Inflammatory Markers and Hepcidin are Elevated but Serum Iron is Lower in Obese Women of Reproductive Age
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Biochemical Measurements
2.3. Statistical Analysis
3. Results
3.1. Characteristics of Study Participants
3.2. Biochemical Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Obesity and Overweight. Fact Sheet. 16 February 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 31 August 2019).
- NCD-RisC. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [Green Version]
- GDB. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- WHO. The Global Prevalence of Anaemia in 2011; World Health Organization: Geneva, Switzerlands, 2011; Available online: http://apps.who.int/iris/bitstream/10665/177094/1/9789241564960_eng.pdf (accessed on 8 January 2021).
- Kassebaum, N.J.; Jasrasaria, R.; Naghavi, M.; Wulf, S.K.; Johns, N.; Lozano, R.; Regan, M.; Weatherall, D.; Chou, D.P.; Eisele, T.P.; et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood 2014, 123, 615–624. [Google Scholar] [CrossRef] [PubMed]
- WHO. Assessing the Iron Status of Populations: Report of a Joint World Health Organization/Centers for Disease Control and Prevention Technical Consultation on the Assessment of Iron Status at the Population Level; WHO Press: Geneva, Switzerland, 2004. [Google Scholar]
- Lynch, S.; Pfeiffer, C.M.; Georgieff, M.K.; Brittenham, G.; Fairweather-Tait, S.; Hurrell, R.F.; McArdle, H.J.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND)-Iron Review. J. Nutr. 2018, 148, 1001S–1067S. [Google Scholar] [CrossRef] [Green Version]
- Thurnham, D.I.; McCabe, L.D.; Haldar, S.; Wieringa, F.T.; Northrop-Clewes, C.A.; McCabe, G.P. Adjusting plasma ferritin concentrations to remove the effects of subclinical inflammation in the assessment of iron deficiency: A meta-analysis. Am. J. Clin. Nutr. 2010, 92, 546–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, Z.; Namaste, S.M.; Serdula, M.; Suchdev, P.S.; Rohner, F.; Flores-Ayala, R.; Addo, O.Y.; Raiten, D.J. Adjusting total body iron for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am. J. Clin. Nutr. 2017, 106, 383S–389S. [Google Scholar] [CrossRef]
- Thurnham, D.I. Interactions between nutrition and immune function: Using inflammation biomarkers to interpret micronutrient status. Proc. Nutr. Soc. 2014, 73, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Nel, E.; Kruger, H.S.; Baumgartner, J.; Faber, M.; Smuts, C.M. Differential ferritin interpretation methods that adjust for inflammation yield discrepant iron deficiency prevalence. Matern Child Nutr. 2015, 11 (Suppl. 4), 221–228. [Google Scholar] [CrossRef] [Green Version]
- Suchdev, P.; Williams, A.; Mei, Z.; Flores-Ayala, R.; Pasricha, S.; Rogers, L.; Namaste, S. Assessment of iron status in settings of inflammation: Challenges and potential approaches. Am. J. Clin. Nutr. 2017, 106, 1626S–1633S. [Google Scholar] [CrossRef] [Green Version]
- Nemeth, E.; Ganz, T. Anemia of inflammation. Hematol. Oncol. Clin. N. Am. 2014, 28, 671–681, vi. [Google Scholar] [CrossRef] [Green Version]
- Gartner, A.; Berger, J.; Bour, A.; El Ati, J.; Traissac, P.; Landais, E.; El Kabbaj, S.; Delpeuch, F. Assessment of iron deficiency in the context of the obesity epidemic: Importance of correcting serum ferritin concentrations for inflammation. Am. J. Clin. Nutr. 2013, 98, 821–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prentice, A.M.; Bah, A.; Jallow, M.W.; Jallow, A.T.; Sanyang, S.; Sise, E.A.; Ceesay, K.; Danso, E.; Armitage, A.E.; Pasricha3, S.-R.; et al. Respiratory infections drive hepcidin-mediated blockade of iron absorption leading to iron deficiency anemia in African children. Sci. Adv. 2019, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasricha, S.-R.; Atkinson, S.H.; Armitage, A.E.; Khandwala, S.; Veenemans, J.; Cox, S.E.; Eddowes, L.A.; Hayes, T.; Doherty, C.P.; Demir, A.Y.; et al. Expression of the iron hormone hepcidin distinguishes different types of anaemia in African children. Sci. Transl. Med. 2014, 6, 235re233. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.; Tuttle, M.S.; Powelson, J.; Vaughn, M.B.; Donovan, A.; Ward, D.M.; Ganz, T.; Kaplan, J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004, 306, 2090–2093. [Google Scholar] [CrossRef] [Green Version]
- Cepeda-Lopez, A.C.; Allende-Labastida, J.; Melse-Boonstra, A.; Osendarp, S.J.; Herter-Aeberli, I.; Moretti, D.; Rodriguez-Lastra, R.; Gonzalez-Salazar, F.; Villalpando, S.; Zimmermann, M.B. The effects of fat loss after bariatric surgery on inflammation, serum hepcidin, and iron absorption: A prospective 6-mo iron stable isotope study. Am. J. Clin. Nutr. 2016, 104, 1030–1038. [Google Scholar] [CrossRef]
- Ganz, T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 2003, 102, 783–788. [Google Scholar] [CrossRef] [Green Version]
- Tussing-Humphreys, L.M.; Nemeth, E.; Fantuzzi, G.; Freels, S.; Guzman, G.; Holterman, A.X.; Braunschweig, C. Elevated systemic hepcidin and iron depletion in obese premenopausal females. Obesity 2010, 18, 1449–1456. [Google Scholar] [CrossRef] [Green Version]
- D’Angelo, G. Role of hepcidin in the pathophysiology and diagnosis of anemia. Blood Res. 2013, 48. [Google Scholar] [CrossRef]
- Camaschella, C. New insights into iron deficiency and iron deficiency anemia. Blood Rev. 2017, 31, 225–233. [Google Scholar] [CrossRef]
- Welsh, P.; Polisecki, E.; Robertson, M.; Jahn, S.; Buckley, B.M.; de Craen, A.J.; Ford, I.; Jukema, J.W.; Macfarlane, P.W.; Packard, C.J.; et al. Unraveling the directional link between adiposity and inflammation: A bidirectional Mendelian randomization approach. J. Clin. Endocrinol. Metab. 2010, 95, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Gregor, M.F.; Hotamisligil, G.S. Inflammatory Mechanisms in Obesity. Ann. Rev. Immunol. 2011, 29, 415–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Timpson, N.J.; Nordestgaard, B.G.; Harbord, R.M.; Zacho, J.; Frayling, T.M.; Tybjaerg-Hansen, A.; Smith, G.D. C-reactive protein levels and body mass index: Elucidating direction of causation through reciprocal Mendelian randomization. Int. J. Obes. 2011, 35, 300–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClung, J.P.; Karl, J.P. Iron deficiency and obesity: The contribution of inflammation and diminished iron absorption. Nutr. Rev. 2009, 67, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Balogh, A.; Derzbach, L.; Vasarhelyi, B. Hepcidin, the negative regulator of iron absorbtion. Orv. Hetil. 2004, 145, 1549–1552. [Google Scholar] [PubMed]
- Cepeda-Lopez, A.C.; Aeberli, I.; Zimmermann, M.B. Does obesity increase risk for iron deficiency? A review of the literature and the potential mechanisms. Int. J. Vitam Nutr. Res. 2010, 80, 263–270. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Health Observatory Data Repository: Prevalence of Anaemia in Women. Available online: https://apps.who.int/gho/data/view.main.GSWCAH28REG (accessed on 8 January 2021).
- Stoffel, N.U.; El-Mallah, C.; Herter-Aeberli, I.; Bissani, N.; Wehbe, N.; Obeid, O.; Zimmermann, M.B. The effect of central obesity on inflammation, hepcidin, and iron metabolism in young women. Int. J. Obes 2020. [Google Scholar] [CrossRef]
- WHO. Serum Ferritin Concentrations for the Assessment of Iron Status and Iron Deficiency in Populations; World health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Herter-Aeberli, I.; Thankachan, P.; Bose, B.; Kurpad, A.V. Increased risk of iron deficiency and reduced iron absorption but no difference in zinc, vitamin A or B-vitamin status in obese women in India. Eur. J. Nutr. 2016, 55, 2411–2421. [Google Scholar] [CrossRef]
- Cepeda-Lopez, A.C.; Melse-Boonstra, A.; Zimmermann, M.B.; Herter-Aeberli, I. In overweight and obese women, dietary iron absorption is reduced and the enhancement of iron absorption by ascorbic acid is one-half that in normal-weight women. Am. J. Clin. Nutr. 2015, 102, 1389–1397. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, M.A.; Leonard, M.B.; Herskovitz, R.; Baldassano, R.N.; Denburg, M.R. Changes in Hepcidin and Hemoglobin After Anti-TNF-alpha Therapy in Children and Adolescents With Crohn Disease. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 90–94. [Google Scholar] [CrossRef]
- Nicolas, G.; Chauvet, C.; Viatte, L.; Danan, J.L.; Bigard, X.; Devaux, I.; Beaumont, C.; Kahn, A.; Vaulont, S. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J. Clin. Investig. 2002, 110, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Kemna, E.; Pickkers, P.; Nemeth, E.; van der Hoeven, H.; Swinkels, D. Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS. Blood 2005, 106, 1864–1866. [Google Scholar] [CrossRef] [PubMed]
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 2003, 112, 1796–1808. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.; Rivera, S.; Gabayan, V.; Keller, C.; Taudorf, S.; Pedersen, B.K.; Ganz, T. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J. Clin. Investig. 2004, 113, 1271–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanamori, Y.; Murakami, M.; Sugiyama, M.; Hashimoto, O.; Matsui, T.; Funaba, M. Interleukin-1β (IL-1β) transcriptionally activates hepcidin by inducing CCAAT enhancer-binding protein δ (C/EBPδ) expression in hepatocytes. J. Biol. Chem. 2017, 292, 10275–10287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cepeda-Lopez, A.C.; Zimmermann, M.B.; Wussler, S.; Melse-Boonstra, A.; Naef, N.; Mueller, S.M.; Toigo, M.; Herter-Aeberli, I. Greater blood volume and Hb mass in obese women quantified by the carbon monoxide-rebreathing method affects interpretation of iron biomarkers and iron requirements. Int. J. Obesity 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangkhae, V.; Nemeth, E. Regulation of the Iron Homeostatic Hormone Hepcidin. Adv. Nutr. (Bethesda Md.) 2017, 8, 126–136. [Google Scholar] [CrossRef]
- Ganz, T.; Nemeth, E. Iron sequestration and anemia of inflammation. Semin. Hematol. 2009, 46, 387–393. [Google Scholar] [CrossRef] [Green Version]
- Matvienko, O.A.; Alekel, D.L.; Bhupathiraju, S.N.; Hofmann, H.; Ritland, L.M.; Reddy, M.B.; Van Loan, M.D.; Perry, C.D. Androidal fat dominates in predicting cardiometabolic risk in postmenopausal women. Cardiol. Res. Pract. 2011, 2011, 904878. [Google Scholar] [CrossRef] [Green Version]
- Perry, C.D.; Alekel, D.L.; Ritland, L.M.; Bhupathiraju, S.N.; Stewart, J.W.; Hanson, L.N.; Matvienko, O.A.; Kohut, M.L.; Reddy, M.B.; Van Loan, M.D.; et al. Centrally located body fat is related to inflammatory markers in healthy postmenopausal women. Menopause 2008, 15, 619–627. [Google Scholar] [CrossRef] [Green Version]
- Funghetto, S.S.; Silva Ade, O.; de Sousa, N.M.; Stival, M.M.; Tibana, R.A.; Pereira, L.C.; Antunes, M.L.; de Lima, L.R.; Prestes, J.; Oliveira, R.J.; et al. Comparison of percentage body fat and body mass index for the prediction of inflammatory and atherogenic lipid risk profiles in elderly women. Clin. Interv. Aging 2015, 10, 247–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasi, F.; Blasey, C.; Reaven, G.M. Cardiometabolic risk factors and obesity: Does it matter whether BMI or waist circumference is the index of obesity? Am. J. Clin. Nutr. 2013, 98, 637–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gletsu-Miller, N.; Hansen, J.M.; Jones, D.P.; Go, Y.-M.; Torres, W.E.; Ziegler, T.R.; Lin, E. Loss of Total and Visceral Adipose Tissue Mass Predicts Decreases in Oxidative Stress After Weight-loss Surgery. Obesity 2009, 17, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Tussing-Humphreys, L.M.; Nemeth, E.; Fantuzzi, G.; Freels, S.; Holterman, A.X.; Galvani, C.; Ayloo, S.; Vitello, J.; Braunschweig, C. Decreased serum hepcidin and improved functional iron status 6 months after restrictive bariatric surgery. Obesity 2010, 18, 2010–2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganz, T.; Olbina, G.; Girelli, D.; Nemeth, E.; Westerman, M. Immunoassay for human serum hepcidin. Blood 2008, 112, 4292–4297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganz, T. Anemia of Inflammation. N. Engl. J. Med. 2019, 381, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Voulgari, P.V.; Kolios, G.; Papadopoulos, G.K.; Katsaraki, A.; Seferiadis, K.; Drosos, A.A. Role of cytokines in the pathogenesis of anemia of chronic disease in rheumatoid arthritis. Clin. Immunol. 1999, 92, 153–160. [Google Scholar] [CrossRef]
- Angeli, A.; Laine, F.; Lavenu, A.; Ropert, M.; Lacut, K.; Gissot, V.; Sacher-Huvelin, S.; Jezequel, C.; Moignet, A.; Laviolle, B.; et al. Joint Model of Iron and Hepcidin During the Menstrual Cycle in Healthy Women. AAPS J. 2016, 18, 490–504. [Google Scholar] [CrossRef] [Green Version]
- Haile, Z.T.; Kingori, C.; Teweldeberhan, A.K.; Chavan, B. The relationship between history of hormonal contraceptive use and iron status among women in Tanzania: A population-based study. Sex. Reproductive Healthc. 2017, 13, 97–102. [Google Scholar] [CrossRef]
- Miller, E.M. Iron status and reproduction in US women: National Health and Nutrition Examination Survey, 1999-2006. PLoS ONE 2014, 9, e112216. [Google Scholar] [CrossRef]
Variable | Normal Weight (BMI: 18.5–24.9 kg/m2) | Obese (BMI: >29.9 kg/m2) | p Value |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
N | 22 | 25 | |
Age (years) | 21.5 ± 3.4 | 20.6 ± 2.3 | 0.307 |
Height (cm) | 166.4 ± 6.8 | 166.1 ± 5.6 | 0.862 |
Weight (kg) | 60.0 ± 7.3 | 101.4 ± 17.6 | <0.001 |
BMI (kg/m2) | 21.6 ± 1.6 | 36.7 ± 6.0 | <0.001 |
Race, n (%) | 0.693 | ||
White non-Hispanic | 16 (72.7) | 17 (68.0) | |
Black/African American non-Hispanic | 1 (4.5) | 0 (0.0) | |
Hispanic | 2 (9.0) | 6 (24.0) | |
Asian | 2 (9.0) | 1 (4.0) | |
Multiple or others | 1 (4.5) | 1 (4.0) | |
Parity, n (%) | 0.468 | ||
0 | 21 (95.5) | 25 (100.0) | |
1 | 1 (4.5) | 0 (0.0) | |
Educational status, n (%) | 0.177 | ||
At least a bachelor’s degree | 5 (22.7) | 4 (16.0) | |
Associate degree | 3 (13.6) | 2 (8.0) | |
Undergraduate students | 14 (63.6) | 19 (76.0) |
Variable | Normal Weight Women (BMI: 18.5–24.9 kg/m2) | Obese Women (BMI: >29.9 kg/m2) | p Value |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Inflammatory markers | |||
WBC (X 103/µL) | 5.6 ± 1.6 | 7.7 ± 2.0 | <0.001 |
IL-6 (pg/mL) 1* | 1.46 [1.13, 1.89] | 2.16 [1.86, 2.51] | 0.003 |
CRP (mg/L) 1* | 8.2 [3.1, 21.8] | 69.9 [41.1, 118.9] | <0.001 |
Iron biomarkers | |||
Hemoglobin (g/dL) | 13.6 ± 1.1 | 13.3 ± 1.1 | 0.166 |
Hematocrit (%) | 39.4 ± 2.8 | 39.2 ± 2.5 | 0.410 |
MCV (fL) | 86.3 ± 4.5 | 82.4 ± 8.9 | 0.030 |
MCH (pg) | 29.8 ± 2.1 | 30.4 ± 12.5 | 0.407 |
MCHC (g/dL) | 34.5 ± 0.9 | 33.9 ± 1.5 | 0.039 |
Serum iron (µg/dL) 2 | 112.0 ± 41.4 | 92.4 ± 33.9 | 0.044 |
TIBC (µg/dL) 2 | 394.4 ± 61.5 | 371.3 ± 50.4 | 0.086 |
TSAT (%) 2 | 29.7 ± 13.3 | 25.2 ± 9.1 | 0.094 |
Ferritin (ng/mL) 1* | 34.0 [21.0, 55.1] | 37.7 [26.9, 52.9] | 0.355 |
Hepcidin (ng/mL) 1 | 6.21 [4.39, 8.77] | 11.21 [7.04, 17.83] | 0.024 |
Serum iron/Ferritin 2* | 3.02 [2.17, 4.20] | 2.24 [1.44, 3.47] | 0.134 |
SFe/Hep 2* | 15.63 [11.35, 21.51] | 7.53 [4.49, 12.63] | 0.011 |
Serum Lipids | |||
TC (mg/dL) | 170.1 ± 29.6 | 176.0 ± 40.1 | 0.288 |
HDL (mg/dL) | 61.6 ± 12.0 | 49.3 ± 14.1 | 0.001 |
Triglycerides (mg/dL) | 88.0 ± 29.5 | 121.8 ± 32.1 | <0.001 |
LDL (mg/dL) | 90.6 ± 27.5 | 104.2 ± 34.1 | 0.072 |
TC/HDL Ratio | 2.8 ± 0.7 | 3.7 ± 1.0 | <0.001 |
Non-HDL (mg/dL) | 108.5 ± 28.3 | 126.7 ± 37.6 | 0.035 |
R | p Value | |
---|---|---|
Inflammatory markers | ||
CRP (mg/L) 2 | 0.57 | <0.001 |
IL-6 (pg/mL) 2 | 0.40 | 0.010 |
Iron biomarkers | ||
Hemoglobin (g/dL) | −0.14 | 0.353 |
Hematocrit (%) | −0.04 | 0.780 |
MCV (fL) | −0.29 | 0.049 |
MCH (pg) | −0.05 | 0.726 |
MCHC (g/dL) | −0.22 | 0.138 |
Serum iron (µg/dL) | −0.28 | 0.063 |
TIBC (µg/dL) | −0.20 | 0.186 |
TSAT (%) | −0.22 | 0.139 |
Ferritin (ng/mL) 2 | 0.09 | 0.580 |
Hepcidin (ng/mL) 2 | 0.30 | 0.064 |
Serum iron/SHep | −0.39 | 0.012 |
Serum Lipids | ||
TC (mg/dL) | 0.14 | 0.332 |
HDL (mg/dL) | −0.53 | <0.001 |
Triglycerides (mg/dL) | 0.44 | 0.002 |
LDL (mg/dL) | 0.33 | 0.025 |
TC/HDL Ratio | 0.63 | <0.001 |
Non-HDL (mg/dL) | 0.37 | 0.011 |
Model 2 | Independent Variables | Likelihood Ratio 3 | Parameter Estimate | SE | t Value | p > |t| |
---|---|---|---|---|---|---|
Model 1 | ||||||
SFe/Hep | 3.92 (0.048) | F (2,37) = 5.67, p = 0.0071, R-squared = 23%, Adj_R-squared = 19% | ||||
BMI (kg/m2) | −0.40 | 0.16 | −2.51 | 0.017 | ||
Ferritin (ng/mL) 2 | −7.04 | 3.6 | −1.95 | 0.058 | ||
Intercept | 37.78 | 7.12 | 5.30 | <0.001 | ||
Model 2 | ||||||
SFe/Hep | 8.74 (0.013) | F (2,19) = 4.63, p = 0.023, R-squared = 33%, Adj_R-squared = 26% | ||||
CRP (mg/L) | −13.00 | 4.85 | −2.68 | 0.015 | ||
Ferritin (ng/mL) | 2.67 | 1.34 | 2.00 | 0.060 | ||
Intercept | 20.71 | 8.60 | 2.41 | 0.026 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguree, S.; Reddy, M.B. Inflammatory Markers and Hepcidin are Elevated but Serum Iron is Lower in Obese Women of Reproductive Age. Nutrients 2021, 13, 217. https://doi.org/10.3390/nu13010217
Aguree S, Reddy MB. Inflammatory Markers and Hepcidin are Elevated but Serum Iron is Lower in Obese Women of Reproductive Age. Nutrients. 2021; 13(1):217. https://doi.org/10.3390/nu13010217
Chicago/Turabian StyleAguree, Sixtus, and Manju B. Reddy. 2021. "Inflammatory Markers and Hepcidin are Elevated but Serum Iron is Lower in Obese Women of Reproductive Age" Nutrients 13, no. 1: 217. https://doi.org/10.3390/nu13010217
APA StyleAguree, S., & Reddy, M. B. (2021). Inflammatory Markers and Hepcidin are Elevated but Serum Iron is Lower in Obese Women of Reproductive Age. Nutrients, 13(1), 217. https://doi.org/10.3390/nu13010217