. Testicular volume in relation to hormonal indices of gonadal function in community-dwelling elderly men. J. Clin. Endocrinol. Metab. 2003, 88, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Handelsma, D.J.; Staraj, S. Testicular size: The effect of aging, malnutrition, and illness. J. Androl. 1985, 6, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Paltiel, H.J.; Diamond, D.A.; Di Canzio, J.; Zurakowski, D.; Borer, J.G.; Atala, A. Testicular volume: Comparison of orchidometer and US measurements in dogs. Radiology 2002, 222, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Ku, J.H.; Kim, M.E.; Jeon, Y.S.; Lee, N.K.; Park, Y.H. Factors influencing testicular volume in young men: Results of a community-based survey. BJU Int. 2002, 90, 446–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Main, K.M.; Toppari, J.; Suomi, A.M.; Kaleva, M.; Chellakooty, M.; Schmidt, I.M.; Virtanen, H.E.; Boisen, K.A.; Kai, C.M.; Damgaard, I.N.; et al. Larger testes and higher inhibin B levels in Finnish than in Danish newborn boys. J. Clin. Endocrinol. Metab. 2006, 91, 2732–2737. [Google Scholar] [CrossRef] [PubMed]
- Takihara, H.; Sakatoku, J.; Fujii, M.; Nasu, T.; Cosentino, M.J.; Cockett, A.T. Significance of testicular size measurement in andrology. I. A new orchidometer and its clinical application. Fertil. Steril. 1983, 39, 836–840. [Google Scholar] [CrossRef]
- Sakamoto, H.; Ogawa, Y.; Yoshida, H. Relationship between testicular volume and testicular function: Comparison of the Prader orchidometric and ultrasonographic measurements in patients with infertility. Asian J. Androl. 2008, 10, 319–324. [Google Scholar] [CrossRef]
- Arai, T.; Kitahara, S.; Horiuchi, S.; Sumi, S.; Yoshida, K. Relationship of testicular volume to semen profiles and serum hormone concentrations in infertile Japanese males. Int. J. Fertil. Womens Med. 1998, 43, 40–47. [Google Scholar]
- Takihara, H.; Cosentino, M.J.; Sakatoku, J.; Cockett, A.T. Significance of testicular size measurement in andrology. II. Correlation of testicular size with testicular function. J. Urol. 1987, 137, 416–419. [Google Scholar] [CrossRef]
- Comhaire, F.H.; de Kretser, A.; Farley, T.M. The significance of physical characteristics and laboratory investigations for the diagnosis of male infertility. Int. J. Androl. 1987, 7, 19–33. [Google Scholar]
- Spaggiari, G.; Granata, A.R.M.; Santi, D. Testicular ultrasound inhomogeneity is an informative parameter for fertility evaluation. Asian J. Androl. 2019, 21, 1–7. [Google Scholar] [CrossRef]
- Trumble, B.C.; Brindle, E.; Kupsik, M.; O’Connor, K.A. Responsiveness of the reproductive axis to a single missed evening meal in young adult males. Am. J. Hum. Biol. 2010, 22, 775–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finkelstein, J.S.; Yu, E.W.; Burnett-Bowie, S.A. Gonadal steroids and body composition, strength, and sexual function in men. N. Engl. J. Med. 2013, 369, 1011–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiasson, J.L.; Aris-Jilwan, N.; Bélanger, R.; Bertrand, S.; Beauregard, H.; Ekoé, J.M.; Fournier, H.; Havrankova, J. Diagnosis and treatment of diabetic ketoacidosis and the hyperglycemic hyperosmolar state. CMAJ 2003, 168, 859–866. [Google Scholar] [PubMed]
- Qian, Q. Salt, water and nephron: Mechanisms of action and link to hypertension and chronic kidney disease. Nephrology (Carlton) 2018, 4, 44–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pösö, T.; Kesek, D.; Aroch, R.; Winsö, O. Rapid weight loss is associated with preoperative hypovolemia in morbidly obese patients. Obes. Surg. 2013, 23, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Brecchia, G.; Bonanno, A.; Galeati, G.; Federici, C.; Maranesi, M.; Gobbetti, A.; Zerani, M.; Boiti, C. Hormonal and metabolic adaptation to fasting: Effects on the hypothalamic-pituitary-ovarian axis and reproductive performance of rabbit does. Domes. Anim. Endocrinol. 2006, 31, 105–122. [Google Scholar] [CrossRef]
- Bergendahl, M.; Perheentupa, A.; Huhtaniemi, I. Effect of short-term starvation on reproductive hormone gene expression, secretion and receptor levels in male rats. J. Endocrinol. 1989, 121, 409–411. [Google Scholar] [CrossRef]
- Acosta, A.A.; Oehninger, S.; Ertunc, H.; Philput, C. Possible role of pure human follicle-stimulating hormone in the treatment of severe male-factor infertility by assisted reproduction preliminary report. Fertil. Steril. 1991, 55, 1150–1156. [Google Scholar] [CrossRef]
- Koskenniemi, J.J.; Virtanen, H.E.; Toppari, J. Testicular growth and development in puberty. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 215–224. [Google Scholar] [CrossRef]
- Tapanainen, J.S.; Aittomaki, K.; Min, J.; Vaskivuo, T.; Huhteniemi, I.T. Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nat. Genet. 1997, 15, 205–206. [Google Scholar] [CrossRef]
- Gnessi, L.; Scarselli, F.; Minasi, M.G.; Mariani, S.; Lubrano, C.; Basciani, S.; Greco, P.F.; Watanabe, M.; Franco, G.; Farcomeni, A.; et al. Testicular histopathology, semen analysis and FSH, predictive value of sperm retrieval: Supportive counseling in case of reoperation after testicular sperm extraction (TESE). BMC Urol. 2018, 18, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, M.J.; Cheng, R.W.; Simmonds, M.; Richmond, W.; James, V.H.T. Dietary lipids: An additional regulator of plasma levels of sex hormone binding globulin. J. Clin. Endocrinol. Metab. 1987, 64, 1083–1085. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.E.; Rosner, W.; Khan, M.S.; New, M.I.; Pang, S.; Wissel, P.S.; Kappas, A. Diet-hormone interactions: Protein/carbohydrate ratio alters reciprocally the plasma levels of testosterone and cortisol and their respective binding globulins in man. Life Sci. 1987, 40, 1761–1768. [Google Scholar] [CrossRef]
- Mäkinen, J.I.; Perheentupa, A.; Irjala, K.; Pöllänen, P.; Mäkinen, J.; Huhtaniemi, I.; Raitakari, O.T. Endogenous testosterone and serum lipids in middle-aged men. Atherosclerosis 2008, 197, 688–693. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, H.; Zhang, X.; Zhang, B.; Wang, F.; Wang, C.; Zhao, M.; Yu, C.; Gao, L.; Zhao, J.; et al. The relationship between endogenous testosterone and lipid profile in middle-aged and elderly Chinese men. Eur. J. Endocrinol. 2014, 170, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Ilic, D.; Neuberger, M.M.; Djulbegovic, M.; Dahm, P. Screening for prostate cancer. Cochrane Database Syst. Rev. 2013, 1, CD004720. [Google Scholar] [CrossRef]
- Izawa, J.I.; Klotz, L.; Siemens, D.R.; Kassouf, W.; So, A.; Jordan, J.; Chetner, M.; Iansavichene, A.E. Prostate cancer screening: Canadian guidelines 2011. Can. Urol. Assoc. J. 2011, 5, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Loeb, S.; Gonzalez, C.M.; Roehl, K.A.; Han, M.; Antenor, J.A.V.; Yap, R.L.; Catalona, W.J. Pathological characteristics of prostate cancer detected through prostate specific antigen based screening. J. Urol. 2006, 175, 902–906. [Google Scholar] [CrossRef]
- Tchetgen, M.B.; Song, J.T.; Strawderman, M.; Jacobsen, S.J.; Oesterling, J.E. Ejaculation increases the serum prostate-specific antigen concentration. Urology 1996, 47, 511–516. [Google Scholar] [CrossRef]
- Lau, C.K.; Guo, M.; Viczko, J.A.; Naugler, C.T. A population study of fasting time and serum prostate-specific antigen (PSA) level. Asian J. Urol. 2014, 16, 740–744. [Google Scholar] [CrossRef]
- Byun, H.K.; Sung, Y.H.; Kim, W.; Jung, J.H.; Song, J.M.; Chung, H.C. Relationships between prostate-specific antigen, prostate volume, and components of metabolic syndrome in healthy Korean men. Korean J. Urol. 2012, 53, 774–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botelho, F.; Pina, F.; Figueiredo, L.; Cruz, F.; Lunet, N. Does baseline total testosterone improve the yielding of prostate cancer screening? Eur. J. Cancer 2012, 48, 1657–1663. [Google Scholar] [CrossRef] [PubMed]
Variables | Before | After | Significance (p) | Changes % |
---|---|---|---|---|
Age [years] | 49.64 ± 9.30; M = 52.00 | ---- | ---- | |
BW [kg] | 79.76 ± 10.85 | 74.19 ± 10.79 | p < 0.001 * | 6.92 |
BH [cm] | 178.57 ± 4.62 | ---- | ---- | |
BF [%] | 18.91 ± 5.12 | 17.69 ± 5.67 | p < 0.001 * | 6.41 |
BF [kg] | 15.55 ± 5.66 | 13.62 ± 5.59 | p < 0.001 * | 12.49 |
FFM [%] | 81.08 ± 5.14 | 82.09 ± 5.57 | p < 0.01 * | 1.25 |
FFM [kg] | 64.21 ± 5.66 | 60.44 ± 5.99 | p < 0.001 * | 5.80 |
TBW [%] | 59.37 ± 3.76 | 60.26 ± 4.16 | p < 0.001 * | 1.51 |
TBW [kg] | 47.01 ± 4.14 | 44.34 ± 4.22 | p < 0.001 * | 5.64 |
BMI index [kg/m2] | 25.01 ± 3.35 | 23.26 ± 3.29 | p < 0.001 * | 7.01 |
Variables | Before | After | Significance (p) | % Change | Male Reference Values |
---|---|---|---|---|---|
PSA-T [ng/mL] | 1.06 ± 0.97 | 0.67 ± 0.29 | p < 0.001 ** | 36.73 | 30–39 years; 0.2–2.1 55–59 years; 0.3–3.5 |
PSA-F [ng/mL] | 0.31 ± 0.16 | 0.24 ± 0.10 | NS ** | 22.61 | 0.0–0.5 |
FSH [IU/mL] | 5.96 ± 6.47 | 4.97 ± 5.84 | p < 0.01 ** | 16.67 | 0.95–11.95 |
LH [IU/mL] | 4.03 ± 2.51 | 3.61 ± 1.39 | NS ** | 10.40 | 0.57–12.07 |
Pr [ng/mL] | 8.86 ± 3.61 | 6.77 ± 3.43 | p < 0.05 * | 23.54 | 3.46–19.40 |
T-T [ng/dL] | 594.89 ± 216.58 | 385.45 ± 167.65 | p < 0.001 * | 35.27 | 21–49 years; 240.24–871.68 >50 years; 221–716 |
T-F [pg/mL] | 14.82 ± 5.60 | 10.71 ± 3.63 | p < 0.05 * | 27.68 | 19–55 years; 1.0–28.28 >55 years; 0.7–21.45 |
SHBG [nmol/l] | 51.68 ± 29.61 | 69.16 ± 29.83 | p < 0.001 ** | 25.21 | 13.5–71.4 |
DHEA [ng/mL] | 3.39 ± 2.23 | 2.64 ± 1.03 | p < 0.05 ** | 22.14 | 1.2–6.30 |
Ch-T [mg/dL] | 212.214 ± 60.00 | 225.28 ± 76.21 | NS ** | 5.8 | <200 |
β-HB [mmol/l] | 0.29 ± 0.20 | 4.69 ± 0.68 | p < 0.001 ** | 1617.11 | 0.03–0.3 |
Variables | Before | After | Significance (p) | % Change | Male Reference Values |
---|---|---|---|---|---|
PV-USG [cm3] | 30.65 ± 9.00 | 18.72 ± 5.07 | p < 0.001 * | 38.98 | ~20 g, men 21–30 years old |
PV-TRUS [cm3] | 29.54 ± 8.63 | 16.78 ± 5.21 | p < 0.001 * | 43.16 | ~20 g, men 21–30 years old |
Qmax [ml/s] | 19.78 ± 4.59 | 27.00 ± 5.49 | p < 0.001 * | 26.71 | >15 |
TV-left [cm3] | 21.48 ± 5.48 | 15.55 ± 4.59 | p < 0.001 * | 27.66 | >11 |
TV-right [cm3] | 21.00 ± 7.19 | 18.83 ± 6.44 | p < 0.01 * | 10.29 | >11 |
TTV [cm3] | 41.78 ± 12.97 | 34.38 ± 10.16 | p < 0.001 * | 17.72 | >20 |
IPSS [score] | 8.50 ± 3.32 | 3.78 ± 1.53 | p < 0.001 * | 55.53 | <7.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Letkiewicz, S.; Pilis, K.; Ślęzak, A.; Pilis, A.; Pilis, W.; Żychowska, M.; Langfort, J. Eight Days of Water-Only Fasting Promotes Favorable Changes in the Functioning of the Urogenital System of Middle-Aged Healthy Men. Nutrients 2021, 13, 113. https://doi.org/10.3390/nu13010113
Letkiewicz S, Pilis K, Ślęzak A, Pilis A, Pilis W, Żychowska M, Langfort J. Eight Days of Water-Only Fasting Promotes Favorable Changes in the Functioning of the Urogenital System of Middle-Aged Healthy Men. Nutrients. 2021; 13(1):113. https://doi.org/10.3390/nu13010113
Chicago/Turabian StyleLetkiewicz, Sławomir, Karol Pilis, Andrzej Ślęzak, Anna Pilis, Wiesław Pilis, Małgorzata Żychowska, and Józef Langfort. 2021. "Eight Days of Water-Only Fasting Promotes Favorable Changes in the Functioning of the Urogenital System of Middle-Aged Healthy Men" Nutrients 13, no. 1: 113. https://doi.org/10.3390/nu13010113
APA StyleLetkiewicz, S., Pilis, K., Ślęzak, A., Pilis, A., Pilis, W., Żychowska, M., & Langfort, J. (2021). Eight Days of Water-Only Fasting Promotes Favorable Changes in the Functioning of the Urogenital System of Middle-Aged Healthy Men. Nutrients, 13(1), 113. https://doi.org/10.3390/nu13010113