Application of Ligilactobacillus salivarius CECT5713 to Achieve Term Pregnancies in Women with Repetitive Abortion or Infertility of Unknown Origin by Microbiological and Immunological Modulation of the Vaginal Ecosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Vaginal-Related Properties of L. salivarius CECT5713
2.2. Participants, Sampling, and Design of the Human Study
2.3. Measurement of Vaginal pH and Nugent Score
2.4. Culture-Dependent Analysis
2.5. DNA Extraction from the Samples
2.6. Real-Time Quantitative PCR (qPCR) Assay for the Detection and Quantification of L. salivarius DNA
2.7. Metataxonomic Analysis
2.8. Bioinformatic Analysis
2.9. Immunological Analysis
2.10. Statistical Analysis
3. Results
3.1. Characterization of Vaginal-Relevant Properties of L. salivarius CECT5713
3.2. Demographic, Anthropometric, and Clinical Characteristics of the Participants in the Human Study
3.3. Baseline Vaginal Health Parameters
3.4. Main Outcome of the Clinical Trial: Pregnancies and Successful Pregnancies
3.5. Secondary Outcomes Associated with the Probiotic Treatment: RA Group
3.6. Secondary Outcomes Associated with the Probiotic Treatment: INF Group
3.7. Comparison of Vaginal Parameters between Women Who Became Pregnant and Those Who Did Not from Both the RA and INF Groups
3.8. Comparison of Vaginal Parameters between Control Women, All Women Who Became Pregnant and Those Who Did Not from Both RA and INF Groups
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reid, G.; Brigidi, P.; Burton, J.P.; Contractor, N.; Duncan, S.; Fargier, E.; Hill, C.; Lebeer, S.; Martín, R.; McBain, A.J.; et al. Microbes Central to Human Reproduction. Am. J. Reprod. Immunol. 2015, 73, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, I.; Simón, C. Deciphering the effect of reproductive tract microbiota on human reproduction. Reprod. Med. Biol. 2019, 18, 40–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.K.; McCulle, S.L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C.O.; et al. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 2011, 108, 4680–4687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Fredricks, D.; Fiedler, T.L.; Marrazzo, J.M. Molecular Identification of Bacteria Associated with Bacterial Vaginosis. N. Engl. J. Med. 2005, 353, 1899–1911. [Google Scholar] [CrossRef] [Green Version]
- Delaney, M.L. Nugent score related to vaginal culture in pregnant women. Obstet. Gynecol. 2001, 98, 79–84. [Google Scholar] [CrossRef]
- Srinivasan, S.; Liu, C.; Mitchell, C.M.; Fiedler, T.L.; Thomas, K.K.; Agnew, K.J.; Marrazzo, J.M.; Fredricks, D.N. Temporal Variability of Human Vaginal Bacteria and Relationship with Bacterial Vaginosis. PLoS ONE 2010, 5, e10197. [Google Scholar] [CrossRef] [Green Version]
- Kroon, S.J.; Ravel, J.; Huston, W.M. Cervicovaginal microbiota, women’s health, and reproductive outcomes. Fertil. Steril. 2018, 110, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Krohn, M.A.; Hillier, S.L.; Nugent, R.P.; Cotch, M.F.; Carey, J.C.; Gibbs, R.S.; Eschenbach, D.A. Vaginal Infection and Prematurity Study Group The Genital Flora of Women with Intraamniotic Infection. J. Infect. Dis. 1995, 171, 1475–1480. [Google Scholar] [CrossRef]
- Newton, E.R.; Piper, J.; Peairs, W. Bacterial vaginosis and intraamniotic infection. Am. J. Obstet. Gynecol. 1997, 176, 672–677. [Google Scholar] [CrossRef]
- Leitich, H.; Bodner-Adler, B.; Brunbauer, M.; Kaider, A.; Egarter, C.; Husslein, P.W. Bacterial vaginosis as a risk factor for preterm delivery: A meta-analysis. Am. J. Obstet. Gynecol. 2003, 189, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Eckert, L.O.; Moore, D.E.; Patton, D.L.; Agnew, K.J.; Eschenbach, D.A. Relationship of Vaginal Bacteria and Inflammation With Conception and Early Pregnancy Loss Following In-Vitro Fertilization. Infect. Dis. Obstet. Gynecol. 2003, 11, 11–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yudin, M.H. Bacterial Vaginosis in Pregnancy: Diagnosis, Screening, and Management. Clin. Perinatol. 2005, 32, 617–627. [Google Scholar] [CrossRef]
- Van Oostrum, N.; De Sutter, P.; Meys, J.; Verstraelen, H. Risks associated with bacterial vaginosis in infertility patients: A systematic review and meta-analysis. Hum. Reprod. 2013, 28, 1809–1815. [Google Scholar] [CrossRef] [Green Version]
- Sirota, I.; Zarek, S.M.; Segars, J.H. Potential Influence of the Microbiome on Infertility and Assisted Reproductive Technology. Semin. Reprod. Med. 2014, 32, 035–042. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.D.; Ralph, S.G.; Rutherford, A.J. Rates of bacterial vaginosis in women undergoing in vitro fertilisation for different types of infertility. BJOG Int. J. Obstet. Gynaecol. 2002, 109, 714–717. [Google Scholar] [CrossRef]
- Campisciano, G.; Florian, F.; D’Eustacchio, A.; Stanković, D.; Ricci, G.; De Seta, F.; Comar, M. Subclinical alteration of the cervical-vaginal microbiome in women with idiopathic infertility. J. Cell. Physiol. 2017, 232, 1681–1688. [Google Scholar] [CrossRef]
- Wee, B.A.; Thomas, M.; Sweeney, E.L.; Frentiu, F.D.; Samios, M.; Ravel, J.; Gajer, P.; Myers, G.S.A.; Timms, P.; Allan, J.A.; et al. A retrospective pilot study to determine whether the reproductive tract microbiota differs between women with a history of infertility and fertile women. Aust. New Zealand J. Obstet. Gynaecol. 2018, 58, 341–348. [Google Scholar] [CrossRef]
- Hyman, R.W.; Herndon, C.N.; Jiang, H.; Palm, C.; Fukushima, M.; Bernstein, D.; Vo, K.C.; Zelenko, Z.; Davis, R.W.; Giudice, L.C. The dynamics of the vaginal microbiome during infertility therapy with in vitro fertilization-embryo transfer. J. Assist. Reprod. Genet. 2012, 29, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Moreno, I.; Codoñer, F.M.; Vilella, F.; Valbuena, D.; Martinez-Blanch, J.F.; Jimenez-Almazán, J.; Alonso, R.; Alamá, P.; Remohí, J.; Pellicer, A.; et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am. J. Obstet. Gynecol. 2016, 215, 684–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haahr, T.; Jensen, J.; Thomsen, L.; Duus, L.; Rygaard, K.; Humaidan, P. Abnormal vaginal microbiota may be associated with poor reproductive outcomes: A prospective study in IVF patients. Hum. Reprod. 2016, 31, 795–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egbase, P.; Al-Sharhan, M.; Al-Othman, S.; Al-Mutawa, M.; Udo, E.; Grudzinskas, J. Fertilization and early embryology: Incidence of microbial growth from the tip of the embryo transfer catheter after embryo transfer in relation to clinical pregnancy rate following in-vitro fertilization and embryo transfer. Hum. Reprod. 1996, 11, 1687–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanchin, R.; Harmas, A.; Benaoudia, F.; Lundkvist, U.; Olivennes, F.; Frydman, R. Microbial flora of the cervix assessed at the time of embryo transfer adversely affects in vitro fertilization outcome. Fertil. Steril. 1998, 70, 866–870. [Google Scholar] [CrossRef]
- Egbase, P.E.; Udo, E.E.; Al-Sharhan, M.; Grudzinskas, J.G. Prophylactic antibiotics and endocervical microbial inoculation of the endometrium at embryo transfer. Lancet 1999, 354, 651–652. [Google Scholar] [CrossRef]
- Moore, D.E.; Soules, M.R.; Klein, N.A.; Fujimoto, V.Y.; Agnew, K.J.; Eschenbach, D.A. Bacteria in the transfer catheter tip influence the live-birth rate after in vitro fertilization. Fertil. Steril. 2000, 74, 1118–1124. [Google Scholar] [CrossRef]
- Salim, R.; Ben-Shlomo, I.; Colodner, R.; Keness, Y.; Shalev, E. Bacterial colonization of the uterine cervix and success rate in assisted reproduction: Results of a prospective survey. Hum. Reprod. 2002, 17, 337–340. [Google Scholar] [CrossRef] [Green Version]
- Selman, H.; Mariani, M.; Barnocchi, N.; Mencacci, A.; Bistoni, F.; Arena, S.; Pizzasegale, S.; Brusco, G.F.; Angelini, A. Examination of bacterial contamination at the time of embryo transfer, and its impact on the IVF/pregnancy outcome. J. Assist. Reprod. Genet. 2007, 24, 395–399. [Google Scholar] [CrossRef] [Green Version]
- Riganelli, L.; Iebba, V.; Piccioni, M.; Illuminati, I.; Bonfiglio, G.; Neroni, B.; Calvo, L.; Gagliardi, A.; Levrero, M.; Merlino, L.; et al. Structural Variations of Vaginal and Endometrial Microbiota: Hints on Female Infertility. Front. Cell. Infect. Microbiol. 2020, 10, 350. [Google Scholar] [CrossRef]
- Peric, A.; Weiss, J.; Vulliemoz, N.; Baud, D.; Stojanov, M. Bacterial Colonization of the Female Upper Genital Tract. Int. J. Mol. Sci. 2019, 20, 3405. [Google Scholar] [CrossRef] [Green Version]
- Reid, G.; Younes, J.A.; Van Der Mei, H.C.; Gloor, G.B.; Knight, R.; Busscher, H.J. Microbiota restoration: Natural and supplemented recovery of human microbial communities. Nat. Rev. Genet. 2011, 9, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Martín, R.; Soberón, N.; Vaneechoutte, M.; Flórez, A.B.; Vázquez, F.; Suárez, J.E. Characterization of indigenous vaginal lactobacilli from healthy women as probiotic candidates. Int. Microbiol. 2008, 11, 261–266. [Google Scholar] [PubMed]
- Amabebe, E.; Anumba, D.O. The Vaginal Microenvironment: The Physiologic Role of Lactobacilli. Front. Med. 2018, 5, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halper, J.; Leshin, L.; Lewis, S.; Li, W. Wound Healing and Angiogenic Properties of Supernatants from Lactobacillus Cultures. Exp. Biol. Med. 2003, 228, 1329–1337. [Google Scholar] [CrossRef]
- Witkin, S.S.; Linhares, I.M. Why do lactobacilli dominate the human vaginal microbiota? BJOG Int. J. Obstet. Gynaecol. 2017, 124, 606–611. [Google Scholar] [CrossRef] [Green Version]
- Kovachev, S. Defence factors of vaginal lactobacilli. Crit. Rev. Microbiol. 2018, 44, 31–39. [Google Scholar] [CrossRef]
- Martín, R.; Jiménez, E.; Olivares, M.; Marín, M.; Fernández, L.; Xaus, J.; Rodríguez, J. Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother–child pair. Int. J. Food Microbiol. 2006, 112, 35–43. [Google Scholar] [CrossRef]
- Langa, S.; Maldonado-Barragán, A.; Delgado, S.; Martín, R.; Martín, V.; Jiménez, E.; Ruíz-Barba, J.L.; Mayo, B.; Connor, R.I.; Suárez, J.E.; et al. Characterization of Lactobacillus salivarius CECT 5713, a strain isolated from human milk: From genotype to phenotype. Appl. Microbiol. Biotechnol. 2012, 94, 1279–1287. [Google Scholar] [CrossRef]
- Díaz-Ropero, M.; Martin, R.; Sierra, S.; Lara-Villoslada, F.; Rodríguez, J.M.; Xaus, J.; Olivares, M. Two Lactobacillus strains, isolated from breast milk, differently modulate the immune response. J. Appl. Microbiol. 2007, 102, 337–343. [Google Scholar] [CrossRef]
- Olivares, M.; Diaz-Ropero, M.; Martin, R.; Rodriguez, J.; Xaus, J. Antimicrobial potential of four Lactobacillus strains isolated from breast milk. J. Appl. Microbiol. 2006, 101, 72–79. [Google Scholar] [CrossRef]
- Jiménez, E.; Fernández, L.; Maldonado, A.; Martín, R.; Olivares, M.; Xaus, J.; Rodríguez, J.M. Oral administration of lactobacilli strains isolated from breast milk as an alternative for the treatment of infectious mastitis during lactation. Appl. Environ. Microbiol. 2008, 74, 4650–4655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Cano, F.J.; Dong, H.; Yaqoob, P. In vitro immunomodulatory activity of Lactobacillus fermentum CECT5716 and Lactobacillus salivarius CECT5713: Two probiotic strains isolated from human breast milk. Inmunobiology 2010, 12, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, R.; Martín, V.; Maldonado, A.; Jiménez, E.; Fernández, L.; Rodríguez, J.M. Treatment of Infectious Mastitis during Lactation: Antibiotics versus Oral Administration of Lactobacilli Isolated from Breast Milk. Clin. Infect. Dis. 2010, 50, 1551–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maldonado, J.; Lara-Villoslada, F.; Sierra, S.; Sempere, L.; Gómez, M.; Rodríguez, J.M.; Boza, J.; Xaus, J.; Olivares, M. Safety and tolerance of the human milk probiotic strain Lactobacillus salivarius CECT5713 in 6-month-old children. Nutrition 2010, 26, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, J.; Schnürer, J. Lactobacillus coryniformis subsp.coryniformis Strain Si3 Produces a Broad-Spectrum Proteinaceous Antifungal Compound. Appl. Environ. Microbiol. 2001, 67, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Younes, J.A.; Van Der Mei, H.C.; Heuvel, E.V.D.; Busscher, H.J.; Reid, G. Adhesion Forces and Coaggregation between Vaginal Staphylococci and Lactobacilli. PLoS ONE 2012, 7, e36917. [Google Scholar] [CrossRef] [Green Version]
- Boris, S.; Suárez, J.E.; Vázquez, F.; Barbés, C. Adherence of Human Vaginal Lactobacilli to Vaginal Epithelial Cells and Interaction with Uropathogens. Infect. Immun. 1998, 66, 1985–1989. [Google Scholar] [CrossRef] [Green Version]
- Martin, V.S.; Cárdenas, N.; Ocaña, S.; Marín, M.; Arroyo, R.; Beltrán, D.; Badiola, C.; Fernández, L.; Rodríguez, J.M. Rectal and Vaginal Eradication of Streptococcus agalactiae (GBS) in Pregnant Women by Using Lactobacillus salivarius CECT 9145, A Target-specific Probiotic Strain. Nutrients 2019, 11, 810. [Google Scholar] [CrossRef] [Green Version]
- Padmavathi, T.; Bhargavi, R.; Priyanka, P.R.; Niranjan, N.R.; Pavitra, P.V. Screening of potential probiotic lactic acid bacteria and production of amylase and its partial purification. J. Genet. Eng. Biotechnol. 2018, 16, 357–362. [Google Scholar] [CrossRef]
- Narita, J.; Okano, K.; Kitao, T.; Ishida, S.; Sewaki, T.; Sung, M.-H.; Fukuda, H.; Kondo, A. Display of α-Amylase on the Surface of Lactobacillus casei Cells by Use of the PgsA Anchor Protein, and Production of Lactic Acid from Starch. Appl. Environ. Microbiol. 2006, 72, 269–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nugent, R.P.; Krohn, M.A.; Hillier, S.L. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J. Clin. Microbiol. 1991, 29, 297–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mediano, P.; Fernández, L.; Jiménez, E.; Arroyo, R.; Espinosa-Martos, I.; Rodríguez, J.M.; Marín, M. Microbial Diversity in Milk of Women With Mastitis: Potential Role of Coagulase-Negative Staphylococci, Viridans Group Streptococci, and Corynebacteria. J. Hum. Lact. 2017, 33, 309–318. [Google Scholar] [CrossRef]
- Lackey, K.A.; Williams, J.E.; Meehan, C.L.; Zachek, J.A.; Benda, E.D.; Price, W.J.; Foster, J.A.; Sellen, D.W.; Kamau-Mbuthia, E.W.; Kamundia, E.W.; et al. What’s Normal? Microbiomes in Human Milk and Infant Feces Are Related to Each Other but Vary Geographically: The INSPIRE Study. Front. Nutr. 2019, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Harrow, S.A.; Ravindran, V.; Butler, R.C.; Marshall, J.W.; Tannock, G.W. Real-Time Quantitative PCR Measurement of Ileal Lactobacillus salivarius Populations from Broiler Chickens To Determine the Influence of Farming Practices. Appl. Environ. Microbiol. 2007, 73, 7123–7127. [Google Scholar] [CrossRef] [Green Version]
- Salvetti, E.; Harris, H.M.B.; Felis, G.E.; O’Toole, P.W. Comparative Genomics of the Genus Lactobacillus Reveals Robust Phylogroups That Provide the Basis for Reclassification. Appl. Environ. Microbiol. 2018, 84, 00993-18. [Google Scholar] [CrossRef] [Green Version]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2012, 41, e1. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Bokulich, N.A.; Kaehler, B.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Caporaso, J.G. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 1–17. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org (accessed on 10 November 2020).
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [Green Version]
- Epskamp, S.; Cramer, A.O.J.; Waldorp, L.J.; Schmittmann, V.D.; Borsboom, D. qgraph: Network Visualizations of Relationships in Psychometric Data. J. Stat. Softw. 2012, 48, 1–18. [Google Scholar] [CrossRef] [Green Version]
- O’Hanlon, D.E.; Lanier, B.R.; Moench, T.R.; Cone, R. Cervicovaginal fluid and semen block the microbicidal activity of hydrogen peroxide produced by vaginal lactobacilli. BMC Infect. Dis. 2010, 10, 120. [Google Scholar] [CrossRef] [Green Version]
- Macklaim, J.M.; Clemente, J.C.; Knight, R.; Gloor, G.B.; Reid, G. Changes in vaginal microbiota following antimicrobial and probiotic therapy. Microb. Ecol. Heal. Dis. 2015, 26, 27799. [Google Scholar] [CrossRef]
- Mendes-Soares, H.; Suzuki, H.; Hickey, R.J.; Forney, L.J. Comparative Functional Genomics of Lactobacillus spp. Reveals Possible Mechanisms for Specialization of Vaginal Lactobacilli to Their Environment. J. Bacteriol. 2014, 196, 1458–1470. [Google Scholar] [CrossRef] [Green Version]
- France, M.T.; Mendes-Soares, H.; Forney, L.J. Genomic Comparisons of Lactobacillus crispatus and Lactobacillus iners Reveal Potential Ecological Drivers of Community Composition in the Vagina. Appl. Environ. Microbiol. 2016, 82, 7063–7073. [Google Scholar] [CrossRef] [Green Version]
- Macklaim, J.M.; Gloor, G.B.; Anukam, K.C.; Cribby, S.; Reid, G. At the crossroads of vaginal health and disease, the genome sequence of Lactobacillus iners AB-1. Proc. Natl. Acad. Sci. USA 2010, 108, 4688–4695. [Google Scholar] [CrossRef] [Green Version]
- Vaneechoutte, M. Lactobacillus iners, the unusual suspect. Res. Microbiol. 2017, 168, 826–836. [Google Scholar] [CrossRef]
- Borgdorff, H.; Armstrong, S.D.; Tytgat, H.L.P.; Xia, D.; Ndayisaba, G.F.; Wastling, J.M.; Van De Wijgert, J.H.H.M. Unique Insights in the Cervicovaginal Lactobacillus iners and L. crispatus Proteomes and Their Associations with Microbiota Dysbiosis. PLoS ONE 2016, 11, e0150767. [Google Scholar] [CrossRef]
- Petricevic, L.; Domig, K.J.; Nierscher, F.J.; Sandhofer, M.J.; Fidesser, M.; Krondorfer, I.; Husslein, P.; Kneifel, W.; Kiss, H. Characterisation of the vaginal Lactobacillus microbiota associated with preterm delivery. Sci. Rep. 2015, 4, 5136. [Google Scholar] [CrossRef]
- Lepargneur, J.-P. Lactobacillus crispatus as biomarker of the healthy vaginal tract. Ann. Biol. Clin. 2016, 74, 421–427. [Google Scholar] [CrossRef]
- Anton, L.; Sierra, L.-J.; Devine, A.; Barila, G.; Heiser, L.; Brown, A.G.; Elovitz, M.A. Common Cervicovaginal Microbial Supernatants Alter Cervical Epithelial Function: Mechanisms by Which Lactobacillus crispatus Contributes to Cervical Health. Front. Microbiol. 2018, 9, 2181. [Google Scholar] [CrossRef]
- Feng, Y.; Yao, Z.; Klionsky, D.J. How to control self-digestion: Transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol. 2015, 25, 354–363. [Google Scholar] [CrossRef] [Green Version]
- Petrova, M.I.; Reid, G.; Vaneechoutte, M.; Lebeer, S. Lactobacillus iners: Friend or Foe? Trends Microbiol. 2017, 25, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Kindinger, L.M.; Bennett, P.R.; Lee, Y.S.; Marchesi, J.R.; Smith, A.; Cacciatore, S.; Holmes, E.; Nicholson, J.K.; Teoh, T.G.; MacIntyre, D.A. The interaction between vaginal microbiota, cervical length, and vaginal progesterone treatment for preterm birth risk. Microbiome 2017, 5, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, N.; Guo, R.; Yao, Y.; Jin, M.; Cheng, Y.; Ling, Z. Lactobacillus iners Is Associated with Vaginal Dysbiosis in Healthy Pregnant Women: A Preliminary Study. BioMed Res. Int. 2019, 2019, 6079734. [Google Scholar] [CrossRef] [PubMed]
- Tachedjian, G.; Aldunate, M.; Bradshaw, C.S.; Cone, R. The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Res. Microbiol. 2017, 168, 782–792. [Google Scholar] [CrossRef]
- Ealdunate, M.; Esrbinovski, D.; Hearps, A.C.; Latham, C.F.; Ramsland, P.A.; Egugasyan, R.; Cone, R.A.; Tachedjian, G. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis. Front. Physiol. 2015, 6, 164. [Google Scholar] [CrossRef]
- O’Hanlon, D.E.; Cone, R.; Moench, T.R. Vaginal pH measured in vivo: Lactobacilli determine pH and lactic acid concentration. BMC Microbiol. 2019, 19, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Boskey, E.; Cone, R.; Whaley, K.; Moench, T. Origins of vaginal acidity: High D/L lactate ratio is consistent with bacteria being the primary source. Hum. Reprod. 2001, 16, 1809–1813. [Google Scholar] [CrossRef] [PubMed]
- O’Hanlon, D.E.; Moench, T.R.; Cone, R. In vaginal fluid, bacteria associated with bacterial vaginosis can be suppressed with lactic acid but not hydrogen peroxide. BMC Infect. Dis. 2011, 11, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Hanlon, D.E.; Moench, T.R.; Cone, R.A. Vaginal pH and Microbicidal Lactic Acid When Lactobacilli Dominate the Microbiota. PLoS ONE 2013, 8, e80074. [Google Scholar] [CrossRef] [PubMed]
- Ruíz, F.O.; Gerbaldo, G.; Garcia, M.J.; Giordano, W.; Pascual, L.; Barberis, I.L. Synergistic Effect Between Two Bacteriocin-like Inhibitory Substances Produced by Lactobacilli Strains with Inhibitory Activity for Streptococcus agalactiae. Curr. Microbiol. 2012, 64, 349–356. [Google Scholar] [CrossRef]
- Aldunate, M.; Tyssen, D.; Johnson, A.; Zakir, T.; Sonza, S.; Moench, T.; Cone, R.; Tachedjian, G. Vaginal concentrations of lactic acid potently inactivate HIV. J. Antimicrob. Chemother. 2013, 68, 2015–2025. [Google Scholar] [CrossRef] [PubMed]
- Tyssen, D.; Wang, Y.-Y.; Hayward, J.A.; Agius, P.A.; Delong, K.; Aldunate, M.; Ravel, J.; Moench, T.R.; Cone, R.A.; Tachedjian, G. Anti-HIV-1 Activity of Lactic Acid in Human Cervicovaginal Fluid. mSphere 2018, 3, e00055-18. [Google Scholar] [CrossRef] [Green Version]
- Chew, S.Y.; Cheah, Y.K.; Seow, H.F.; Sandai, D.; Than, L.T.L. In vitro modulation of probiotic bacteria on the biofilm of Candida glabrata. Anaerobe 2015, 34, 132–138. [Google Scholar] [CrossRef]
- Matsubara, V.H.; Wang, Y.; Bandara, H.M.H.N.; Mayer, M.P.A.; Samaranayake, L. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Appl. Microbiol. Biotechnol. 2016, 100, 6415–6426. [Google Scholar] [CrossRef] [Green Version]
- Nasioudis, D.; Beghini, J.; Bongiovanni, A.M.; Giraldo, P.C.; Linhares, I.M.; Witkin, S.S. α-Amylase in vaginal fluid: Association with conditions favorable to dominance of Lactobacillus. Reprod. Sci. 2015, 22, 1393–1398. [Google Scholar] [CrossRef]
- Hütt, P.; Lapp, E.; Štšepetova, J.; Smidt, I.; Taelma, H.; Borovkova, N.; Oopkaup, H.; Ahelik, A.; Rööp, T.; Hoidmets, D.; et al. Characterisation of probiotic properties in human vaginal lactobacilli strains. Microb. Ecol. Heal. Dis. 2016, 27, 30484. [Google Scholar] [CrossRef]
- Cárdenas, N.; Martin, V.S.; Arroyo, R.; López, M.; Carrera, M.; Badiola, C.; Jiménez, E.; Rodríguez, J.M. Prevention of Recurrent Acute Otitis Media in Children Through the Use of Lactobacillus salivarius PS7, a Target-Specific Probiotic Strain. Nutrients 2019, 11, 376. [Google Scholar] [CrossRef] [Green Version]
- Chew, S.Y.; Cheah, Y.K.; Seow, H.F.; Sandai, D.; Than, L.T.L. Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 exhibit strong antifungal effects against vulvovaginal candidiasis-causing Candida glabrata isolates. J. Appl. Microbiol. 2015, 118, 1180–1190. [Google Scholar] [CrossRef] [Green Version]
- Aarti, C.; Khusro, A.; Varghese, R.; Arasu, M.V.; Agastian, P.; Al-Dhabi, N.A.; Ilavenil, S.; Choi, K.C. In vitro investigation on probiotic, anti-Candida, and antibiofilm properties of Lactobacillus pentosus strain LAP1. Arch. Oral Biol. 2018, 89, 99–106. [Google Scholar] [CrossRef]
- Nardo, L.G. Vascular endothelial growth factor expression in the endometrium during the menstrual cycle, implantation window and early pregnancy. Curr. Opin. Obstet. Gynecol. 2005, 17, 419–423. [Google Scholar] [CrossRef]
- Demir, R.; Yaba, A.; Huppertz, B. Vasculogenesis and angiogenesis in the endometrium during menstrual cycle and implantation. Acta Histochem. 2010, 112, 203–214. [Google Scholar] [CrossRef]
- Gordon, J.D.; Shifren, J.L.; Foulk, R.A.; Taylor, R.N.; Jaffe, R.B. Angiogenesis in the Human Female Reproductive Tract. Obstet. Gynecol. Surv. 1995, 50, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Licht, P.; Russu, V.; Lehmeyer, S.; Wissentheit, T.; Siebzehnrübl, E.; Wildt, L. Cycle dependency of intrauterine vascular endothelial growth factor levels is correlated with decidualization and corpus luteum function. Fertil. Steril. 2003, 80, 1228–1233. [Google Scholar] [CrossRef]
- Malamitsi-Puchner, A.; Sarandakou, A.; Tziotis, J.; Stavreus-Evers, A.; Tzonou, A.; Landgren, B.-M. Circulating angiogenic factors during periovulation and the luteal phase of normal menstrual cycles. Fertil. Steril. 2004, 81, 1322–1327. [Google Scholar] [CrossRef]
- Torry, D.S.; Leavenworth, J.; Chang, M.; Maheshwari, V.; Groesch, K.; Ball, E.R.; Torry, R.J. Angiogenesis in implantation. J. Assist. Reprod. Genet. 2007, 24, 303–315. [Google Scholar] [CrossRef]
- Kaczmarek, M.M.; Waclawik, A.; Blitek, A.; Kowalczyk, A.E.; Schams, D.; Ziecik, A.J. Expression of the vascular endothelial growth factor-receptors ystem in the porcine endometrium throughout the estrous cycle and early pregnancy. Mol. Reprod. Dev. 2008, 75, 362–372. [Google Scholar] [CrossRef]
- Meegdes, B.H.; Ingenhoes, R.; Peeters, L.L.; Exalto, N. Early pregnancy wastage: Relationship between chorionic vascularization and embryonic development. Fertil. Steril. 1988, 49, 216–220. [Google Scholar] [CrossRef]
- Fong, G.-H.; Rossant, J.; Gertsenstein, M.; Breitman, M.L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nat. Cell Biol. 1995, 376, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Vuorela, P.; Carpén, O.; Tulppala, M.; Halmesmäki, E. VEGF, its receptors and the Tie receptors in recurrent miscarriage. Mol. Hum. Reprod. 2000, 6, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, L.P.; Caton, J.S.; Redmer, D.A.; Grazul-Bilska, A.T.; Vonnahme, K.A.; Borowicz, P.P.; Luther, J.S.; Wallace, J.M.; Wu, G.; Spencer, T.E. Evidence for altered placental blood flow and vascularity in compromised pregnancies. J. Physiol. 2006, 572, 51–58. [Google Scholar] [CrossRef]
- Relf, M.; Lejeune, S.; Scott, P.A.; Fox, S.; Smith, K.; Leek, R.; Moghaddam, A.; Whitehouse, R.; Bicknell, R.; Harris, A.L. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. 1997, 57, 963–969. [Google Scholar]
- Ingman, W.V.; Robertson, S.A. Defining the actions of transforming growth factor beta in reproduction. BioEssays 2002, 24, 904–914. [Google Scholar] [CrossRef]
- Giudice, L.C. Growth factors and growth modulators in human uterine endometrium: Their potential relevance to reproductive medicine. Fertil. Steril. 1994, 61, 1–17. [Google Scholar] [CrossRef]
- Bao, S.H.; Wang, X.P.; De Lin, Q.; Wang, W.J.; Yin, G.J.; Qiu, L.H. Decidual CD4+CD25+CD127dim/- regulatory T cells in patients with unexplained recurrent spontaneous miscarriage. Eur. J. Obstet. Gynecol. Reprod. Biol. 2011, 155, 94–98. [Google Scholar] [CrossRef]
- Xu, L.; Qiu, T.; Wang, Y.; Chen, Y.; Cheng, W. Expression of C-type lectin receptors and Toll-like receptors in decidua of patients with unexplained recurrent spontaneous abortion. Reprod. Fertil. Dev. 2017, 29, 1613–1624. [Google Scholar] [CrossRef]
- Qian, J.; Zhang, N.; Lin, J.; Wang, C.; Pan, X.; Chen, L.; Li, D.; Wang, L. Distinct pattern of Th17/Treg cells in pregnant women with a history of unexplained recurrent spontaneous abortion. Biosci. Trends 2018, 12, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Chung, I.-B.; Yelian, F.; Zaher, F.; Gonik, B.; Evans, M.; Diamond, M.P.; Svinarich, D. Expression and Regulation of Vascular Endothelial Growth Factor in a First Trimester Trophoblast Cell Line. Placenta 2000, 21, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Poole, T.J.; Finkelstein, E.B.; Cox, C.M. The role of FGF and VEGF in angioblast induction and migration during vascular development. Dev. Dyn. 2001, 220, 1–17. [Google Scholar] [CrossRef]
- Sherer, D.; Abulafia, O. Angiogenesis during Implantation, and Placental and Early Embryonic Development. Placenta 2001, 22, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Qian, D.; Lin, H.-Y.; Wang, H.-M.; Zhang, X.; Liu, D.-L.; Li, Q.-L.; Zhu, C. Involvement of ERK1/2 pathway in TGF-beta1-induced VEGF secretion in normal human cytotrophoblast cells. Mol. Reprod. Dev. 2004, 68, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.A.; Ingman, W.V.; O’Leary, S.; Sharkey, D.J.; Tremellen, K.P. Transforming growth factor β—A mediator of immune deviation in seminal plasma. J. Reprod. Immunol. 2002, 57, 109–128. [Google Scholar] [CrossRef]
- Wahl, S.M.; Wen, J.; Moutsopoulos, N. TGF-beta: A mobile purveyor of immune privilege. Immunol. Rev. 2006, 213, 213–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nocera, M.; Chu, T.M. Characterization of Latent Transforming Growth Factor-β From Human Seminal Plasma. Am. J. Reprod. Immunol. 1995, 33, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Loras, B.; Vételé, F.; El Malki, A.; Rollet, J.; Soufir, J.-C.; Benahmed, M. Seminal transforming growth factor-β in normal and infertile men. Hum. Reprod. 1999, 14, 1534–1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, S.A.; Sharkey, D.J. The role of semen in induction of maternal immune tolerance to pregnancy. Semin. Immunol. 2001, 13, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.A.; Guerin, L.R.; Moldenhauer, L.M.; Hayball, J.D. Activating T regulatory cells for tolerance in early pregnancy-the contribution of seminal fluid. J. Reprod. Immunol. 2009, 83, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.A. Immune regulation of conception and embryo implantation—All about quality control? J. Reprod. Immunol. 2010, 85, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, D.J.; MacPherson, A.M.; Tremellen, K.P.; Mottershead, D.G.; Gilchrist, R.B.; Robertson, S.A. TGF-β Mediates Proinflammatory Seminal Fluid Signaling in Human Cervical Epithelial Cells. J. Immunol. 2012, 189, 1024–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakaguchi, S. Regulatory T Cells. Cell 2000, 101, 455–458. [Google Scholar] [CrossRef] [Green Version]
- Shevach, E.M. CD4+CD25+ suppressor T cells: More questions than answers. Nat. Rev. Immunol. 2002, 2, 389–400. [Google Scholar] [CrossRef]
- Chen, W.; Jin, W.; Hardegen, N.J.; Lei, K.-J.; Li, J.; Marinos, N.J.; McGrady, G.; Wahl, S.M. Conversion of Peripheral CD4+CD25− Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF-β Induction of Transcription Factor Foxp3. J. Exp. Med. 2003, 198, 1875–1886. [Google Scholar] [CrossRef]
- Clark, D.A.; Fernandez, J.; Banwatt, D. ORIGINAL ARTICLE: Prevention of Spontaneous Abortion in the CBA × DBA/2 Mouse Model by Intravaginal TGF-β and Local Recruitment of CD4+ 8+ FOXP3+ Cells. Am. J. Reprod. Immunol. 2008, 59, 525–534. [Google Scholar] [CrossRef]
- Robertson, S.A.; Guerin, L.R.; Bromfield, J.J.; Branson, K.M.; Ahlström, A.C.; Care, A.S. Seminal Fluid Drives Expansion of the CD4+CD25+ T Regulatory Cell Pool and Induces Tolerance to Paternal Alloantigens in Mice1. Biol. Reprod. 2009, 80, 1036–1045. [Google Scholar] [CrossRef] [Green Version]
- Guerin, L.R.; Moldenhauer, L.M.; Prins, J.R.; Bromfield, J.; Hayball, J.D.; Robertson, S.A. Seminal Fluid Regulates Accumulation of FOXP3+ Regulatory T Cells in the Preimplantation Mouse Uterus Through Expanding the FOXP3+ Cell Pool and CCL19-Mediated Recruitment. Biol. Reprod. 2011, 85, 397–408. [Google Scholar] [CrossRef] [Green Version]
- Chu, T.; Kawinski, E. Plasmin, Substilisin-like Endoproteases, Tissue Plasminogen Activator, and Urokinase Plasminogen Activator Are Involved in Activation of Latent TGF-β1 in Human Seminal Plasma. Biochem. Biophys. Res. Commun. 1998, 253, 128–134. [Google Scholar] [CrossRef]
- Emami, N.; Diamandis, E.P. Potential role of multiple members of the kallikrein-related peptidase family of serine proteases in activating latent TGFβ1 in semen. Biol. Chem. 2010, 391, 85–95. [Google Scholar] [CrossRef]
- Tomaiuolo, R.; Veneruso, I.; Cariati, F.; D’Argenio, V. Microbiota and Human Reproduction: The Case of Female Infertility. High Throughput 2020, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Tomaiuolo, R.; Veneruso, I.; Cariati, F.; D’Argenio, V. Microbiota and Human Reproduction: The Case of Male Infertility. High Throughput 2020, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Cariati, F.; D’Argenio, V.; Tomaiuolo, R. The evolving role of genetic tests in reproductive medicine. J. Transl. Med. 2019, 17, 1–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mignard, S.; Flandrois, J. 16S rRNA sequencing in routine bacterial identification: A 30-month experiment. J. Microbiol. Methods 2006, 67, 574–581. [Google Scholar] [CrossRef]
- Bukin, Y.S.; Galachyants, Y.P.; Morozov, I.V.; Bukin, S.V.; Zakharenko, A.S.; Zemskaya, T.I. The effect of 16S rRNA region choice on bacterial community metabarcoding results. Sci. Data 2019, 6, 190007. [Google Scholar] [CrossRef] [Green Version]
- Koot, Y.E.; Teklenburg, G.; Salker, M.; Brosens, J.; Macklon, N. Molecular aspects of implantation failure. Biochim. Biophys. Acta Mol. Basis Dis. 2012, 1822, 1943–1950. [Google Scholar] [CrossRef] [Green Version]
- Ticconi, C.; Pietropolli, A.; Di Simone, N.; Piccione, E.; Fazleabas, A.T. Endometrial Immune Dysfunction in Recurrent Pregnancy Loss. Int. J. Mol. Sci. 2019, 20, 5332. [Google Scholar] [CrossRef] [Green Version]
Group | ||||
---|---|---|---|---|
Characteristic | Control (n = 14) | RA (n = 21) | INF (n = 23) | p-Value |
Age (years) | ||||
Mean (95% CI) | 34.6 (33.5–35.8) a | 39.4 (38.5–40.4) b | 38.0 (37.1–38.9) b | <0.001 2 |
Range (min–max) | (28.0–45.0) | (36.0–44.0) | (34.0–44.0) | |
Weight (kg) | ||||
Mean (95% CI) | 62.4 (59.7–65.0) | 68.3 (66.1–70.4) | 66.5 (64.5–68.6) | 0.054 2 |
Range (min–max) | (46.0–87.0) | (50.0–87.0) | (51.0–78.0) | |
Height (cm) | ||||
Mean (95% CI) | 166 (164–168) | 167 (165–169) | 168 (166–169) | 0.761 2 |
Range (min–max) | (156–175) | (152–190) | (160–182) | |
Regularity of the menstrual cycle | ||||
Yes, n (%) | 10 (71) | 10 (48) | 11 (48) | 0.337 3 |
No, n (%) | 4 (29) | 11 (52) | 12 (52) | |
Duration of the menstrual cycle (days) | ||||
Mean (95% CI) | 28.0 (27.4–28.7) | 27.4 (26.9–27.9) | 27.5 (27.0–28.0) | 0.502 2 |
Range (min–max) | (25.0–32.5) | (24.0–30.0) | (24.0–30.0) | |
History of infections | ||||
Vaginal, n (%) | 2 (14) | 13 (62) | 8 (35) | 0.017 3 |
Urinary tract, n (%) | 2 (14) | 13 (62) | 15 (65) | 0.006 3 |
Otorhinolaryngology, n (%) | 3 (21) | 13 (62) | 12 (52) | 0.057 3 |
Lower respiratory tract, n (%) | 2 (14) | 7 (33) | 7 (30) | 0.490 3 |
Skin, n (%) | 1 (7) | 3 (14) | 4 (17) | 0.800 3 |
Gastrointestinal, n (%) | 0 (0) | 1 (5) | 1 (4) | 1.000 |
Antibiotic usage 1 | ||||
In infancy, n (%) | 4 (29) | 19 (90) | 14 (61) | <0.001 3 |
In adulthood, n (%) | 4 (29) | 16 (76) | 19 (83) | 0.003 3 |
History of other conditions | ||||
Allergies, n (%) | 2 (14) | 5 (24) | 4 (17) | 0.835 3 |
Food intolerance, n (%) | 0 (0) | 8 (38) | 13 (57) | 0.001 3 |
Thyroid disease, n (%) | 0 (0) | 5 (24) | 3 (13) | 0.125 3 |
Group | ||||
---|---|---|---|---|
Vaginal Parameter | Control (n = 14) | RA (n = 21) | INF (n = 23) | p-Value |
pH | ||||
Mean (95% CI) | 4.53 (4.38–4.68) a | 5.67 (5.55–5.79) b | 5.96 (5.84–6.07) b | 0.000 1 |
Range (min–max) | (4.20–5.00) | (4.70–6.50) | (4.90–6.30) | |
Nugent score | ||||
Mean (95% CI) | 1.79 (1.27–2.30) a | 5.95 (5.54–6.37) b | 6.30 (5.91–6.70) b | 0.000 1 |
Range (min–max) | (0.00–4.00) | (3.00–8.00) | (4.00–8.00) | |
TGF-β 1, pg/mL | ||||
Mean (95% CI) | 4.83 (4.65–5.01) a | 2.62 (2.47–2.76) b | 2.19 (2.05–2.33) c | 0.000 1 |
Range (min–max) | (4.20–5.30) | (1.70–3.80) | (1.50–2.90) | |
TGF-β 2, pg/mL | ||||
Mean (95% CI) | 3.22 (3.10–3.34) a | 1.52 (1.43–1.62) b | 1.33 (1.24–1.43) b | 0.000 1 |
Range (min–max) | (2.70–3.70) | (0.90–2.20) | (0.80–2.00) | |
VEGF, pg/mL | ||||
Mean (95% CI) | 406.0 (322.0–490.0) a | 274.8 (206.0–343.0) a,b | 181.2 (116.0–247.0) b | 0.016 1 |
Range (min–max) | (1.4–929.0) | (95.0–562.0) | (38.0–431.0) | |
Lactobacilli | ||||
Positive women | 14 (100) | 12 (57) | 6 (26) | <0.001 3 |
Viable counts, log10 CFU/mL 2 | ||||
Mean (95% CI) | 7.24 (6.89–7.60) a | 5.04 (4.66–5.42) b | 5.78 (5.24–6.32) b | 0.000 1 |
Range (min–max) | (6.80–7.70) | (3.60–6.70) | (3.70–7.50) | |
L. salivarius qPCR, log10 copies/mL | ||||
n (%) | 1 (7) | 0 | 0 | |
Mean (95% CI) | 7.29 |
Control (n = 14) | RA (n = 21) | INF (n = 23) | |||||
---|---|---|---|---|---|---|---|
Phylum Genus | n (%) 1 | Median (IQR) | n (%) | Median (IQR) | n (%) | Median (IQR) | p-Value 2 |
Firmicutes | 14 (100) | 99.60 (99.18–99.80) | 21 (100) | 97.29 (72.34–99.35) | 23 (100) | 89.96 (52.46–98.85) | 0.001 |
Lactobacillus | 14 (100) | 97.88 (96.92–99.31) | 21 (100) | 93.49 (67.18–97.53) | 23 (100) | 71.95 (0.76–94.09) | 0.001 |
Staphylococcus | 13 (93) | 0.31 (0.11–0.66) | 19 (90) | 0.45 (0.03–1.51) | 22 (96) | 0.75 (0.14–5.40) | 0.260 |
Streptococcus | 9 (64) | 0.02 (<0.01–0.03) | 14 (67) | 0.01 (<0.01–0.34) | 16 (70) | 0.06 (<0.01–2.04) | 0.180 |
Finegoldia | 13 (93) | 0.17 (0.03–0.28) | 18 (86) | 0.16 (0.07–0.61) | 17 (74) | 0.12 (0.02–1.24) | 0.760 |
Peptoniphilus | 11 (79) | 0.06 (0.01–0.21) | 16 (76) | 0.10 (0.02–0.49) | 17 (74) | 0.09 (<0.01–1.45) | 0.670 |
Enterococcus | 2 (14) | <0.01 (<0.01–<0.01) | 6 (29) | <0.01 (<0.01–0.04) | 12 (52) | 0.01 (<0.01–0.19) | 0.044 |
Anaerococcus | 11 (79) | 0.03 (0.01–0.16) | 18 (86) | 0.10 (0.05–0.30) | 18 (78) | 0.12 (0.01–1.71) | 0.220 |
Actinobacteria | 12 (86) | 0.09 (0.02–0.20) | 21 (100) | 0.32 (0.08–7.87) | 23 (100) | 4.84 (0.1–34.36) | 0.012 |
Gardnerella | 4 (29) | <0.01 (<0.01–0.01) | 11 (52) | 0.01 (<0.01–0.12) | 9 (39) | <0.01 (<0.01–0.04) | 0.300 |
Bifidobacterium | 3 (21) | <0.01 (<0.01–<0.01) | 9 (43) | <0.01 (<0.01–0.07) | 9 (39) | <0.01 (<0.01–0.03) | 0.300 |
Atopobium | 2 (14) | <0.01 (<0.01–<0.01) | 7 (33) | <0.01 (<0.01–0.01) | 13 (57) | 0.02 (<0.01–0.12) | 0.015 |
Proteobacteria | 1 (93) | 0.07 (0.02–0.10) | 21 (100) | 0.28 (0.09–0.69) | 22 (96) | 0.23 (0.09–0.64) | 0.003 |
Escherichia/Shigella | 1 (7) | <0.01 (<0.01–<0.01) | 9 (43) | <0.01 (<0.01–0.02) | 8 (35) | <0.01 (<0.01–0.01) | 0.084 |
Bacteroidetes | 10 (71) | 0.03 (<0.01–0.08) | 18 (86) | 0.16 (0.06–1.33) | 22 (96) | 0.80 (0.05–3.19) | 0.006 |
Prevotella | 8 (57) | 0.02 (<0.01–0.08) | 15 (71) | 0.06 (<0.01–0.45) | 19 (83) | 0.70 (0.01–2.55) | 0.660 |
Tenericutes | 6 (43) | <0.01 (<0.01–0.16) | 5 (24) | <0.01 (<0.01–<0.01) | 10 (43) | <0.01 (<0.01–0.97) | 0.290 |
Minor phyla | 14 (100) | 0.13 (0.07–0.18) | 21 (100) | 0.16 (0.07–0.65) | 23 (100) | 0.17 (0.09–1.29) | 0.280 |
Minor genera | 14 (100) | 0.30 (0.09–0.70) | 21 (100) | 0.91 (0.27–2.54) | 23 (100) | 2.26 (0.40–8.35) | 0.038 |
Unclassified_genera | 14 (100) | 0.09 (0.05–0.12) | 21 (100) | 0.13 (0.07–0.66) | 23 (100) | 0.14 (0.04–0.36) | 0.170 |
Group | Total | Ratio (95% CI) | ||
---|---|---|---|---|
Outcome | RA | INF | RA + INF | (RA/INF) |
Pregnancy (events/total events) | 17/21 | 12/23 | 29/44 | |
Pregnancy effectiveness (95% CI) | 81% (64–98%) | 52% (32–73%) | 66% (52–80%) | 1.55 (1.00–2.42) |
Successful pregnancy 1 (events/total events) | 15/21 | 10/23 | 25/44 | |
Reproductive success (95% CI) | 71% (52–91%) | 43% (23–64%) | 57% (42–72%) | 1.64 (0.96–2.82) |
Probiotic Intervention Resulted in Pregnancy | |||
---|---|---|---|
Yes (n = 15) | No (n = 6) | ||
Vaginal Parameter | Mean (95% CI) | Mean (95% CI) | p-Value 1 |
pH | |||
Baseline | 5.58 (5.39–5.77) | 5.88 (5.58–6.18) | 0.221 |
Post-intervention | 4.45 (4.34–4.57) | 5.65 (0.13–5.46) | 0.000 |
Change | −1.13 (−1.27–−0.99) | −0.23 (−0.45–−0.01) | <0.001 |
p-value 3 | 0.000 | 0.002 | |
Nugent score | |||
Baseline | 5.87 (5.24–6.49) | 6.17 (5.18–7.15) | 0.708 |
Post-intervention | 2.53 (2.13–2.94) | 5.50 (4.86–6.14) | 0.000 |
Change | −3.33 (−3.73–−2.93) | −0.67 (−1.29–−0.04) | 0.000 |
p-value 3 | 0.000 | 0.102 | |
TGF-β 1, pg/mL | |||
Baseline | 2.81 (2.62–3.00) | 2.15 (1.85–2.45) | 0.014 |
Post-intervention | 4.21 (4.05–4.36) | 2.47 (2.22–2.71) | 0.000 |
Change | 1.40 (1.18–1.62) | 0.32 (−0.02–0.66) | <0.001 |
p-value 3 | 0.000 | 0.098 | |
TGF-β 2, pg/mL | |||
Baseline | 1.67 (1.57–1.78) | 1.15 (0.99–1.31) | <0.001 |
Post-intervention | 2.93 (2.81–3.05) | 1.30 (1.11–1.49) | 0.000 |
Change | 1.25 (1.12–1.38) | 0.15 (−0.05–0.35) | 0.000 |
p-value 3 | 0.000 | 0.328 | |
VEGF, pg/mL | |||
Baseline | 341 (300–382) | 109 (44–173) | <0.001 |
Post-intervention | 743 (640–846) | 138 (−25–301) | <0.001 |
Change | 402 (319–485) | 29 (−102–160) | 0.002 |
p-value 3 | 0.000 | 0.189 | |
Lactobacilli presence, n (%) | |||
Baseline | 9 (60) | 3 (50) | 0.523 2 |
Post-intervention | 15 (100) | 4 (67) | 0.071 2 |
Change | 6 (40) | 1 (17) | 0.613 2 |
Lactobacilli counts, log10 CFU/mL | |||
Initial | 4.99 (4.48–5.50) | 5.20 (4.31–6.09) | 0.752 |
Final | 6.52 (6.22–6.81) | 4.74 (4.17–5.31) | <0.001 |
Change | 2.44 (1.84–3.04) | 0.16 (−0.99–1.32) | 0.019 |
p-value 3 | <0.001 | 0.697 | |
L. salivarius qPCR, n (%) | |||
Initial | nd | nd | |
Final | 15 (100) | 3 (50) | 0.015 2 |
L. salivarius qPCR, log10 copies/mL 4 | |||
Initial | - | - | |
Final | 6.85 (6.58–7.12) | 2.63 (0.41–3.24) | <0.000 |
Probiotic Intervention Resulted in Pregnancy | |||
---|---|---|---|
Yes (n = 15) | No (n = 6) | ||
Vaginal Parameter | Mean (95% CI) | Mean (95% CI) | p-Value 1 |
pH | |||
Baseline | 5.85 (5.70–6.00) | 6.04 (5.58–6.17) | 0.190 |
Post-intervention | 4.53 (4.42–4.64) | 5.85 (5.75–5.95) | 0.000 |
Change | −1.32 (−1.43–−1.21) | −0.19 (−0.29–−0.09) | 0.000 |
p-value 3 | 0.000 | 0.002 | |
Nugent score | |||
Baseline | 6.00 (5.40–6.60) | 6.54 (6.01–7.07) | 0.334 |
Post-intervention | 2.10 (1.61–2.59) | 6.00 (5.57–6.43) | 0.000 |
Change | −3.90 (−4.25–−3.55) | −0.54 (−0.85–−0.23) | 0.000 |
p-value 3 | 0.000 | 0.028 | |
TGF-β 1, pg/mL | |||
Baseline | 2.29 (2.10–2.48) | 2.11 (1.94–2.28) | 0.308 |
Post-intervention | 4.58 (4.41–4.75) | 2.18 (2.04–2.33) | 0.000 |
Change | 2.29 (2.16–2.42) | 0.08 (−0.04–0.19) | 0.000 |
p-value 3 | 0.000 | 0.281 | |
TGF-β 2, pg/mL | |||
Baseline | 1.56 (1.46–1.66) | 1.16 (1.07–1.25) | <0.001 |
Post-intervention | 2.81 (2.68–2.94) | 1.26 (1.15–1.38) | 0.000 |
Change | 1.25 (1.13–1.37) | 0.10 (<−0.01–0.20) | 0.000 |
p-value 3 | 0.000 | 0.203 | |
VEGF, pg/mL | |||
Baseline | 311 (279–343) | 81 (53–109) | 0.000 |
Post-intervention | 773 (695–850) | 87 (19–155) | 0.000 |
Change | 462 (411–513) | 6 (−39–50) | 0.000 |
p-value 3 | 0.000 | 0.165 | |
Lactobacilli presence, n (%) | |||
Baseline | 3 (30) | 3 (23) | 0.537 2 |
Post-intervention | 10 (100) | 6 (46) | 0.007 2 |
Change | 7 (70) | 3 (23) | 0.040 2 |
Lactobacilli counts, log10 CFU/mL | |||
Initial | 5.00 (3.22–6.78) | 6.57 (4.78–8.35) | 0.290 |
Final | 6.46 (5.94–6.98) | 4.95 (4.28–5.62) | 0.017 |
Change | 3.05 (2.45–3.64) | 0.32 (−0.46–1.09) | <0.001 |
p-value 3 | <0.001 | 0.451 | |
L. salivarius qPCR, n (%) | |||
Initial | nd | nd | |
Final | 10 (100) | 4 (31) | 0.002 2 |
L. salivarius qPCR, log10 copies/mL 4 | |||
Initial | - | - | |
Final | 6.48 (6.28–6.68) | 3.55 (3.24–3.86) | 0.000 |
Probiotic Intervention Resulted in Pregnancy | ||||
---|---|---|---|---|
Vaginal Parameter | Control (n = 14) Mean (95% CI) | Yes (n = 25) Mean (95% CI) | No (n = 23) Mean (95% CI) | p-Value |
pH | 4.53 (4.38–4.68) a | 4.48 (4.39–4.58) a | 5.78 (5.62–5.95) b | 0.000 1 |
Nugent score | 1.79 (1.27–2.30) a | 2.36 (1.92–2.80) a | 5.84 (5.35–6.33) b | 0.000 1 |
TGF-β 1, pg/mL | 4.83 (4.65–5.01) a | 4.36 (4.20–4.52) b | 2.27 (2.06–2.48) c | 0.000 1 |
TGF-β 2, pg/mL | 3.22 (3.10–3.34) a | 2.88 (2.75–3.01) b | 1.27 (1.15–1.40) c | 0.000 1 |
VEGF, pg/mL | 406.0 (322.0–490.0) a | 755.0 (637.1–872.5) b | 103.3 (82.4–124.1) c | 0.000 1 |
Lactobacilli | ||||
Positive women, n (%) | 14 (100) | 25 (100) | 10 (43) | <0.001 2 |
Viable counts 3, log10 CFU/mL | 7.24 (6.89–7.60) a | 6.47 (6.22–6.72) b | 4.87 (3.83–5.90) c | 0.000 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, L.; Castro, I.; Arroyo, R.; Alba, C.; Beltrán, D.; Rodríguez, J.M. Application of Ligilactobacillus salivarius CECT5713 to Achieve Term Pregnancies in Women with Repetitive Abortion or Infertility of Unknown Origin by Microbiological and Immunological Modulation of the Vaginal Ecosystem. Nutrients 2021, 13, 162. https://doi.org/10.3390/nu13010162
Fernández L, Castro I, Arroyo R, Alba C, Beltrán D, Rodríguez JM. Application of Ligilactobacillus salivarius CECT5713 to Achieve Term Pregnancies in Women with Repetitive Abortion or Infertility of Unknown Origin by Microbiological and Immunological Modulation of the Vaginal Ecosystem. Nutrients. 2021; 13(1):162. https://doi.org/10.3390/nu13010162
Chicago/Turabian StyleFernández, Leónides, Irma Castro, Rebeca Arroyo, Claudio Alba, David Beltrán, and Juan M. Rodríguez. 2021. "Application of Ligilactobacillus salivarius CECT5713 to Achieve Term Pregnancies in Women with Repetitive Abortion or Infertility of Unknown Origin by Microbiological and Immunological Modulation of the Vaginal Ecosystem" Nutrients 13, no. 1: 162. https://doi.org/10.3390/nu13010162
APA StyleFernández, L., Castro, I., Arroyo, R., Alba, C., Beltrán, D., & Rodríguez, J. M. (2021). Application of Ligilactobacillus salivarius CECT5713 to Achieve Term Pregnancies in Women with Repetitive Abortion or Infertility of Unknown Origin by Microbiological and Immunological Modulation of the Vaginal Ecosystem. Nutrients, 13(1), 162. https://doi.org/10.3390/nu13010162