Retinoids in Cutaneous Squamous Cell Carcinoma
Abstract
:1. Introduction
2. Vitamin A Metabolism and Signaling
3. Retinoids and Cutaneous Squamous Cell Carcinoma (cSCC)
Author (Year) | Animal Model/ Study Population | Tumor Induction | Retinoids | Effect |
---|---|---|---|---|
Verma et al. (1979) [107] | Female CD-1 mice | DMBA/TPA | Topical RA (applied 1 h before TPA treatment) | - Inhibition of ornithine decarboxylase activity - Decreased number of papillomas |
Verma et al. (1979) [107] | Female CD-1 mice | DMBA/TPA | Topical RA (applied 24 h before TPA treatment) | - No inhibition of ornithine decarboxylase activity - No decreased number of papillomas |
Chen et al. (1995) [112] | Female SENCAR mice | DMBA/MEZ | High dietary RA | - Inhibition of tumor promotion and progression |
Chen et al. (1995) [112] | Female SENCAR mice | DMBA/TPA | High dietary RA | Inhibition of tumor progression |
Chen et al. (1994) [114] | Female SENCAR mice | DMBA | High dietary RA | - Decreased papilloma formation, but not progression |
Passeri et al. (2016) [111] | CRABP-II-knockout C57BL/6 mice | DMBA/TPA | Enhance skin carcinogenesis | |
Halliday et al. (2000) [119] | Skh:HR-1 (albino) | Solar simulated Ultraviolet radiation | Topical RA | Enhance skin carcinogenesis |
Halliday et al. (2000) [119] | Skh:HR-2 (lightly pigmented) | Solar simulated Ultraviolet radiation | Topical RA | Increased skin carcinogenesis |
Kligman et al. (1996) [120] | Hairless mice | Solar simulated Ultraviolet radiation (UVB + UVA) | Topical tretinoin | Inhibition of skin carcinogenesis |
Kligman et al. (1981) [121] | lightly pigmented variety mice | Ultraviolet light | - Topical RA | No effect on skin carcinogenesis |
Kelly et al. (1989) [124] | Skh-hr1 | broad-band light (280–700 nm) | - Oral vitamin A - Etretinate | No effect on skin carcinogenesis |
Harwood et al. (2005) [138] | Organ transplant patients | Oral acitretin | Prevention of cSCC reoccurence | |
Kadakia et al. (2012) [139] | Non-transplant patients | Oral acitretin | - Reduction of the number of tumor - No effect on incidence and time of cSCC development | |
Brewster et al. (2007) [141] | Aggressive cSCC patients | Oral isotretinoin (13-cis RA) with interferon alpha | No effect on cSCC reoccurrence | |
Weinstock et al. (2012) [144] | cSCC patients | Topical tretinoin | Ineffective on cSCC risk reduction | |
Weinstock et al. (2009) [145] | cSCC patients | Topical tretinoin | Increased mortality | |
Fung et al. (2003) [147] | Nurses’ Health and Health Professionals Follow-up studies | High dietary vitamin A (10–14 years follow-up) | No effect on cSCC risk (short follow up period) | |
Kim et al. (2019) [146] | Nurses’ Health and Health Professionals Follow-up studies | High dietary vitamin A (26–28 years follow-up) | Reduced risk of cSCC |
4. Altered Vitamin A Metabolism in cSCC
5. Retinoid Resistance
6. Prognostic Value of Altered Vitamin A Metabolism
7. Summary and Conclusions
8. Gaps and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Narayanan, D.L.; Saladi, R.N.; Fox, J.L. Ultraviolet radiation and skin cancer. Int. J. Dermatol. 2010, 49, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, P.; Asgari, M.M.; Green, A.C.; Guhan, S.M.; Arron, S.T.; Proby, C.M.; Rollison, D.E.; Harwood, C.A.; Toland, A.E. Keratinocyte Carcinomas: Current Concepts and Future Research Priorities. Clin. Cancer Res. 2019, 25, 2379–2391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldabagh, B.; Angeles, J.G.C.; Cardones, A.R.; Arron, S.T. Cutaneous squamous cell carcinoma and human papillomavirus: Is there an association? Dermatol. Surgery 2013, 39, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herold, M.; Good, A.J.; Nielson, C.B.; Longo, M.I. Use of Topical and Systemic Retinoids in Solid Organ Transplant Recipients: Update and Review of the Current Literature. Dermatol. Surgery 2019, 45, 1442–1449. [Google Scholar] [CrossRef]
- Lapouge, G.; Youssef, K.K.; Vokaer, B.; Achouri, Y.; Michaux, C.; Sotiropoulou, P.A.; Blanpain, C. Identifying the cellular origin of squamous skin tumors. Proc. Natl. Acad. Sci. USA 2011, 108, 7431–7436. [Google Scholar] [CrossRef] [Green Version]
- White, A.C.; Tran, K.; Khuu, J.; Dang, C.; Cui, Y.Y.; Binder, S.W.; Lowry, W.E. Defining the origins of Ras/p53-mediated squamous cell carcinoma. Proc. Natl. Acad. Sci. USA 2011, 108, 7425–7430. [Google Scholar] [CrossRef] [Green Version]
- Blanpain, C. Tracing the cellular origin of cancer. Nature Cell Biol. 2013, 15, 126–134. [Google Scholar] [CrossRef]
- Faurschou, A.; Haedersdal, M.; Poulsen, T.; Wulf, H.C. Squamous cell carcinoma induced by ultraviolet radiation originates from cells of the hair follicle in mice. Exp. Dermatol. 2007, 16, 485–489. [Google Scholar] [CrossRef]
- Rogers, H.W.; Weinstock, M.A.; Harris, A.R.; Hinckley, M.R.; Feldman, S.R.; Fleischer, A.B.; Coldiron, B.M. Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch. Dermatol. 2010, 146, 283–287. [Google Scholar] [CrossRef]
- Muzic, J.G.; Schmitt, A.R.; Wright, A.C.; Alniemi, D.T.; Zubair, A.S.; Lourido, J.M.O.; Seda, I.M.S.; Weaver, A.L.; Baum, C.L. Incidence and Trends of Basal Cell Carcinoma and Cutaneous Squamous Cell Carcinoma: A Population-Based Study in Olmsted County, Minnesota, 2000 to 2010. Mayo Clin. Proc. 2017, 92, 890–898. [Google Scholar] [CrossRef]
- Guy, G.P., Jr.; Machlin, S.R.; Ekwueme, D.U.; Yabroff, K.R. Prevalence and costs of skin cancer treatment in the US, 2002–2006 and 2007–2011. Am. J. Prev. Med. 2015, 48, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.W.; Collins, S.A.B.; Resneck, J.S.; Bolognia, J.L.; Hodge, J.A.; Rohrer, T.A.; Van Beek, M.J.; Margolis, D.J.; Sober, A.J.; Weinstock, M.A.; et al. The burden of skin disease in the United States. J. Am. Acad. Dermatol. 2017, 76, 958. [Google Scholar] [CrossRef] [Green Version]
- Burton, K.A.; Ashack, K.A.; Khachemoune, A. Cutaneous squamous cell carcinoma: A review of high-risk and metastatic disease. Am. J. Clin. Dermatol. 2016, 17, 491–508. [Google Scholar] [CrossRef] [PubMed]
- Brantsch, K.D.; Meisner, C.; Schonfisch, B.; Trilling, B.; Wehner-Caroli, J.; Rocken, M.; Breuninger, H. Analysis of risk factor’s determining prognosis of cutaneous squamous-cell carcinoma: A prospective study. Lancet Oncol. 2008, 9, 713–720. [Google Scholar] [CrossRef]
- Karia, P.S.; Han, J.L.; Schmults, C.D. Cutaneous squamous cell carcinoma: Estimated incidence of disease, nodal metastasis, and deaths from disease in the United States, 2012. J. Am. Acad. Dermatol. 2013, 68, 957–966. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, E.J.; Miller, L.; Shin, T.M.; Sobanko, J.F.; Cannady, S.B.; Miller, C.J.; Newman, J.G. Rate of regional nodal metastases of cutaneous squamous cell carcinoma in the immunosuppressed patient. Am. J. Otolaryngol. 2017, 38, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Jensen, P.; Hansen, S.; Moller, B.; Leivestad, T.; Pfeffer, P.; Geiran, O.; Fauchald, P.; Simonsen, S. Skin cancer in kidney and heart transplant recipients and different long-term immunosuppressive therapy regimens. J. Am. Acad. Dermatol. 1999, 40, 177–186. [Google Scholar] [CrossRef]
- O’Byrne, S.M.; Wongsiriroj, N.; Libien, J.; Vogel, S.; Goldberg, I.J.; Baehr, W.; Palczewski, K.; Blaner, W.S. Retinoid absorption and storage is impaired in mice lacking lecithin: Retinol acyltransferase (LRAT). J. Biol. Chem. 2005, 280, 35647–35657. [Google Scholar] [CrossRef] [Green Version]
- Blaner, W.S.; Gamble, M.V.; Vogel, S.; Piantedosi, R.; Paik, J.; Gottesman, M.E. Retinol-binding protein (RBP): Essential physiologic functions. J. Nutr. 2002, 132, 2979S. [Google Scholar]
- Blomhoff, R.; Green, M.H.; Green, J.B.; Berg, T.; Norum, K.R. Vitamin-A metabolism—New perspectives on absorption, transport, and storage. Physiol. Rev. 1991, 71, 951–990. [Google Scholar] [CrossRef]
- Vahlquist, A. Identification of dehydroretinol (vitamin-A2) in human-skin. Experientia 1980, 36, 317–318. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.M.; Phan, T.T.N.; Albertolle, M.E.; Guengerich, F.P. Human mitochondrial cytochrome P450 27C1 is localized in skin and preferentially desaturates trans-retinol to 3,4-dehydroretinol. J. Biol. Chem. 2017, 292, 13672–13687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramlinger, V.M.; Nagy, L.D.; Fujiwara, R.; Johnson, K.M.; Phan, T.T.N.; Xiao, Y.; Enright, J.M.; Toomey, M.B.; Corbo, J.C.; Guengerich, F.P. Human cytochrome P450 27C1 catalyzes 3,4-desaturation of retinoids. FEBS Lett. 2016, 590, 1304–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz, N.E.G.; Nijhawan, R.I.; Weinberg, J.M. Acitretin. Dermatol. Therapy 2013, 26, 390–399. [Google Scholar] [CrossRef]
- Napoli, J.L. Physiological insights into all-trans-retinoic acid biosynthesis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2012, 1821, 152–167. [Google Scholar] [CrossRef] [Green Version]
- Napoli, J.L. Cellular retinoid binding-proteins, CRBP, CRABP, FABP5: Effects on retinoid metabolism, function and related diseases. Pharmacol. Ther. 2017, 173, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Kedishvili, N.Y. Enzymology of retinoic acid biosynthesis and degradation. J. Lipid Res. 2013, 54, 1744–1760. [Google Scholar] [CrossRef] [Green Version]
- Isoherranen, N.; Zhong, G. Biochemical and physiological importance of the CYP26 retinoic acid hydroxylases. Pharmacol. Ther. 2019, 204, e107400. [Google Scholar] [CrossRef]
- Enright, J.M.; Toomey, M.B.; Sato, S.-Y.; Temple, S.E.; Allen, J.R.; Fujiwara, R.; Kramlinger, V.M.; Nagy, L.D.; Johnson, K.M.; Xiao, Y.; et al. Cyp27c1 red-shifts the spectral sensitivity of photoreceptors by converting vitamin A(1) into A(2). Curr. Biol. 2015, 25, 3048–3057. [Google Scholar] [CrossRef] [Green Version]
- Thaller, C.; Eichele, G. Isolation of 3,4-didehyroetinoic acid, a novel morphogenic signal in the chick wing bud. Nature 1990, 345, 815–819. [Google Scholar] [CrossRef]
- Furr, H.C.; Barua, A.B.; Olson, J.A. Analytical methods. In The Retinoids: Biology, Chemistry, and Medicine; Sporn, M.B., Roberts, A.B., Goodman, D.S., Eds.; Raven press: New York, NY, USA, 1994. [Google Scholar]
- MacDonald, P.N.; Ong, D.E. Binding specificities of cellular retinol-binding protein and cellular retinol-binding protein, type II. J. Biol. Chem. 1987, 262, 10550–10556. [Google Scholar] [PubMed]
- Dew, S.E.; Ong, D.E. Specificity of the retinol transporter of the rat small intestine brush border. Biochemistry 1994, 33, 12340–12345. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, T.; Vahlquist, A.; Kedishvili, N.; Torma, H. 13-cis-Retinoic acid competitively inhibits 3 alpha-hydroxysteroid oxidation by retinol dehydrogenase RoDH-4: A mechanism for its anti-androgenic effects in sebaceous glands? Biochem. Biophys. Res. Commun. 2003, 303, 273–278. [Google Scholar] [CrossRef]
- Lee, S.-A.; Belyaeva, O.V.; Wu, L.; Kedishvili, N.Y. Retinol dehydrogenase 10 but not retinol/sterol dehydrogenase(s) regulates the expression of retinoic acid-responsive genes in human transgenic skin raft culture. J. Biol. Chem. 2011, 286, 13550–13560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiorella, P.D.; Giguere, V.; Napoli, J.L. Expression of cellular retinoic acid-binding protein (type-II) in escherichia-coli-characterization and comparison to cellular retinoic acid-binding protein (type-I). J. Biol. Chem. 1993, 268, 21545–21552. [Google Scholar] [PubMed]
- Gundersen, T.E.; Blomhoff, R. Qualitative and quantitative liquid chromatographic determination of natural retinoids in biological samples. J. Chromatogr. A 2001, 935, 13–43. [Google Scholar] [CrossRef]
- Zouboulis, C.C. Retinoids--which dermatological indications will benefit in the near future? Skin Pharmacol. Appl. Skin Physiol. 2001, 14, 303–315. [Google Scholar] [CrossRef]
- Lens, M.; Medenica, L. Systemic retinoids in chemoprevention of non-melanoma skin cancer. Expert Opin. Pharmacother. 2008, 9, 1363–1374. [Google Scholar] [CrossRef]
- Kawaguchi, R.; Yu, J.M.; Honda, J.; Hu, J.; Whitelegge, J.; Ping, P.P.; Wiita, P.; Bok, D.; Sun, H. A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 2007, 315, 820–825. [Google Scholar] [CrossRef]
- Alapatt, P.; Guo, F.J.; Komanetsky, S.M.; Wang, S.P.; Cai, J.J.; Sargsyan, A.; Diaz, E.R.; Bacon, B.T.; Aryal, P.; Graham, T.E. Liver Retinol Transporter and Receptor for Serum Retinol-binding Protein (RBP4). J. Biol. Chem. 2013, 288, 1250–1265. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, P.N.; Ong, D.E. A lecithin:retinol acyltransferase activity in human and rat liver. Biochem. Biophys. Res. Commun. 1988, 156, 157–163. [Google Scholar] [CrossRef]
- Kurlandsky, S.B.; Xiao, J.H.; Duell, E.A.; Voorhees, J.J.; Fisher, G.J. Biological activity of all-trans retinol requires metabolic conversion to all-trans retinoic acid and is mediated through activation of nuclear retinoid receptors in human keratinocytes. J. Biol. Chem. 1994, 269, 32821–32827. [Google Scholar] [PubMed]
- Shih, M.Y.S.; Kane, M.A.; Zhou, P.; Yen, C.L.E.; Streeper, R.S.; Napoli, J.L.; Farese, R.V. Retinol esterification by DGAT1 is essential for retinoid homeostasis in murine skin. J. Biol. Chem. 2009, 284, 4292–4299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Napoli, J.L. Interactions of retinoid binding proteins and enzymes in retinoid metabolism. Biochim. Biophys. Acta 1999, 1440, 139–162. [Google Scholar] [CrossRef]
- Rexer, B.N.; Ong, D.E. A novel short-chain alcohol dehydrogenase from rats with retinol dehydrogenase activity, cyclically expressed in uterine epithelium. Biol. Reprod. 2002, 67, 1555–1564. [Google Scholar] [CrossRef] [Green Version]
- Everts, H.B.; Sundberg, J.P.; King, L.E., Jr.; Ong, D.E. Immunolocalization of enzymes, binding proteins, and receptors sufficient for retinoic acid synthesis and signaling during the hair cycle. J. Investig. Dermatol. 2007, 127, 1593–1604. [Google Scholar] [CrossRef] [Green Version]
- Markova, N.G.; Pinkas-Sarafova, A.; Karaman-Jurukovska, N.; Jurukovski, V.; Simon, M. Expression pattern and biochemical characteristics of a major epidermal retinol dehydrogenase. Mol. Genet. Metab. 2003, 78, 119–135. [Google Scholar] [CrossRef]
- Nadauld, L.D.; Shelton, D.N.; Chidester, S.; Yost, H.J.; Jones, D.A. The zebrafish retinol dehydrogenase, rdh1l, is essential for intestinal development and is regulated by the tumor suppressor adenomatous polyposis coli. J. Biol. Chem. 2005, 280, 30490–30495. [Google Scholar] [CrossRef] [Green Version]
- Jurukovski, V.; Markova, N.G.; Karaman-Jurukovska, N.; Randolph, R.K.; Su, J.; Napoli, J.L.; Simon, M. Cloning and characterization of retinol dehydrogenase transcripts expressed in human epidermal keratinocytes. Mol. Genet. Metabolism. 1999, 67, 62–73. [Google Scholar] [CrossRef]
- Belyaeva, O.V.; Lee, S.A.; Adams, M.K.; Chang, C.B.; Kedishvili, N.Y. Short chain dehydrogenase/reductase Rdhe2 is a novel retinol dehydrogenase essential for frog embryonic development. J. Biol. Chem. 2012, 287, 9061–9071. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.K.; Lee, S.A.; Belyaeva, O.V.; Wu, L.Z.; Kedishvili, N.Y. Characterization of human short chain dehydrogenase/reductase SDR16C family members related to retinol dehydrogenase 10. Chem. Biol. Interact. 2017, 276, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.X.; Chen, Y.M.; Chen, Y.; Fan, C.; Rohrer, B.; Crouch, R.K.; Ma, J.X. Cloning and characterization of a novel all-trans retinol short-chain dehydrogenase/reductase from the RPE. Investig. Ophthalmol. Vis. Sci. 2002, 43, 3365–3372. [Google Scholar]
- Billings, S.E.; Pierzchalski, K.; Tjaden, N.E.B.; Pang, X.-Y.; Trainor, P.A.; Kane, M.A.; Moise, A.R. The retinaldehyde reductase DHRS3 is essential for preventing the formation of excess retinoic acid during embryonic development. FASEB J. 2013, 27, 4877–4889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiorella, P.D.; Napoli, J.L. Microsomal retinoic acid metabolism. Effects of cellular retinoic acid-binding protein (type I) and C18-hydroxylation as an initial step. J. Biol. Chem. 1994, 269, 10538–10544. [Google Scholar] [PubMed]
- Boylan, J.F.; Gudas, L.J. The level of Crabp-I expression influences the amounts and types of all-trans-retinoic acid metabolites in F9 teratocarcinoma stem-cells. J. Biol. Chem. 1992, 267, 21486–21491. [Google Scholar]
- Chen, A.C.; Yu, K.; Lane, M.A.; Gudas, L.J. Homozygous deletion of the CRABPI gene in AB1 embryonic stem cells results in increased CRABPII gene expression and decreased intracellular retinoic acid concentration. Arch. Biochem. Biophys. 2003, 411, 159–173. [Google Scholar] [CrossRef]
- Nelson, C.H.; Peng, C.C.; Lutz, J.D.; Yeung, C.K.; Zelter, A.; Isoherranen, N. Direct protein-protein interactions and substrate channeling between cellular retinoic acid binding proteins and CYP26B1. FEBS Lett. 2016, 590, 2527–2535. [Google Scholar] [CrossRef] [Green Version]
- Baron, J.M.; Heise, R.; Blaner, W.S.; Neis, M.; Joussen, S.; Dreuw, A.; Marquardt, Y.; Saurat, J.H.; Merk, H.F.; Bickers, D.R.; et al. Retinoic acid and its 4-oxo metabolites are functionally active in human skin cells in vitro. J. Investig. Dermatol. 2005, 125, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Niederreither, K.; Abu-Abed, S.; Schuhbaur, B.; Petkovich, M.; Chambon, P.; Dolle, P. Genetic evidence that oxidative derivatives of retinoic acid are not involved in retinoid signaling during mouse development. Nat. Genet. 2002, 31, 84–88. [Google Scholar] [CrossRef]
- Sorg, O.; Tran, C.; Carraux, P.; Grand, D.; Barraclough, C.; Arrighi, J.-F.; Descombes, P.; Piguet, V.; Saurat, J.-H. Metabolism and biological activities of topical 4-oxoretinoids in mouse skin. J. Investig. Dermatol. 2008, 128, 999–1008. [Google Scholar] [CrossRef]
- Reijntjes, S.; Blentic, A.; Gale, E.; Maden, M. The control of morphogen signalling: Regulation of the synthesis and catabolism of retinoic acid in the developing embryo. Dev. Biol. 2005, 285, 224–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorie, E.P.; Chamcheu, J.C.; Vahlquist, A.; Torma, H. Both all-trans retinoic acid and cytochrome P450 (CYP26) inhibitors affect the expression of vitamin A metabolizing enzymes and retinoid biomarkers in organotypic epidermis. Arch. Dermatol. Res. 2009, 301, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Lorie, E.P.; Cools, M.; Borgers, M.; Wouters, L.; Shroot, B.; Hagforsen, E.; Torma, H.; Vahlquist, A. Topical treatment with CYP26 inhibitor talarozole (R115866) dose dependently alters the expression of retinoid-regulated genes in normal human epidermis. Br. J. Dermatol. 2009, 160, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Lorie, E.P.; Li, H.; Vahlquist, A.; Torma, H. The involvement of cytochrome p450 (CYP) 26 in the retinoic acid metabolism of human epidermal keratinocytes. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2009, 1791, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Pennimpede, T.; Cameron, D.A.; MacLean, G.A.; Li, H.; Abu-Abed, S.; Petkovich, M. The role of CYP26 enzymes in defining appropriate retinoic acid exposure during embryogenesis. Birth Defects Res. Part A Clin. Mol. Teratol. 2010, 88, 883–894. [Google Scholar] [CrossRef]
- Dong, D.; Ruuska, S.E.; Levinthal, D.J.; Noy, N. Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid. J. Biol. Chem. 1999, 274, 23695–23698. [Google Scholar] [CrossRef] [Green Version]
- Budhu, A.S.; Noy, N. Direct channeling of retinoic acid between cellular retinoic acid-binding protein II and retinoic acid receptor sensitizes mammary carcinoma cells to retinoic acid-induced growth arrest. Mol. Cell Biol. 2002, 22, 2632–2641. [Google Scholar] [CrossRef] [Green Version]
- Sessler, R.J.; Noy, N. A ligand-activated nuclear localization signal in cellular retinoic acid binding protein-II. Mol. Cell 2005, 18, 343–353. [Google Scholar] [CrossRef]
- Bucco, R.A.; Zheng, W.L.; Davis, J.T.; Sierra-Rivera, E.; Osteen, K.G.; Chaudhary, A.K.; Ong, D.E. Cellular retinoic acid-binding protein (II) presence in rat uterine epithelial cells correlates with their synthesis of retinoic acid. Biochemistry 1997, 36, 4009–4014. [Google Scholar] [CrossRef]
- Zheng, W.L.; Bucco, R.A.; Sierra-Rievera, E.; Osteen, K.G.; Melner, M.H.; Ong, D.E. Synthesis of retinoic acid by rat ovarian cells that express cellular retinoic acid-binding protein-II. Biol. Reprod. 1999, 60, 110–114. [Google Scholar] [CrossRef] [Green Version]
- Everts, H.B.; Sundberg, J.P.; Ong, D.E. Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp. Cell Res. 2005, 308, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.A.; Watt, F.M. Dynamic regulation of retinoic acid-binding proteins in developing, adult and neoplastic skin reveals roles for beta-catenin and Notch signalling. Dev. Biol. 2008, 324, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Everts, H.B.; King, L.E., Jr.; Sundberg, J.P.; Ong, D.E. Hair cycle-specific immunolocalization of retinoic acid synthesizing enzymes Aldh1a2 and Aldh1a3 indicate complex regulation. J. Investig. Dermatol. 2004, 123, 258–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Everts, H.B. Endogenous retinoids in the hair follicle and sebaceous gland. Biochim. Biophys. Acta 2012, 1821, 222–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Everts, H.B.; Silva, K.A.; Montgomery, S.; Suo, L.; Menser, M.; Valet, A.; King, L.E.; Ong, D.E.; Sundberg, J.P. Retinoid metabolism is altered in human and mouse cicatricial alopecia. J. Investig. Dermatol. 2013, 133, 325–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torma, H.; Vahlquist, A. Biosynthesis of 3-dehydroretinol (vitamin-A2) from all-trans retinol (vitamin-A1) in human epidermis. J. Investig. Dermatol. 1985, 85, 498–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rollman, O.; Wood, E.J.; Olsson, M.J.; Cunliffe, W.J. Biosynthesis of 3,4-didehydroretinol from retinol by human skin keratinocytes in culture. Biochem. J. 1993, 293, 675–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randolph, R.K.; Simon, M. all-trans-retinoic acid regulates retinol and 3,4-didehydroretinol metabolism in cultured human epidermal keratinocytes. J. Investig. Dermatol. 1996, 106, 168–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guengerich, F.P.; Cheng, Q. Orphans in the human cytochrome P450 superfamily: Approaches to discovering functions and relevance in pharmacology. Pharmacol. Rev. 2011, 63, 684–699. [Google Scholar] [CrossRef] [Green Version]
- Vahlquist, A.; Torma, H.; Rollman, O.; Berne, B. Distribution of natural and synthetic retinoids in the skin. In Retinoids: New Trends in Research & Therapy Retinoid Symp, Geneva 1984; Saurat, J.H., Ed.; Karger: Basel, Switzerland, 1985; pp. 159–167. [Google Scholar]
- Petkovich, M.; Brand, N.J.; Krust, A.; Chambon, P. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 1987, 330, 444–450. [Google Scholar] [CrossRef]
- Chambon, P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996, 10, 940–954. [Google Scholar] [CrossRef] [PubMed]
- Balmer, J.E.; Blomhoff, R. Gene expression regulation by retinoic acid. J. Lipid Res. 2002, 43, 1773–1808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, G.J.; Reddy, A.P.; Datta, S.C.; Kang, S.; Yi, J.Y.; Chambon, P.; Voorhees, J.J. All-trans retinoic acid induces cellular retinol-binding protein in human skin in vivo. J. Investig. Dermatol. 1995, 105, 80–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurlandsky, S.B.; Duell, E.A.; Kang, S.; Voorhees, J.J.; Fisher, G.J. Auto-regulation of retinoic acid biosynthesis through regulation of retinol esterification in human keratinocytes. J. Biol. Chem. 1996, 271, 15346–15352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouillet, P.; Sapin, V.; Chazaud, C.; Messaddeq, N.; Decimo, D.; Dolle, P.; Chambon, P. Developmental expression pattern of Stra6, a retinoic acid-responsive gene encoding a new type of membrane protein. Mech. Dev. 1997, 63, 173–186. [Google Scholar] [CrossRef]
- Torma, H.; Bergstrom, A.; Ghiasifarahani, G.; Berne, B. The effect of two endogenous retinoids on the mRNA expression profile in human primary keratinocytes, focusing on genes causing autosomal recessive congenital ichthyosis. Arch. Dermatol. Res. 2014, 306, 739–747. [Google Scholar] [CrossRef] [Green Version]
- Koenig, U.; Amatschek, S.; Mildner, M.; Eckhart, L.; Tschachler, E. Aldehyde dehydrogenase 1A3 is transcriptionally activated by all-trans-retinoic acid in human epidermal keratinocytes. Biochem. Biophys. Res. Comm. 2010, 400, 207–211. [Google Scholar] [CrossRef]
- Matsuura, T.; Ross, A.C. Regulation of hepatic lecithin: Retinol acyltransferase activity by retinoic acid. Arch. Biochem. Biophys. 1993, 301, 221–227. [Google Scholar] [CrossRef]
- Shimada, T.; Ross, A.C.; Muccio, D.D.; Brouillette, W.J.; Shealy, Y.F. Regulation of hepatic lecithin: Retinol acyltransferase activity by retinoic acid receptor-selective retinoids. Arch. Biochem. Biophys. 1997, 344, 220–227. [Google Scholar] [CrossRef]
- Iskakova, M.; Karbyshev, M.; Piskunov, A.; Rochette-Egly, C. Nuclear and extranuclear effects of vitamin A. Can. J. Physiol. Pharmacol. 2015, 93, 1065–1075. [Google Scholar] [CrossRef]
- Park, S.W.; Nhieu, J.; Persaud, S.D.; Miller, M.C.; Xia, Y.L.; Lin, Y.W.; Lin, Y.L.; Kagechika, H.; Mayo, K.H.; Wei, L.N. A new regulatory mechanism for Raf kinase activation, retinoic acid-bound Crabp1. Sci. Rep. 2019, 9, 10929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, D.C.; Jin, H.; Majumdar, A.; Noy, N. Signaling by vitamin A and retinol-binding protein regulates gene expression to inhibit insulin responses. Proc. Natl. Acad. Sci. USA 2011, 108, 4340–4345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, N.; Elholm, M.; Noy, N. Retinoic acid is a high affinity selective ligand for the peroxisome proliferator-activated receptor b/d. J. Biol. Chem. 2003, 278, 41589–41592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schug, T.T.; Berry, D.C.; Shaw, N.S.; Travis, S.N.; Noy, N. Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell 2007, 129, 723–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rieck, M.; Meissner, W.; Ries, S.; Mueller-Brusselbach, S.; Muller, R. Ligand-Mediated Regulation of Peroxisome Proliferator-Activated Receptor (PPAR) beta/delta: A Comparative Analysis of PPAR-Selective Agonists and All-trans Retinoic Acid. Mol. Pharmacol. 2008, 74, 1269–1277. [Google Scholar] [CrossRef]
- Borland, M.G.; Foreman, J.E.; Girroir, E.E.; Zolfaghari, R.; Sharma, A.K.; Amin, S.; Gonzalez, F.J.; Ross, A.C.; Peters, J.M. Ligand Activation of Peroxisome Proliferator-Activated Receptor-beta/delta Inhibits Cell Proliferation in Human HaCaT Keratinocytes. Mol. Pharmacol. 2008, 74, 1429–1442. [Google Scholar] [CrossRef] [Green Version]
- Allenby, G.; Bocquel, M.T.; Saunders, M.; Kazmer, S.; Speck, J.; Rosenberger, M.; Lovey, A.; Kastner, P.; Grippo, J.F.; Chambon, P.; et al. Retinoic acid receptors and retinoid x-receptors- interactions with endogenous retinoic acids. Proc. Natl. Acad. Sci. USA 1993, 90, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Sani, B.P.; Venepally, P.R.; Levin, A.A. Didehydroretinoic acid: Retinoid receptor-mediated transcriptional activation and binding properties. Biochem. Pharmacol. 1997, 53, 1049–1053. [Google Scholar] [CrossRef]
- Kashyap, V.; Gudas, L.J. Epigenetic regulatory mechanisms distinguish retinoic acid-mediated transcriptional responses in stem cells and fibroblasts. J. Biol. Chem. 2010, 285, 14534–14548. [Google Scholar] [CrossRef] [Green Version]
- Laursen, K.B.; Mongan, N.P.; Zhuang, Y.; Ng, M.M.; Benoit, Y.D.; Gudas, L.J. Polycomb recruitment attenuates retinoic acid-induced transcription of the bivalent NR2F1 gene. Nucleic Acids Res. 2013, 41, 6430–6443. [Google Scholar] [CrossRef] [Green Version]
- Tafrova, J.I.; Pinkas-Sarafova, A.; Stolarzewicz, E.; Parker, K.A.; Simon, M. UVA/B exposure promotes the biosynthesis of dehydroretinol in cultured human keratinocytes. Mol. Cell Biochem. 2012, 364, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Fisher, G.J.; Voorhees, J.J. Molecular mechanisms of retinoid actions in skin. FASEB J. 1996, 10, 1002–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolbach, S.B.; Howe, P.R. Tissue changes following deprivation of fat-soluble A vitamin. J. Exp. Med. 1925, 42, 753–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.Y.; Lotan, R. Retinoids and their receptors in cancer development and chemoprevention. Crit. Rev. Oncol. Hematol. 2002, 41, 41–55. [Google Scholar] [CrossRef]
- Verma, A.K.; Shapas, B.G.; Rice, H.M.; Boutwell, R.K. Correlation of the inhibition by retinoids of tumor promotion-induced mouse epidermal ornithine decarboxylase activity and of skin tumor promotion. Cancer Res. 1979, 39, 419–425. [Google Scholar]
- Huang, C.S.; Ma, W.Y.; Dawson, M.I.; Rincon, M.; Flavell, R.A.; Dong, Z.G. Blocking activator protein-1 activity, but not activating retinoic acid response element, is required for the antitumor promotion effect of retinoic acid. Proc. Natl. Acad. Sci. USA 1997, 94, 5826–5830. [Google Scholar] [CrossRef] [Green Version]
- Cheepala, S.B.; Yin, W.H.; Syed, Z.; Gill, J.N.; McMillian, A.; Kleiner, H.E.; Lynch, M.; Loganantharaj, R.; Trutschl, M.; Cvek, U.; et al. Identification of the B-Raf/Mek/Erk MAP kinase pathway as a target for all-trans retinoic acid during skin cancer promotion. Mol. Cancer 2009, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Syed, Z.; Cheepala, S.B.; Gill, J.N.; Stein, J.; Nathan, C.A.; DiGiovanni, J.; Batra, V.; Adegboyega, P.; Kleiner, H.E.; Clifford, J.L. All-Trans Retinoic Acid Suppresses Stat3 Signaling during Skin Carcinogenesis. Cancer Prev. Res. 2009, 2, 903–911. [Google Scholar] [CrossRef] [Green Version]
- Passeri, D.; Doldo, E.; Tarquini, C.; Costanza, G.; Mazzaglia, D.; Agostinelli, S.; Campione, E.; Di Stefani, A.; Giunta, A.; Bianchi, L.; et al. Loss of CRABP-II Characterizes Human Skin Poorly Differentiated Squamous Cell Carcinomas and Favors DMBA/TPA-Induced Carcinogenesis. J. Investig. Dermatol. 2016, 136, 1255–1266. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.C.; Tarone, R.; Huynh, M.; De Luca, L.M. High dietary retinoic acid inhiibits tumor promotion and malignant conversion in a 2-stage skin carcinogenesis protocol using 7,12-dimethylbenz alpha anthracene as the initiator and mezerein as the tumor promoter in SENCAR mice. Cancer Lett. 1995, 95, 113–118. [Google Scholar] [CrossRef]
- Chen, L.C.; Sly, L.; De Luca, L.M. High dietary retinoic acid prevents malignant conversion of skin papillomas induced by a 2-stage carcinogenesis protocol in female SENCAR mice. Carcinogenesis 1994, 15, 2383–2386. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Kirchhoff, S.; De Luca, L.M. Effect of excess dietary retinoic acid on skin papilloma and carcinoma formation induced by a complete carcinogenesis protocol in female SENCAR mice. Cancer Lett. 1994, 78, 63–67. [Google Scholar] [CrossRef]
- Osanai, M.; Takasawa, A.; Takasawa, K.; Murata, M.; Sawada, N. Retinoic acid-metabolizing enzyme cytochrome P450 26A1 promotes skin carcinogenesis induced by 7,12-dimethylbenz a anthracene. Oncol. Lett. 2018, 15, 9987–9993. [Google Scholar] [CrossRef] [PubMed]
- Zito, G.; Saotome, I.; Liu, Z.Z.; Ferro, E.G.; Sun, T.Y.; Nguyen, D.X.; Bilguvar, K.; Ko, C.J.; Greco, V. Spontaneous tumour regression in keratoacanthomas is driven by Wnt/retinoic acid signalling cross-talk. Nat. Commun. 2014, 5, 3543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, M.; Munzel, P.A.; Braeuning, A. Non-melanoma skin cancer in mouse and man. Arch. Toxicol. 2013, 87, 783–798. [Google Scholar] [CrossRef]
- Coelho, M.M.V.; Matos, T.R.; Apetato, M. The dark side of the light: Mechanisms of photocarcinogenesis. Clin. Dermatol. 2016, 34, 563–570. [Google Scholar] [CrossRef]
- Halliday, G.M.; Robertson, B.O.; Barnetson, R.S. Topical retinoic acid enhances, and a dark tan protects, from subedemal solar-simulated photocarcinogenesis. J. Investig. Dermatol. 2000, 114, 923–927. [Google Scholar] [CrossRef] [Green Version]
- Kligman, L.H.; Crosby, M.J. Topical tretinoin enhances corticosteroid-induced inhibition of tumorigenesis in hairless mice previously exposed to solar simulating radiation. Cancer Lett. 1996, 107, 217–222. [Google Scholar] [CrossRef]
- Kligman, L.H.; Kligman, A.M. Lack of enhancement of experimental photocarcinogenesis by topical retinoic acid. Arch. Dermatol. Res. 1981, 270, 453–462. [Google Scholar] [CrossRef]
- Obrochta, K.M.; Kane, M.A.; Napoli, J.L. Effects of diet and strain on mouse serum and tissue retinoid concentrations. PLoS ONE 2014, 9, e99435. [Google Scholar] [CrossRef] [Green Version]
- Sundberg, J.P.; Sundberg, B.A.; Beamer, W.G. Comparison of chemical carcinogen skin tumor induction efficacy in inbred, mutant, and hybrid strains of mice: Morphologic variations of induced tumors and absence of a papillomavirus cocarcinogen. Mol. Carcinog. 1997, 20, 19–32. [Google Scholar] [CrossRef]
- Kelly, G.E.; Meikle, W.D.; Sheil, A.G.R. Effects of oral retinoid (vitamin-A and etretinate) therapy on photocarcinogenesis in hairless mice. Photochem. Photobiol. 1989, 50, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Ratushny, V.; Gober, M.D.; Hick, R.; Ridky, T.W.; Seykora, J.T. From keratinocyte to cancer: The pathogenesis and modeling of cutaneous squamous cell carcinoma. J. Clin. Investig. 2012, 122, 464–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller-Decker, K. Cyclooxygenase-dependent signaling is causally linked to non-melanoma skin carcinogenesis: Pharmacological, genetic, and clinical evidence. Cancer Metastasis Rev. 2011, 30, 343–361. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.A.; Tong, X.; Abu-Yousif, A.O.; Mikulec, C.C.; Gottardi, C.J.; Fischer, S.M.; Pelling, J.C. UVB radiation-induced beta-catenin signaling is enhanced by COX-2 expression in keratinocytes. Mol. Carcinog. 2012, 51, 734–745. [Google Scholar] [CrossRef] [Green Version]
- Malanchi, I.; Peinado, H.; Kassen, D.; Hussenet, T.; Metzger, D.; Chambon, P.; Huber, M.; Hohl, D.; Cano, A.; Birchmeier, W.; et al. Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature 2008, 452, 650–653. [Google Scholar] [CrossRef]
- Prasad, R.; Katiyar, S.K. Crosstalk among UV-induced inflammatory mediators, DNA damage and epigenetic regulators facilitates suppression of the immune system. Photochem. Photobiol. 2017, 93, 930–936. [Google Scholar] [CrossRef] [Green Version]
- Easwaran, V.; Pishvaian, M.; Salimuddin Byers, S. Cross-regulation of beta-catenin-Lef/Tcf and retinoid signaling pathways. Cur. Biol. 1999, 9, 1415–1418. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.; Pishvaian, M.J.; Easwaran, V.; Brown, P.H.; Byers, S.W. The role of cadherin, beta-catenin, and AP-1 in retinoid-regulated carcinoma cell differentiation and proliferation. J. Biol. Chem. 2002, 277, 25313–25322. [Google Scholar] [CrossRef] [Green Version]
- Shibamoto, S.; Winer, J.; Williams, M.; Polakis, P. A blockade in Wnt signaling is activated following the differentiation of F9 teratocarcinoma cells. Exp. Cell Res. 2004, 292, 11–20. [Google Scholar] [CrossRef]
- Zhuang, Y.; Faria, T.N.; Chambon, P.; Gudas, L.J. Identification and characterization of retinoic acid receptor beta2 target genes in F9 teratocarcinoma cells. Mol. Cancer Res. 2003, 1, 619–630. [Google Scholar] [PubMed]
- Eisinger, A.L.; Nadauld, L.D.; Shelton, D.N.; Peterson, P.W.; Phelps, R.A.; Chidester, S.; Stafforini, D.M.; Prescott, S.M.; Jones, D.A. The adenomatous polyposis coli tumor suppressor gene regulates expression of cyclooxygenase-2 by a mechanism that involves retinoic acid. J. Biol. Chem. 2006, 281, 20474–20482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subbaramaiah, K.; Cole, P.A.; Dannenberg, A.J. Retinoids and carnosol suppress cyclooxygenase-2 transcription by CREB-binding protein/p300-dependent and -independent mechanisms. Cancer Res. 2002, 62, 2522–2530. [Google Scholar] [PubMed]
- Karkeni, E.; Bonnet, L.; Astier, J.; Couturier, C.; Dalifard, J.; Tourniaire, F.; Landrier, J.F. All-trans-retinoic acid represses chemokine expression in adipocytes and adipose tissue by inhibiting NF-kappa B signaling. J. Nutr. Biochem. 2017, 42, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Penny, H.L.; Prestwood, T.R.; Bhattacharya, N.; Sun, F.; Kenkel, J.A.; Davidson, M.G.; Shen, L.; Zuniga, L.A.; Seeley, E.S.; Pai, R.; et al. Restoring Retinoic Acid Attenuates Intestinal Inflammation and Tumorigenesis in APC(Min/+) Mice. Cancer Immunol. Res. 2016, 4, 917–926. [Google Scholar] [CrossRef] [Green Version]
- Harwood, C.A.; Leedham-Green, M.; Leigh, I.M.; Proby, C.M. Low-dose Retinoids in the prevention of cutaneous squamous cell carcinomas in organ transplant recipients—A 16-year retrospective study. Arch. Dermatol. 2005, 141, 456–464. [Google Scholar] [CrossRef] [Green Version]
- Kadakia, K.C.; Barton, D.L.; Loprinzi, C.L.; Sloan, J.A.; Otley, C.C.; Diekmann, B.B.; Novotny, P.J.; Alberts, S.R.; Limburg, P.J.; Pittelkow, M.R. Randomized controlled trial of acitretin versus placebo in patients at high-risk for basal cell or squamous cell carcinoma of the skin (North Central Cancer Treatment Group Study 969251). Cancer 2012, 118, 2128–2137. [Google Scholar] [CrossRef]
- Ruiz, E.S.; Schmults, C.D. Risk stratification: Should all actinic keratoses in all patients be treated? Curr. Dermatol. Rep. 2018, 7, 99–104. [Google Scholar] [CrossRef]
- Brewster, A.M.; Lee, J.J.; Clayman, G.L.; Clifford, J.L.; Reyes, M.; Zhou, X.; Sabichi, A.L.; Strom, S.S.; Collins, R.; Meyers, C.A.; et al. Randomized trial of adjuvant 13-cis-retinoic acid and interferon alpha for patients with aggressive skin squamous cell carcinoma. J. Clin. Oncol. 2007, 25, 1974–1978. [Google Scholar] [CrossRef]
- Tzimas, G.; Nau, H. The role of metabolism and toxicokinetics in retinoid teratogenesis. Curr. Pharm. Des. 2001, 7, 803–831. [Google Scholar] [CrossRef]
- Aryal, A.; Upreti, S. A brief review of systemic retinoids. IJPSR 2017, 8, 3630–3639. [Google Scholar]
- Weinstock, M.A.; Bingham, S.F.; DiGiovanna, J.J.; Rizzo, A.E.; Marcolivio, K.; Hall, R.; Eilers, D.; Naylor, M.; Kirsner, R.; Kalivas, J.; et al. Tretinoin and the prevention of keratinocyte carcinoma (basal and squamous cell carcinoma of the skin): A Veterans Affairs randomized chemoprevention trial. J. Investig. Dermatol. 2012, 132, 1583–1590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstock, M.A.; Bingham, S.F.; Lew, R.A.; Hall, R.; Eilers, D.; Kirsner, R.; Naylor, M.; Kalivas, J.; Cole, G.; Marcolivio, K.; et al. Topical tretinoin therapy and all-cause mortality. Arch. Dermatol. 2009, 145, 18–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Park, M.K.; Li, W.Q.; Qureshi, A.A.; Cho, E. Association of Vitamin A Intake with Cutaneous Squamous Cell Carcinoma Risk in the United States. JAMA Dermatol. 2019, 155, 1260–1268. [Google Scholar] [CrossRef]
- Fung, T.T.; Spiegelman, D.; Egan, K.M.; Giovannucci, E.; Hunter, D.J.; Willett, W.C. Vitamin and carotenoid intake and risk of squamous cell carcinoma of the skin. Int. J. Cancer 2003, 103, 110–115. [Google Scholar] [CrossRef]
- Sorg, O.; Tran, C.; Carraux, P.; Didierjean, L.; Saurat, J.H. Retinol and retinyl ester epidermal pools are not identically sensitive to UVB irradiation and anti-oxidant protective effect. Dermatology 1999, 199, 302–307. [Google Scholar] [CrossRef]
- Sorg, O.; Tran, C.; Carraux, P.; Didierjean, L.; Falson, F.; Saurat, J.H. Oxidative stress-independent depletion of epidermal vitamin A by UVA. J. Investig. Dermatol. 2002, 118, 513–518. [Google Scholar] [CrossRef]
- Berne, B.; Nilsson, M.; Vahlquist, A. UV irradiation and cutaneous vitamin-A- An experimental-study in rabbit and human-skin. J. Investig. Dermatol. 1984, 83, 401–404. [Google Scholar] [CrossRef] [Green Version]
- Vahlquist, A.; Andersson, E.; Coble, B.I.; Rollman, O.; Torma, H. Increased concentrations of 3,4-didehydroretinol and retinoic acid-binding protein (CRABPII) in human squamous cell carcinoma and keratoacanthoma but not in basal cell carcinoma of the skin. J. Investig. Dermatol. 1996, 106, 1070–1074. [Google Scholar] [CrossRef] [Green Version]
- Torma, H.; Asselineau, D.; Andersson, E.; Martin, B.; Reiniche, P.; Chambon, P.; Shroot, B.; Darmon, M.; Vahlquist, A. Biological activities of retinoic acid and 3,4-didehydroretinoic acid in human keratinocytes are similar and correlate with receptor affinities and transactivation properties. J. Investig. Dermatol. 1994, 102, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Vahlquist, A.; Rollman, O.; Holland, D.B.; Cunliffe, W.J. Isotretinoin treatment of severe acne affects the endogenous concentrations of vitamin-A in sebaceous glands. J. Investig. Dermatol. 1990, 94, 496–498. [Google Scholar] [CrossRef] [PubMed]
- Rollman, O.; Vahlquist, A. Retinoid concentrations in skin, serum and adipose-tissue of patients treated with etretinate. Br. J. Dermatol. 1983, 109, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Ruiz, A.; Rando, R.R.; Bok, D.; Gudas, L.J. Esterification of all-trans-retinol in normal human epithelial cell strains and carcinoma lines from oral cavity, skin and breast: Reduced expression of lecithin:retinol acyltransferase in carcinoma lines. Carcinogenesis 2000, 21, 1925–1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurukovski, V.; Simon, M. Reduced lecithin:retinol acyl transferase activity in cultured squamous cell carcinoma lines results in increased substrate-driven retinoic acid synthesis. Biochim. Biophys. Acta 1999, 1436, 479–490. [Google Scholar] [CrossRef]
- Guo, X.; Gudas, L.J. Metabolism of all-trans-retinol in normal human cell strains and squamous cell carcinoma (SCC) lines from the oral cavity and skin: Reduced esterification of retinol in SCC lines. Cancer Res. 1998, 58, 166–176. [Google Scholar]
- Gressel, K.L.; Duncan, F.J.; Oberyszyn, T.M.; La Perle, K.M.; Everts, H.B. Endogenous retinoic acid required to maintain the epidermis following ultraviolet light exposure in SKH-1 hairless mice. Photochem. Photobiol. 2015, 91, 901–908. [Google Scholar] [CrossRef] [Green Version]
- Everts, H.B. Endogenous Retinoic Acid Required to Maintain the Epidermis Following Ultraviolet Light Exposure in SKH‐1 Hairless Mice. Photochem. Photobiol. 2015, 91, 1249–1250. [Google Scholar]
- Wu, L.; Chaudhary, S.C.; Atigadda, V.R.; Belyaeva, O.V.; Harville, S.R.; Elmets, C.A.; Muccio, D.D.; Athar, M.; Kedishvili, N.Y. Retinoid x receptor agonists upregulate genes responsible for the biosynthesis of all-trans-retinoic acid in human epidermis. PLoS ONE 2016, 11, e0153556. [Google Scholar] [CrossRef]
- Everts, H.B.; Suo, L.; Ghim, S.; Jenson, A.B.; Sundberg, J.P. Retinoic acid metabolism proteins are altered in trichoblastomas induced by mouse papillomavirus 1. Exp. Mol. Pathol. 2015, 99, 546–551. [Google Scholar] [CrossRef]
- Geng, S.M.; Guo, Y.Y.; Wang, Q.Q.; Li, L.; Wang, J.L. Cancer stem-like cells enriched with CD29 and CD44 markers exhibit molecular characteristics with epithelial-mesenchymal transition in squamous cell carcinoma. Arch. Dermatol. Res. 2013, 305, 35–47. [Google Scholar] [CrossRef]
- Osanai, M.; Lee, G.H. Enhanced expression of retinoic acid-metabolizing enzyme CYP26A1 in sunlight-damaged human skin. Med. Mol. Morphol. 2011, 44, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, F.; Kosmidis, M.; Muhleisen, B.; French, L.E.; Hofbauer, G.F.L. Retinoic Acid Receptor Isoform mRNA Expression Differs Between BCC and SCC of the Skin. Arch. Dermatol. 2010, 146, 675–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connolly, R.M.; Nguyen, N.K.; Sukumar, S. Molecular Pathways: Current Role and Future Directions of the Retinoic Acid Pathway in Cancer Prevention and Treatment. Clin. Cancer Res. 2013, 19, 1651–1659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobrotkova, V.; Chlapek, P.; Mazanek, P.; Sterba, J.; Veselska, R. Traffic lights for retinoids in oncology: Molecular markers of retinoid resistance and sensitivity and their use in the management of cancer differentiation therapy. BMC Cancer 2018, 18, 1059. [Google Scholar] [CrossRef] [PubMed]
- Freemantle, S.J.; Spinella, M.J.; Dmitrovsky, E. Retinoids in cancer therapy and chemoprevention: Promise meets resistance. Oncogene 2003, 22, 7305–7315. [Google Scholar] [CrossRef] [Green Version]
- Ponzio, G.; Rezzonico, R.; Bourget, I.; Allan, R.; Nottet, N.; Popa, A.; Magnone, V.; Rios, G.; Mari, B.; Barbry, P. A new long noncoding RNA (lncRNA) is induced in cutaneous squamous cell carcinoma and down-regulates several anticancer and cell differentiation genes in mouse. J. Biol. Chem. 2017, 292, 12483–12495. [Google Scholar] [CrossRef] [Green Version]
- Schug, T.T.; Berry, D.C.; Toshkov, I.A.; Cheng, L.; Nikitin, A.Y.; Noy, N. Overcoming retinoic acid-resistance of mammary carcinomas by diverting retinoic acid from PPAR beta/delta to RAR. Proc. Natl. Acad. Sci. USA 2008, 105, 7546–7551. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.N.; Li, Y.; Wu, M.L.; Liu, Z.L.; Fu, Y.S.; Kong, Q.Y.; Chen, X.Y.; Li, H.; Liu, J. CRABP-II- and FABP5-independent all-trans retinoic acid resistance in COLO 16 human cutaneous squamous cancer cells. Exp. Dermatol. 2012, 21, 13–18. [Google Scholar] [CrossRef]
- Tang, X.H.; Gudas, L.J. Retinoids, Retinoic Acid Receptors, and Cancer. Annu. Rev. Pathol. Mech. Dis. 2011, 6, 345–364. [Google Scholar] [CrossRef]
- Tang, X.H.; Albert, M.; Scognamiglio, T.; Gudas, L.J. A DNA Methyltransferase Inhibitor and All-trans Retinoic Acid Reduce Oral Cavity Carcinogenesis Induced by the Carcinogen 4-Nitroquinoline 1-Oxide. Cancer Prev. Res. 2009, 2, 1100–1110. [Google Scholar] [CrossRef] [Green Version]
- Botchkarev, V.A.; Gdula, M.R.; Mardaryev, A.N.; Sharov, A.A.; Fessing, M.Y. Epigenetic Regulation of Gene Expression in Keratinocytes. J. Investig. Dermatol. 2012, 132, 2505–2521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nandakumar, V.; Vaid, M.; Tollefsbol, T.O.; Katiyar, S.K. Aberrant DNA hypermethylation patterns lead to transcriptional silencing of tumor suppressor genes in UVB-exposed skin and UVB-induced skin tumors of mice. Carcinogenesis 2011, 32, 597–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, B.B.; Koach, J.; Tan, O.; Kim, P.; Bell, J.L.; D’Andreti, C.; Sutton, S.; Malyukova, A.; Sekyere, E.; Norris, M.; et al. The retinoid signalling molecule, TRIM16, is repressed during squamous cell carcinoma skin carcinogenesis in vivo and reduces skin cancer cell migration in vitro. J. Pathol. 2012, 226, 451–462. [Google Scholar] [CrossRef]
- Hassel, J.C.; Amann, P.M.; Schadendorf, D.; Eichmueller, S.B.; Nagler, M.; Bazhin, A.V. Lecithin retinol acyltransferase as a potential prognostic marker for malignant melanoma. Exp. Dermatol. 2013, 22, 757–759. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.T.; Cash, B.G.; Blihoghe, D.; Johansson, P.; Alnabulsi, A.; Murray, G.I. The expression and prognostic significance of retinoic acid metabolising enzymes in colorectal cancer. PLoS ONE 2014, 9, e90776. [Google Scholar] [CrossRef] [Green Version]
- Boorjian, S.; Tickoo, S.K.; Mongan, N.P.; Yu, H.Y.; Bok, D.; Rando, R.R.; Nanus, D.M.; Scherr, D.S.; Gudas, L.J. Reduced lecithin: Retinol acyltransferase expression correlates with increased pathologic tumor stage in bladder cancer. Clin. Cancer Res. 2004, 10, 3429–3437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jette, C.; Peterson, P.W.; Sandoval, I.T.; Manos, E.J.; Hadley, E.; Ireland, C.M.; Jones, D.A. The tumor suppressor adenomatous polyposis coli and caudal related homeodomain protein regulate expression of retinol dehydrogenase L. J. Biol. Chem. 2004, 279, 34397–34405. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Chen, H.Y.; Han, T.; Yang, G.Z.; Feng, D.; Qi, C.Y.; Gong, H.; Zhai, Y.X.; Cai, Q.P.; Gao, C.F. Downregulation of DHRS9 expression in colorectal cancer tissues and its prognostic significance. Tumor Biol. 2016, 37, 837–845. [Google Scholar] [CrossRef] [Green Version]
- Shimomura, H.; Sasahira, T.; Nakashima, C.; Shimomura-Kurihara, M.; Kirita, T. Downregulation of DHRS9 is associated with poor prognosis in oral squamous cell carcinoma. Pathology 2018, 50, 642–647. [Google Scholar] [CrossRef]
- Clark, D.W.; Palle, K. Aldehyde dehydrogenases in cancer stem cells: Potential as therapeutic targets. Ann. Transl. Med. 2016, 4, 518. [Google Scholar] [CrossRef]
- Marcato, P.; Dean, C.A.; Giacomantonio, C.A.; Lee, P.W.K. Aldehyde dehydrogenase Its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle 2011, 10, 1378–1384. [Google Scholar] [CrossRef] [PubMed]
- Pors, K.; Moreb, J.S. Aldehyde dehydrogenases in cancer: An opporunity for biomaker and drug development? Drug Discov. Today 2014, 19, 1953–1963. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chai, S.J.; Wang, P.L.; Zhang, C.C.; Yang, Y.M.; Yang, Y.; Wang, K. Aldehyde dehydrogenases and cancer stem cells. Cancer Lett. 2015, 369, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Vassalli, G. Aldehyde dehydrogenases: Not just markers, but functional regulators of stem cells. Stem Cells Int. 2019, 2019, 3904645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alamgeer, M.; Ganju, V.; Szczepny, A.; Russell, P.A.; Prodanovic, Z.; Kumar, B.; Wainer, Z.; Brown, T.; Schneider-Kolsky, M.; Conron, M.; et al. The prognostic significance of aldehyde dehydrogenase 1A1 (ALDH1A1) and CD133 expression in early stage non-small cell lung cancer. Thorax 2013, 68, 1095–1104. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.; He, W.; Li, Y.; Ma, R.; Wang, Z.; Zhu, X.; Fu, Q.; Wen, Y.; Li, H.; Wen, W. Increased expression of aldehyde dehydrogenase 1 A1 in nasopharyngeal carcinoma is associated with enhanced invasiveness. Eur. Arch. Oto-Rhino-Laryngol. 2014, 271, 171–179. [Google Scholar] [CrossRef]
- Xu, N.; Shao, M.M.; Zhang, H.T.; Jin, M.S.; Dong, Y.; Ou, R.J.; Wang, H.M.; Shi, A.P. Aldehyde dehydrogenase 1 (ALDH1) expression is associated with a poor prognosis of bladder cancer. Cancer Epidemiol. 2015, 39, 375–381. [Google Scholar] [CrossRef]
- Xing, Y.; Luo, D.-Y.; Long, M.-Y.; Zeng, S.-L.; Li, H.-H. High ALDH1A1 expression correlates with poor survival in papillary thyroid carcinoma. World J. Surg. Oncol. 2014, 12, 29. [Google Scholar] [CrossRef] [Green Version]
- Qian, X.; Wagner, S.; Ma, C.; Coordes, A.; Gekeler, J.; Klussmann, J.P.; Hummel, M.; Kaufmann, A.M.; Albers, A.E. Prognostic significance of ALDH1A1-positive cancer stem cells in patients with locally advanced, metastasized head and neck squamous cell carcinoma. J. Cancer Res. Clin. Oncol. 2014, 140, 1151–1158. [Google Scholar] [CrossRef]
- Yang, L.; Ren, Y.; Yu, X.; Qian, F.; Bian, B.-S.-J.; Xiao, H.-L.; Wang, W.-G.; Xu, S.-L.; Yang, J.; Cui, W.; et al. ALDH1A1 defines invasive cancer stem-like cells and predicts poor prognosis in patients with esophageal squamous cell carcinoma. Mod. Pathol. 2014, 27, 775–783. [Google Scholar] [CrossRef] [Green Version]
- van der Waals, L.M.; Rinkes, I.; Kranenburg, O. ALDH1A1 expression is associated with poor differentiation, ‘right-sidedness’ and poor survival in human colorectal cancer. PLoS ONE 2018, 13, e0205536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Lv, D.-L.; Duan, J.-J.; Xu, S.-L.; Zhang, J.-F.; Yang, X.-J.; Zhang, X.; Cui, Y.-H.; Bian, X.-W.; Yu, S.-C. ALDH1A1 expression correlates with clinicopathologic features and poor prognosis of breast cancer patients: A systematic review and meta-analysis. BMC Cancer 2014, 14, 444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, J.X.; Liu, J.; Li, G.W.; Huang, Y.T.; Wu, H.T. Mining distinct aldehyde dehydrogenase 1 (ALDH1) isoenzymes in gastric cancer. Oncotarget 2016, 7, 25340–25349. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lapointe, J.; Kaygusuz, G.; Ong, D.E.; Li, C.D.; van de Rijn, M.; Brooks, J.D.; Pollack, J.R. The retinoic acid synthesis gene ALDH1a2 is a candidate tumor suppressor in prostate cancer. Cancer Res. 2005, 65, 8118–8124. [Google Scholar] [CrossRef] [Green Version]
- Seidensaal, K.; Nollert, A.; Feige, A.H.; Muller, M.; Fleming, T.; Gunkel, N.; Zaoui, K.; Grabe, N.; Weichert, W.; Weber, K.J.; et al. Impaired aldehyde dehydrogenase 1 subfamily member 2A-dependent retinoic acid signaling is related with a mesenchymal-like phenotype and an unfavorable prognosis of head and neck squamous cell carcinoma. Mol. Cancer 2015, 14, 204. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.L.; Liu, Y.W.; Hu, H.M.; Huang, H.; Bao, Z.S.; Yang, P.; Wang, Y.Y.; You, G.; Yan, W.; Jiang, T.; et al. ALDH1A3: A marker of mesenchymal phenotype in gliomas associated with cell invasion. PLoS ONE 2015, 10, e0142856. [Google Scholar] [CrossRef]
- Zhang, W.; Yan, W.; You, G.; Bao, Z.S.; Wang, Y.Z.; Liu, Y.W.; You, Y.P.; Jiang, T. Genome-wide DNA methylation profiling identifies ALDH1A3 promoter methylation as a prognostic predictor in G-CIMP- primary glioblastoma. Cancer Lett. 2013, 328, 120–125. [Google Scholar] [CrossRef]
- Yang, Z.L.; Yang, L.P.; Zou, Q.; Yuan, Y.; Li, J.H.; Liang, L.F.; Zeng, G.X.; Chen, S.L. Positive ALDH1A3 and negative GPX3 expressions are biomarkers for poor prognosis of gallbladder cancer. Dis. Markers 2013, 35, 163–172. [Google Scholar] [CrossRef]
- Samson, J.M.; Menon, D.R.; Smith, D.E.; Baird, E.; Kitano, T.; Gao, D.X.; Tan, A.C.; Fujita, M. Clinical implications of ALDH1A1 and ALDH1A3 mRNA expression in melanoma subtypes. Chem.-Biol. Interact. 2019, 314, 108822. [Google Scholar] [CrossRef]
- Huang, G.L.; Song, W.; Zhou, P.; Fu, Q.R.; Lin, C.L.; Chen, Q.X.; Shen, D.Y. Oncogenic retinoic acid receptor gamma knockdown reverses multi-drug resistance of human colorectal cancer via Wnt/beta-catenin pathway. Cell Cycle 2017, 16, 685–692. [Google Scholar] [CrossRef] [Green Version]
- Gan, W.J.; Wang, J.R.; Zhu, X.L.; He, X.S.; Guo, P.D.; Zhang, S.; Li, X.M.; Li, J.M.; Wu, H. RARgamma-induced E-cadherin downregulation promotes hepatocellular carcinoma invasion and metastasis. J. Exp. Clin. Cancer Res. 2016, 35, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Retinoid | Function | Binding Protein | Synthesizing Enzyme | Transcription Factor | Catabolizing Enzyme | Maximum Absorption |
---|---|---|---|---|---|---|
Retinyl esters | Diet and storage | LRAT and DGAT1 | ||||
Retinol | Circulation | RBP1-4 | 325 nm | |||
Retinal | Active in vision | RBP1 and 2 | SDRs | 383 nm | ||
All-trans-RA | Active in transcription for most functions | CRABP 1, CRABP 2, and FABP5 | ALDH1A1, ALDH1A2, ALDH1A3 | RARA, B, G | CYP26A1, B1, and C1 | 350 nm |
ddretinyl esters | Storage form | CYP27C1, LRAT | ||||
ddretinol | RBP1 and RBP4 | CYP27C1 | 350 nm | |||
ddretinal | Active in vision, shifts light wavelength | CYP27C1, RDH1/16, RDH10 | 401 nm | |||
dd-RA | Active in transcription for most functions | CRABP2 | CYP27C1 | RARA, B, G, RXRA | 370 nm |
Retinoid | Brand Name | Category: Form | Major Use |
---|---|---|---|
Retinol, Retinal, Retinyl esters | Cosmetic | ||
Tretinoin (atRA) | Retin ATM | 1st gen: topical | Acne vulgaris, fine wrinkling, mottled hyperpigmentation, and tactile roughness skin |
Isotretinoin (13cRA) | AccutaneTM, Isotrex | 1st gen: oral | Nodulocystic acne and recalcitrant acne |
Acitretin (Etretinate) | NeotigasonTM, SoriataneTM | 2nd gen: oral | Severe plaque and pustular psoriasis |
Tazarotene | ZoracTM, TazoracTM | 3rd gen: topical | Acne vulgaris and psoriasis (less than 20% body surface area) |
Adapalene | DifferinTM | 3rd gen: topical | Acne vulgaris |
Bexarotene | TargretinTM | 3rd gen: oral and topical | Cutaneous T-cell lymphoma |
Talarozole | RambazoleTM | Cyp26 inhibitor | Ichthyosis |
Alitretinoin | 3rd gen: oral and topical | Topical: AIDS-associated actinic keratosis | |
Oral: chronic eczema in Europe |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Everts, H.B.; Akuailou, E.-N. Retinoids in Cutaneous Squamous Cell Carcinoma. Nutrients 2021, 13, 153. https://doi.org/10.3390/nu13010153
Everts HB, Akuailou E-N. Retinoids in Cutaneous Squamous Cell Carcinoma. Nutrients. 2021; 13(1):153. https://doi.org/10.3390/nu13010153
Chicago/Turabian StyleEverts, Helen B., and Eleonore-Nausica Akuailou. 2021. "Retinoids in Cutaneous Squamous Cell Carcinoma" Nutrients 13, no. 1: 153. https://doi.org/10.3390/nu13010153
APA StyleEverts, H. B., & Akuailou, E.-N. (2021). Retinoids in Cutaneous Squamous Cell Carcinoma. Nutrients, 13(1), 153. https://doi.org/10.3390/nu13010153