Non–IgE- or Mixed IgE/Non–IgE-Mediated Gastrointestinal Food Allergies in the First Years of Life: Old and New Tools for Diagnosis
Abstract
:1. Introduction
2. Materials and Methods
3. Clinical Features of Non-IgE Gastrointestinal FA
3.1. Food Protein-Induced Allergic Proctocolitis (FPIAP)
3.2. Food Protein-Induced Enterocolitis Syndrome (FPIES)
3.3. Food Protein-Induced Enteropathy (FPE)
3.4. Eosinophilic Gastrointestinal Disorders (EGIDs)
3.4.1. Eosinophilic Esophagitis (EoE)
3.4.2. Allergic Eosinophilic Gastroenteritis (AEG)
3.4.3. Eosinophilic Colitis (EC)
3.5. Less Specific Clinical Features, Other Phenotypes and Associations
4. Fecal Biomarkers
4.1. FC in the Diagnosis of CMA
4.2. Other Fecal Biomarkers
5. IgG, IgG4, Allergen-Specific Lymphocyte Stimulation Test (ALST)
6. Accuracy of Atopy Patch Test Compared to OFC
7. Accuracy of Endoscopy Compared to OFC
8. Accuracy of Clinical Score Compared to OFC
9. Novel and Future Diagnostic Tests for Non IgE-Mediated Food Allergy
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boyce, J.; Assa’ad, A.; Burks, A.W.; Jones, S.M.; Sampson, H.A.; Wood, R.A.; Plaut, M.; Cooper, S.F.; Fento, M.J.; Arshad, S.H.; et al. Guidelines for the diagnosis and manage-ment of food allergy in the United States: Report of the NIAID-sponsored expert panel. J. Allergy Clin. Immunol. 2010, 126, 1–58. [Google Scholar] [CrossRef] [PubMed]
- Cianferoni, A. Non-IgE Mediated Food Allergy. Curr. Pediatr. Rev. 2020, 16, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Saarinen, K.M.; Savilahti, E. Infant feeding patterns affect the subsequent immunological features in cow’s milk allergy. Clin. Exp. Allergy 2000, 30, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Burks, W.; Tang, M.; Sicherer, S.; Muraro, A.; Eigenmann, P.A.; Ebisawa, M.; Fiocchi, A.; Chiang, W.; Beyer, K.; Wood, R.; et al. ICON: Food allergy. J. Allergy Clin. Immunol. 2012, 129, 906–920. [Google Scholar] [CrossRef] [PubMed]
- Labrosse, R.; Graham, F.; Caubewt, J.C. Non-IgE-Mediated Gastrointestinal Food Allergies in Children: An Update. Nutrients 2020, 12, 2086. [Google Scholar] [CrossRef]
- Nowak–Wegrzyn, A.; Chehade, M.; Groetch, M.; Spergel, J.M.; Wood, R.A.; Allen, K.; Atkins, D.; Bahna, S.; Barad, A.V.; Berin, C.; et al. International consensus guidelines for the diagnosis and management of food protein–induced enterocolitis syndrome: Executive summary-Workgroup Report of the Adverse Reactions to Foods Committee, American Academy of Al-lergy, Asthma & Immunology. J. Allergy Clin. Immunol. 2017, 139, 1111–1126. [Google Scholar]
- Nowak-Wegrzyn, A.; Assa’ad, A.H.; Bahna, S.L.; Bock, S.A.; Sicherer, S.H.; Teuber, S.S. Adverse Reactions to Food Commit-tee of American Academy of Allergy, Asthma & Immunology. Work Group report: Oral food challenge testing. J. Allergy Clin. Immunol. 2009, 123, S365–S383. [Google Scholar]
- Nowak-Wegrzyn, A.; Katz, Y.; Mehr, S.S.; Koletzko, S. Non-IgE-mediated gastrointestinal food allergy. J. Allergy Clin. Immunol 2015, 135, 1114–1124. [Google Scholar] [CrossRef]
- Martin, V.M.; Virkud, Y.V.; Seay, H.; Hickey, A.; Ndahayo, R.; Rosow, R.; Southwick, C.; Michael Elkort, M.; Gupta, B.; Kramer, E.; et al. Prospective Assessment of Pediatrician-Diagnosed Food Pro-tein-Induced Allergic Proctocolitis by Gross or Occult Blood. J. Allergy Clin. Immunol. Pract. 2020, 8, 1692–1699. [Google Scholar] [CrossRef]
- Nowak-Węgrzyn, A. Food protein-induced enterocolitis syndrome and allergic proctocolitis. Allergy Asthma Proc. 2015, 36, 172–184. [Google Scholar] [CrossRef]
- Arvola, T.; Ruuska, T.; Keränen, J.; Hyöty, H.; Salminen, S.; Isolauri, E. Rectal bleeding in infancy: Clinical, allergological, and mi-crobiological examination. Pediatrics 2006, 117, 760–768. [Google Scholar] [CrossRef] [Green Version]
- Elizur, A.; Cohen, M.; Goldberg, M.R.; Rajuan, N.; Cohen, A.; Leshno, M.; Katz, Y. Cow’s milk associated rectal bleeding: A popula-tion based prospective study. Pediatr. Allergy Immunol. 2012, 23, 766–770. [Google Scholar] [CrossRef] [PubMed]
- Lozinsky, A.C.; Morais, M. Eosinophilic colitis in infants. Jornal Pediatr. 2014, 90, 16–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buyuktiryaki, B.; KulhasCelik, I.; Erdem, S.B.; Capanoglu, M.; Civelek, E.; Guc, B.U.; Guvenir, H.; Cakir, M.; Misirlioglu, E.; Akcal, O. Risk Factors Influencing Tolerance and Clinical Features of Food Protein-induced Allergic Proctocolitis. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Cetinkaya, P.G.; Kahveci, M.; Sahiner, U.M.; Sekerel, B.E.; Soyer, O. Food protein-induced allergic proctocolitis may have distinct phenotypes. Ann. Allergy Asthma Immunol. 2021, 126, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Diaz Del Arco, C.; Taxonera, C.; Olivares, D.; Fernandez Acenero, M.J. Eosinophilic colitis: Case series and literature review. Pathol Res. Pract. 2018, 214, 100–104. [Google Scholar] [CrossRef]
- Miceli Sopo, S.; Monaco, S.; Bersani, G.; Romano, A.; Fantacci, C. Proposal for management of the infant with suspected food pro-tein-induced allergic proctocolitis. Pediatr. Allergy Immunol. 2018, 29, 215–218. [Google Scholar] [CrossRef]
- Mennini, A.; Fiocchi, A.G.; Cafarotti, A.; Montesano, M.; Mauro, A.; Villa, M.P.; Di Nardo, G. Food protein-induced allergic proctocol-itis in infants: Literature review and proposal of a management protocol. World Allergy Organ. J. 2020, 13, 100–471. [Google Scholar] [CrossRef]
- Fox, V.L. Gastrointestinal bleeding in infancy and childhood. Gastroenterol. Clin. N. Am. 2000, 29, 37–66. [Google Scholar] [CrossRef]
- Kaya, A.; Toyran, M.; Civelek, E.; Misirlioglu, E.; Kirsaclioglu, C.; Kocabas, C. Characteristics and prognosis of allergic proctocolitis in infants. J. Pediatr Gastroenterol. Nutr. 2015, 61, 69–73. [Google Scholar] [CrossRef]
- Leonard, S.A.; Nowak-Wegryn, A. Food Protein–Induced Enterocolitis Syndrome. Pediatr. Clin. N. Am. 2015, 62, 1463–1477. [Google Scholar] [CrossRef] [PubMed]
- Nowak-Wegrzyn, A.; Berin, M.C.; Mehr, S. Food Protein-Induced Enterocolitis Syndrome. J. Allergy Clin. Immunol. Pr. 2020, 8, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Caubet, J.C.; Ford, L.S.; Sickles, L.; Jarvinen, K.M.; Sicherer, S.H.; Sampson, H.A.; Nowak-Węgrzyn, A. Clinical features and resolution of food protein-induced enterocolitis syndrome: 10-year experience. J. Allergy Clin. Immunol. 2014, 134, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Sicherer, S.H.; Eigenmann, P.A.; Sampson, H.A. Clinical features of food protein–induced enterocolitis syndrome. J. Pediatr. 1998, 133, 214–219. [Google Scholar] [CrossRef]
- Diaz, J.J.; Espin, B.; Segarra, O.; Dominguez-Ortega, G.; Blasco-Alonso, J.; Cano, B.; Rayo, A.; Moreno, A. Food protein-induced enter-ocolitis syndrome: Data from a multicenter retrospective study in Spain. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 232–236. [Google Scholar] [CrossRef]
- Miceli Sopo, S.; Monaco, S.; Badina, L.; Barni, S.; Longo, G.; Novembre, E.; Viola, S.; Monti, G. Food protein-induced enterocolitis syn-drome caused by fish and/or shellfish in Italy. Pediatr. Allergy Immunol. 2015, 26, 731–736. [Google Scholar] [CrossRef]
- Sicherer, S.H. Food protein-induced enterocolitis syndrome: Case presentations and management lessons. J. Allergy Clin. Immunol. 2005, 115, 149–156. [Google Scholar] [CrossRef]
- American College of Allergy, Asthma, and Immunology. Food allergy: A practice parameter. Ann. Allergy Asthma Immunol. 2006, 96 (Suppl. 2), S1–S68. [Google Scholar] [CrossRef]
- Savilahti, E. Food-Induced Malabsorption Syndromes. J. Pediatr. Gastroenterol. Nutr. 2000, 30, S61–S66. [Google Scholar] [CrossRef]
- Sampson, H.A.; Aceves, S.; Bock, S.A.; James, J.; Jones, S.; Lang, D.; Nadeau, K.; Nowak-Wegrzyn, A.; Oppenheimer, J.; Perry, T.T.; et al. Food allergy: A practice parameter update 2014. J. Allergy Clin. Immunol. 2014, 134, 1016–1025. [Google Scholar] [CrossRef]
- Chehade, M.; Jones, S.M.; Pesek, R.D.; Burks, A.W.; Vickery, B.P.; Wood, R.A.; Leung, D.; Furuta, G.T.; Fleischer, D.M.; Henning, A.; et al. Phenotypic Characterization of Eosinophilic Esophagitis in a Large Multicenter Pa-tient Population from the Consortium for Food Allergy Research. J. Allergy Clin. Immunol. Pract. 2018, 6, 1534–1544. [Google Scholar] [CrossRef] [PubMed]
- Cianferoni, A.; Spergel, J. Eosinophilic Esophagitis: A Comprehensive Review. Clin. Rev. Allergy Immunol. 2016, 50, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Muir, A.B.; Brown-Whitehorn, T.; Godwin, B.; Cianferoni, A. Eosinophilic esophagitis: Early diagnosis is the key. Clin. Exp. Gastroenterol. 2019, 12, 391–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucendo, A.J.; Molina-Infante, J.; Arias, Á.; von Arnim, U.; Bredenoord, A.J.; Bussmann, C.; Dias, J.A.; Bove, M.; González-Cervera, J.; Larsson, H.; et al. Guidelines on eosinophilic esophagitis: Evidence based statements and recommendations for diagnosis and management in children and adults. United Eur. Gastroenterol. J. 2017, 5, 335–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spergel, J.M.; Andrews, T.; Brown-Whitehorn, T.F.; Beausoleil, J.L.; Liacouras, C.A. Treatment of eosinophilic esophagitis with spe-cific food elimination diet directed by a combination of skin prick and patch tests. Ann. Allergy Asthma Immunol. 2005, 95, 336–343. [Google Scholar] [CrossRef]
- Dellon, E.S.; Liacouras, C.A.; Molina Infante, J.; Furuta, G.T.; Spergel, J.M.; Zevit, N.; Spechler, S.J.; Attwood, S.E.; Straumann, A.; Aceves, S.; et al. Updated International Consensus Diagnostic Criteria for Eosinophilic Esophagitis: Proceed-ings of the AGREE Conference. Gastroenterology 2018, 155, 1022–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liacouras, C.A.; Furuta, G.T.; Hirano, I.; Atkins, D.; Attwood, S.E.; Bonis, P.A.; Burks, A.W.; Chehade, M.; Collins, M.H.; Dellon, E.S.; et al. Eosinophilic esophagitis: Updated consensus recommendations for children and adults. J. Allergy Clin. Immunol. 2011, 128, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Kagalwalla, A.F.; Shah, A.; Li, B.U.; Sentongo, T.A.; Ritz, S.; Manuel-Rubio, M.; Jacques, K.; Wang, D.; Melin-Aldana, H.; Nelson, S.P. Identification of Specific Foods Responsible for Inflammation in Children With Eosinophilic Esophagitis Successfully Treated With Empiric Elimination Diet. J. Pediatr. Gastroenterol. Nutr. 2011, 53, 145–149. [Google Scholar] [CrossRef] [Green Version]
- Spergel, J.M.; Brown Witehorn, T.F.; Cianferoni, A.; Shuker, M.; Wang, M.L.; Verma, R.; Liacouras, C.A. Identification of causative foods in children with eosinophilic esophagitis treated with an elimination diet. J. Allergy Clin. Immunol. 2012, 130, 461–467. [Google Scholar] [CrossRef]
- Shetty, V.; Daniel, K.E.; Kesavan, A. Hematemesis as Initial Presentation in a 10-Week-Old Infant with Eosinophilic Gastroenter-itis. Case Rep. Pediatr. 2017, 2017, 2391417. [Google Scholar]
- Costa, C.; Pinto Pais, I.; Rios, E.; Costa, C. Milk-sensitive eosinophilic gastroenteritis in a 2-month-old boy. BMJ Case Rep. 2015, 13, 2015210157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonsalves, N.P. Eosinophilic Gastrointestinal Disorders. Clin. Rev. Allergy Immunol. 2019, 57, 272–285. [Google Scholar] [CrossRef] [PubMed]
- Pesek, R.D.; Reed, C.C.; Muir, A.B.; Fulkerson, P.C.; Menard-Katcher, C.; Falk, G.W.; Kuhl, J.; Martin, E.K.; Magier, A.Z.; Ahmed, F.; et al. Increasing Rates of Diagnosis, Substantial Co-Occurrence, and Variable Treatment Patterns of Eosinophilic Gastritis, Gastroenteritis, and Colitis Based on 10-Year Data Across a Multicenter Consortium. Am. J. Gastroenterol. 2019, 114, 984–994. [Google Scholar] [CrossRef] [PubMed]
- Han, X.X.; Guan, D.X.; Zhou, J.; Yu, F.H.; Wang, G.L.; Mei, T.L.; Guo, S.; Fu, L.B.; Zhang, J.; Shen, H.Q.; et al. Clinical analysis of eosinophilic gastroenteritis in 71 children. Zhonghua Er Ke Za Zhi 2018, 56, 500–504. [Google Scholar]
- Sampson, H.A.; Anderson, J.A. Summary and recommendations: Classification of gastrointestinal manifestations due to immu-nologic reactions to foods in infants and young children. J. Pediatr. Gastroenterol. Nutr. 2000, 30, S87Y94. [Google Scholar] [CrossRef]
- Alfadda, A.A.; Storr, M.A.; Shaffer, E. Eosinophilic colitis: An update on pathophysiology and treatment. Br. Med. Bull. 2011, 100, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Grzybowska-Chlebowczyk, U.; Horowska-Ziaja, S.; Kajor, M.; Więcek, S.; Chlebowczyk, W.; Woś, H. Eosinophilic colitis in chil-dren. Adv. Dermatol. Allergol. 2017, 34, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Pensabene, L.; Brundler, M.-A.; Bank, J.M.; Di Lorenzo, C. Evaluation of mucosal eosinophils in the pediatric colon. Dig. Dis. Sci. 2005, 50, 221–229. [Google Scholar] [CrossRef]
- Yang, M.; Geng, L.; Chen, P.; Wang, F.; Xu, Z.; Liang, C.; Li, H.; Fang, T.; Friesen, C.; Gong, S.; et al. Effectiveness of Dietary Allergen Exclusion Therapy on Eosinophilic Colitis in Chinese Infants and Young Children ≤ 3 Years of Age. Nutrients 2015, 7, 1817–1827. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.M.; Shaffer, E.A. Primary eosinophilic disorders of the gastrointestinal tract. Gut 2008, 58, 721–732. [Google Scholar] [CrossRef]
- Saad, A.G. Normal Quantity and Distribution of Mast Cells and Eosinophils in the Pediatric Colon. Pediatr. Dev. Pathol. 2011, 14, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Hurrell, J.M.; Genta, R.M.; Melton, S.D. Histopathologic Diagnosis of Eosinophilic Conditions in the Gastrointestinal Tract. Adv. Anat. Pathol. 2011, 18, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Mark, J.; Fernando, S.D.; Masterson, J.C.; Pan, Z.; Capocelli, K.E.; Furuta, G.T.; Furuta, G.T.; de Zoeten, E.F. Clinical implications of pedi-atric colonic eosinophilia. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 760–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yagi, H.; Takizawa, T.; Sato, K.; Inoue, T.; Nishida, Y.; Ishige, T.; Tatsuki, M.; Hatori, R.; Kobayashi, Y.; Yamada, Y.; et al. Sever-ity scales of non-IgE-mediated gastrointestinal food allergies in neonates and infants. Allergol. Int. 2019, 68, 178–184. [Google Scholar] [CrossRef]
- Nomura, I.; Morita, H.; Ohya, Y.; Saito, H.; Matsumoto, K. Non–IgE-Mediated Gastrointestinal Food Allergies: Distinct Differences in Clinical Phenotype BetweenWestern Countries and Japan. Curr. Allergy Asthma Rep. 2012, 12, 297–303. [Google Scholar] [CrossRef]
- Salvatore, S.; Vandenplas, Y. Gastroesophageal reflux and cow milk allergy: Is there a link? Pediatrics 2002, 110, 972–984. [Google Scholar] [CrossRef]
- Nielsen, R.G.; Bindslev-Jensen, C.; Kruse-Andersen, S.; Husby, S. Severe gastroesophageal reflux disease and cow milk hy-persensitivity in infants and children: Disease association and evaluation of a new challenge procedure. J. Pediatr. Gastroenterol. Nutr. 2004, 39, 383–391. [Google Scholar] [CrossRef]
- Rybak, A.; Pesce, M.; Thapar, N.; Borrelli, O. Gastro-Esophageal Reflux in Children. Int. J. Mol. Sci. 2017, 18, 1671. [Google Scholar] [CrossRef]
- Yukselen, A.; Celtik, C. Food allergy in children with refractory gastroesophageal reflux disease. Pediatr. Int. 2015, 58, 254–258. [Google Scholar] [CrossRef]
- Staelens, S.; Driessche, M.V.D.; Barclay, D.; Carrié-Faessler, A.-L.; Haschke, F.; Verbeke, K.; Vandebroek, H.; Allegaert, K.; Van Overmeire, B.; Van Damme, M.; et al. Gastric emptying in healthy newborns fed an intact protein formula, a partially and an extensively hydrolysed formula. Clin. Nutr. 2008, 27, 264–268. [Google Scholar] [CrossRef]
- Johne, B.; Fagerhol, M.K.; Lyberg, T.; Prydz, H.; Brandtzaeg, P.; Naess-Andresen, C.F.; Dale, I. Functional and clinical aspects of the myelomonocyte protein calprotectin. Mol. Pathol. 1997, 50, 113–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Striz, I.; Trebichavský, I. Calprotectin-a pleiotropic molecule in acute and chronic inflammation. Physiol. Res. 2004, 53, 245–253. [Google Scholar] [PubMed]
- Berni Canani, R.; De Horatio, L.T.; Terrin, G.; Romano, M.T.; Miele, E.; Staiano, A.; Rapacciuolo, L.; Polito, G.; Bisesti, V.; Manguso, F.; et al. Combined Use of Noninvasive Tests is Useful in the Initial Diagnostic Approach to a Child with Suspected Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2006, 42, 9–15. [Google Scholar] [CrossRef] [PubMed]
- von Roon, A.C.; Karamountzos, L.; Purkayastha, S.; Reese, G.E.; Darzi, A.W.; Teare, J.P.; Paraskeva, P.; Tekkis, P.P. Diagnostic precision of fecal calprotectin for inflammatory bowel disease and colorectal malignancy. Am. J. Gastroenterol. 2007, 102, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.H.; Chou, J.W.; Chen, S.M.; Tsai, M.C.; Sun, Y.S.; Lin, C.C.; Lin, C.P. Faecal calprotectin as a novel biomarker for differentiat-ing between inflammatory bowel disease and irritable bowel syndrome. Mol. Med. Rep. 2014, 10, 522–526. [Google Scholar] [CrossRef]
- Degraeuwe, P.L.J.; Beld, M.P.A.; Ashorn, M.; Berni Canani, R.; Day, A.S.; Diamanti, A.; Fagerberg, U.L.; Henderson, P.; Kolho, K.-L.; Van De Vijver, E.; et al. Faecal Calprotectin in Suspected Paediatric Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 339–346. [Google Scholar] [CrossRef]
- Berni Canani, R.; Rapacciuolo, R.M.T.; Tanturri de Horatio, L.; Terrin, G.; Manguso, F.; Cirillo, P.; Paparo, F.; Troncone, R. Di-agnostic value of faecal calprotectin in pediatric gastroenterology clinical practice. Dig. Liver Dis. 2004, 36, 467–470. [Google Scholar] [CrossRef]
- Bunn, S.K.; Bisset, W.M.; Main, M.J.; Golden, B.E. Fecal Calprotectin as a Measure of Disease Activity in Childhood Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2001, 32, 171–177. [Google Scholar] [CrossRef]
- Xiong, L.-J.; Xie, X.-L.; Li, Y.; Deng, X.-Z. Current status of fecal calprotectin as a diagnostic or monitoring biomarker for cow’s milk protein allergy in children: A scoping review. World J. Pediatr. 2020. [Google Scholar] [CrossRef]
- Baldassarre, M.E.; Laforgia, N.; Fanelli, M.; Laneve, A.; Grosso, R.; Lifschitz, C. Lactobacillus GG improves recovery in in-fants with blood in the stool and presumptive allergic colitis compared with extensively hydrolyzed formula alone. J. Pediatr. 2010, 156, 397–401. [Google Scholar] [CrossRef]
- Besęr, O.F.; Sancak, S.; Erkan, T.; Kutlu, T.; Cokugraş, H.; Cokugraş, F.C. Can fecal calprotectin level be used as a markers of inflammation in the diagnosis and follow-up of cow’s milk protein allergy? Allergy Asthma Immunol. Res. 2014, 6, 33–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trillo Belizón, C.; Ortega Paez, E.; Medina Claros, A.F.; Rodriguez Sanchez, I.; Reina Gonzalez, A.; Vera Medialdea, R.; Ra-mon Salguero, J.M. Fecal calprotectin as an aid to the diagnosis of non-IgE mediated cow’s milk protein allergy. An. Pediatr. 2016, 84, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Lendvai-Emmert, D.; Emmert, V.; Fusz, K.; Premusz, V.; Boncz, I.; Toth, G.P. Quantitative assay of fecal calprotectin in chil-dren with cow’s milk protein allergy. Value Health 2018, 21, s128. [Google Scholar] [CrossRef]
- Prikhodchenko, N.G.; Shumakova, T.A.; Nee, A.N.; Katenkova, E.U.; Zernova, E.S.; Grigoryan, L.A. Noninvasive marker of the intestinal epithelial barrier state in infants with Food Protein-Induced Enteropathy. Res. J. Pharm. Biol. Chem. Sci. 2018, 9, 625–628. [Google Scholar]
- Ataee, P.; Zoghali, M.; Nikkhoo, B.; Ghaderi, E.; Mansouri, M.; Nasiri, R.; Eftekhari, K. Diagnostic Value of Fecal Calprotectin in Response to Mother’s Diet in Breast-Fed Infants with Cow’s Milk Allergy Colitis. Iran. J. Pediatr. 2018, 28, 66172. [Google Scholar] [CrossRef]
- Diaz, M.; Guadamuro, L.; Espinosa-Martos, I.; Mancabelli, L.; Jiménez, S.; Molinos-Norniella, C.; Pérez Solis, D.; Milani, C.; Rodriguez, J.M.; Ventura, M.; et al. Microbiota and derived parameters in fecal samples of infants with non-IgE cow’s milk protein allergy under a restricted diet. Nutrients 2018, 10, 1481. [Google Scholar] [CrossRef] [Green Version]
- Berni Canani, R.; Nocerino, R.; Leone, L.; Di Costanzo, M.; Terrin, G.; Passariello, A.; Cosenza, L.; Troncone, R. Tolerance to a new free amino acid-based formula in children with IgE or non-IgE-mediated cow’s milk allergy: A randomized controlled clinical trial. BMC Pediatr. 2013, 13, 24. [Google Scholar] [CrossRef]
- Yamada, Y. Unique features of non-IgE-mediated gastrointestinal food allergy during infancy in Japan. Curr. Opin. Allergy Clin. Immunol. 2020, 20, 299–304. [Google Scholar] [CrossRef]
- Kalach, N.; Kapel, N.; Waligora-Dupriet, A.; Castelain, M.C.; Cousin, M.O.; Sauvage, C.; Ba, F.; Nicolis, I.; Campeotto, B.; Butel, M.J.; et al. Intestinal permeability and fecal eosinophilic-derived neurotoxin are the best diagnosis tools for digestive non-IgE-mediated cow’s milk allergy in toddlers. Clin. Chem. Lab. Med. 2013, 51, 351–361. [Google Scholar] [CrossRef]
- Wada, H.; Horisawa, T.; Inoue, M.; Yoshida, T.; Toma, T.; Yachie, A. Sequential measurement of fecal parameters in a case of non-immunoglobulin E-mediated milk allergy. Pediatr. Int. 2007, 49, 109–111. [Google Scholar] [CrossRef]
- Wada, T.; Toma, T.; Muraoka, M.; Matsuda, Y.; Yachie, A. Elevation of fecal eosinophil-derived neurotoxin in infants with food protein-induced enterocolitis syndrome. Pediatr. Allergy Immunol. 2014, 25, 617–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rycyk, A.; Cudowska, B.; Lebensztejn, D.M. Eosinophil-Derived Neurotoxin, Tumor Necrosis Factor Alpha, and Calprotectin as Non-Invasive Biomarkers of Food Protein-Induced Allergic Proctocolitis in Infants. J. Clin. Med. 2020, 9, 3147. [Google Scholar] [CrossRef] [PubMed]
- Concha, S.; Cabalin, C.; Iturriaga, C.; Pérez-Mateluna, G.; Gomez, C.; Cifuentes, L.; Harris, P.R.; Gana, J.C.; Borzutzky, A. Diagnostic validity of fecal occult blood test in infants with food protein-induced allergic proctocolitis. Rev. Chil. Pediatr. 2018, 89, 630–637. [Google Scholar] [PubMed] [Green Version]
- Tøn, H.; Brandsnes, Ø.; Dale, S.; Holtlund, J.; Skuibina, E.; Schjønsby, H.; Johne, B. Improved assay for fecal calprotectin. Clin. Chim. Acta 2000, 292, 41–54. [Google Scholar] [CrossRef]
- Fagerberg, U.L.; Loof, L.; Merzoug, R.D.; Hansson, L.O.; Finkel, Y. Fecal calprotectin levels in healthy children studied with an im-proved assay. J. Pediatr. Gastroenterol. Nutr. 2003, 37, 468–472. [Google Scholar] [CrossRef]
- Li, F.; Ma, J.; Geng, S.; Wang, J.; Liu, J.; Zhang, J.; Sheng, X. Fecal Calprotectin Concentrations in Healthy Children Aged 1–18 Months. PLoS ONE 2015, 10, e0119574. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Li, F.; Wang, J.; Shen, L.; Sheng, X. Fecal Calprotectin in Healthy Children Aged 1-4 Years. PLoS ONE 2016, 11, e0150725. [Google Scholar] [CrossRef] [Green Version]
- Oord, T.; Hornung, N. Fecal calprotectin in healthy children. Scand. J. Clin. Lab. Investig. 2014, 74, 254–258. [Google Scholar] [CrossRef]
- Şahin, B.S.G.; Keskindemirci, G.; Özden, T.A.; Durmaz, Ö.; Gökçay, G. Faecal calprotectin levels during the first year of life in healthy children. J. Paediatr. Child. Health 2020, 56, 1806–1811. [Google Scholar] [CrossRef]
- Merras-Salmio, L.; Kolho, K.L.; Pelkonen, A.S.; Kuitunen, M.; Mäkelä, M.J.; Savilahti, E. Markers of gut mucosal inflammation and cow’s milk specific immunoglobulins in non-IgE cow’s milk allergy. Clin. Transl. Allergy 2014, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Meyer, R.; ChebarLozinsky, A.; Fleischer, D.M.; Vieira, M.C.; Du Toit, G.; Vandenplas, Y.; Dupont, C.; Knibb, R.; Uysal, P.; Cavkaytar, O.; et al. Diagnosis and management of Non-IgE gastrointestinal allergies in breastfed infants-An EAACI Position Paper. Allergy 2020, 75, 14–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hochwallner, H.; Schulmeister, U.; Swoboda, I.; Twaroch, T.E.; Vogelsang, H.; Kazemi-Shirazi, L.; Kundi, M.; Balic, N.; Quirce, S.; Rumpold, H.; et al. Patients suffering from non-IgE-mediated cow’s milk protein intolerance cannot be diagnosed based on IgG subclass or IgA responses to milk allergens. Allergy 2011, 66, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Stapel, S.O.; Asero, R.; Ballmer-Weber, B.K.; Knol, E.F.; Strobel, S.; Vieths, S.; Kleine-Tebbe, J.; EAACI Task Force. Testing for IgG4 against foods is not recommended as a diagnostic tool: EAACI Task Force Report. Allergy 2008, 63, 793–796. [Google Scholar] [CrossRef] [Green Version]
- Carr, S.; Chan, E.S.; LaVine, E.; Moote, D.W. CSACI Position statement on the testing of food-specific IgG. Allergy, Asthma Clin. Immunol. 2012, 8, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clayton, F.; Fang, J.C.; Gleich, G.J.; Lucendo, A.J.; Olalla, J.M.; Vinson, L.A.; Lowichik, A.; Chen, X.; Emerson, L.; Cox, K.; et al. Eosinophilic esophagitis in adults is associated with IgG4 and not mediated by IgE. Gastroenterology 2014, 147, 602–609. [Google Scholar] [CrossRef] [Green Version]
- Wright, B.L.; Kulis, M.; Guo, R.; Orgel, K.A.; Wolf, W.A.; Burks, A.W.; Vickery, B.P.; Dellon, E.S. Food-specific IgG4 is associated with eosinophilic esophagitis. J. Allergy Clin. Immunol. 2016, 138, 1190–1192. [Google Scholar] [CrossRef] [Green Version]
- Schuyler, A.J.; Wilson, J.M.; Tripathi, A.; Commins, S.P.; Ogbogu, P.U.; Kruzsewski, P.G.; Barnes, B.H.; McGowan, E.C.; Workman, L.J.; Lidholm, J.; et al. Specific IgG4 antibodies to cow’s milk proteins in pediatric patients with eosinophilic esophagitis. J. Allergy Clin. Immunol. 2018, 142, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, C.E.; Mingler, M.K.; Caldwell, J.M.; Collins, M.H.; Fulkerson, P.C.; Morris, D.W.; Mukkada, V.A.; Putnam, P.E.; Shoda, T.; Wen, T.; et al. Esophageal IgG4 levels correlate with histopathologic and transcriptomic features in eosinophilic esopha-gitis. Allergy 2018, 73, 1892–1901. [Google Scholar] [CrossRef]
- Giavi, S.; Megremis, S.; Papadopoulos, N.G. Lymphocyte stimulation test for the diagnosis of non-IgE-mediated cow’s milk allergy: A step closer to a noninvasive diagnostic tool? Allergy Immunol. 2012, 157, 1–2. [Google Scholar] [CrossRef]
- Morita, H.; Nomura, I.; Matsuda, A.; Saito, H.; Matsumoto, K. Gastrointestinal Food Allergy in Infants. Allergol. Int. 2013, 62, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M.; Oh, S.; Narabayashi, S.; Taguchi, T. Usefulness of Lymphocyte Stimulation Test for the Diagnosis of Intestinal Cow’s Milk Allergy in Infants. Int. Arch. Allergy Immunol. 2012, 157, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, T.; Itabashi, K.; Imai, T. Retrospective Multicenter Survey on Food-Related Symptoms Suggestive of Cow’s Milk Allergy in NICU Neonates. Allergol. Int. 2013, 62, 85–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeda, K.; Ida, S.; Kawahara, H.; Kawamoto, K.; Etani, Y.; Kubota, A. Importance of evaluating for cow’s milk allergy in pediatric surgical patients with functional bowel symptoms. J. Pediatric. Surgery 2011, 46, 2332–2335. [Google Scholar] [CrossRef]
- Kajita, N.; Yoshida, K.; Furukawa, M.; Akasawa, A. High Stimulation Index for Quail Egg Yolk After an Allergen-Specific Lym-phocyte Stimulation Test in a Child With Quail Egg Induced Food Protein Induced Enterocolitis Syndrome. J. Investig. Allergol. Clin. Immunol. 2019, 29, 66–68. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K. Non-IgE-Related Diagnostic Methods (LST, Patch Test). Chem. Immunol. Allergy 2015, 101, 79–86. [Google Scholar]
- Yagi, H.; Takizawa, T.; Sato, K.; Inoue, T.; Nishida, Y.; Yamada, S.; Ishige, T.; Hatori, R.; Inoue, T.; Yamada, Y.; et al. Interleukin 2 recep-tor-alpha expression after lymphocyte stimulation for non-IgE-mediated gastrointestinal food allergies. Allergol. Int. 2020, 69, 287–289. [Google Scholar] [CrossRef]
- Turjanmaa, K.; Darsow, U.; Niggemann, B.; Rancé, F.; Vanto, T.; Werfel, T. EAACI/GA2LEN Position paper: Present status of the atopy patch test. Allergy 2006, 61, 1377–1384. [Google Scholar] [CrossRef]
- Niggemann, B.; Ziegert, M.; Reibel, S. Importance of chamber size for the outcome of atopy patch testing in children with atopic dermatitis and food allergy. J. Allergy Clin. Immunol 2002, 110, 515–516. [Google Scholar] [CrossRef]
- Berni Canani, R.; Ruotolo, S.; Auricchio, L.; Caldore, M.; Porcaro, F.; Manguso, F.; Terrin, G.; Troncone, R. Diagnostic accuracy of the atopy patch test in children with food allergy-related gastrointestinal symptoms. Allergy 2007, 62, 738–743. [Google Scholar] [CrossRef]
- Johansen, J.D.; Aalto-Korte, K.; Agner, T.; Andersen, K.E.; Bircher, A.J.; Bruze, M.; Cannavó, A.; Giménez-Arnau, A.; Gonçalo, M.; Goossens, A.; et al. European Society of Contact Dermatitis guideline for diagnostic patch testing-recommendations on best practice. Contact Dermat. 2015, 73, 195–221. [Google Scholar] [CrossRef]
- Muraro, A.; Werfel, T.; Hoffmann-Sommergruber, K.; Roberts, G.; Beyer, K.; Bindslev-Jensen, C.; Cardona, V.; Dubois, A.; duToit, G.; Eigenmann, P.; et al. EAACI food allergy and ana-phylaxis guidelines: Diagnosis and management of food allergy. Allergy 2014, 69, 1008–1025. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhang, G.-Q.; Li, Z.-Y. The diagnostic value of APT for food allergy in children: A systematic review and meta-analysis. Pediatr. Allergy Immunol. 2019, 30, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Gayam, S.; Zinn, Z.; Chelliah, M.; Teng, J. Patch testing in gastrointestinal diseases-a systematic review of the patch test and atopy patch test. J. Eur. Acad. Dermatol. Venereol. 2018, 32, e349–e351. [Google Scholar] [CrossRef] [PubMed]
- Dávila, G.; Zapatero, L.; Alonso, E.; Rojas, P.; Martin, E.; Martínez-Molero, I. Food Protein-Induced Enterocolitis Syndrome Caused by Fish. J. Allergy Clin. Immunol. 2006, 117, S304. [Google Scholar] [CrossRef]
- Fogg, M.I.; Brown-Whitehorn, T.A.; Pawlowski, N.A.; Spergel, J.M. Atopy patch test for the diagnosis of food protein-induced en-terocolitis syndrome. Pediatr. Allergy Immunol. 2006, 17, 351–355. [Google Scholar] [CrossRef]
- Nocerino, R.; Granata, V.; Di Costanzo, M.; Pezzella, V.; Leone, L.; Passariello, A.; Terrin, G.; Troncone, R.; BerniCanani, R. Atopy patch tests are useful to predict oral tolerance in children with gastrointestinal symptoms related to non-IgE-mediated cow’s milk allergy. Allergy 2013, 68, 246–248. [Google Scholar] [CrossRef] [Green Version]
- Alves, F.A.; Cheik, M.F.A.; De Nápolis, A.C.R.; Rezende, É.R.M.D.A.; Barros, C.P.; Segundo, G.R.S. Poor utility of the atopy patch test in infants with fresh rectal bleeding. Ann. Allergy Asthma Immunol. 2015, 115, 161–162. [Google Scholar] [CrossRef]
- Gonzaga, T.A.; Alves, F.A.; Cheik, M.F.A.; de Barros, C.P.; Rezende, E.R.M.A.; Segundo, G.R.S. Low efficacy of atopy patch test in predicting tolerance development in non-IgE-mediated cow’s milk allergy. Allergol. Immunopathol. (Madr.) 2018, 46, 241–246. [Google Scholar] [CrossRef]
- Sirin Kose, S.; Asilsoy, S.; Tezcan, D.; Atakul, G.; Al, S.; Atay, O.; KangalliBoyacioglu, O.; Uzuner, N.; Anal, O.; Karaman, O. Atopy patch test in children with cow’s milk and hen’s egg allergy: Do clinical symptoms matter? Allergol. Immunopathol. (Madr.) 2020, 48, 323–331. [Google Scholar] [CrossRef]
- Spergel, J.M.; Brown-Whitehorn, T.; Beausoleil, J.L.; Shuker, M.; Liacouras, C.A. Predictive values for skin prick test and atopy patch test for eosinophilic esophagitis. J. Allergy Clin. Immunol. 2007, 119, 509–511. [Google Scholar] [CrossRef]
- Spergel, J.M.; Brown-Whitehorn, T.; Muir, A.B.; Liacouras, C.A. Medical algorithm: Diagnosis and treatment of eosinophilic esophagitis in children. Allergy 2020, 75, 1522–1524. [Google Scholar] [CrossRef] [PubMed]
- Iyngkaran, N.; Robinson, M.J.; Prathap, K.; Sumithran, E.; Yadav, M. Cows’ milk protein-sensitive enteropathy. Combined clinical and histological criteria for diagnosis. Arch. Dis. Child. 1978, 53, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Katzka, D.A. Eosinophilic Esophagitis. Ann. Intern. Med. 2020, 172, Itc65–Itc80. [Google Scholar] [CrossRef]
- Lawrence, W.W.; Wright, J.L. Causes of rectal bleeding in children. Pediatr. Rev. 2001, 22, 394–395. [Google Scholar] [PubMed]
- Jang, H.-J.; Kim, A.S.; Hwang, J.-B. The etiology of small and fresh rectal bleeding in not-sick neonates: Should we initially suspect food protein-induced proctocolitis? Eur. J. Nucl. Med. Mol. Imaging 2012, 171, 1845–1849. [Google Scholar] [CrossRef] [PubMed]
- Fleischer, D.M.; Conover-Walker, M.K.; Christie, L.; Burks, A.W.; Wood, R.A. Peanut allergy: Recurrence and its management. J. Allergy Clin. Immunol. 2004, 114, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Rosen, R.; Vandenplas, Y.; Singendonk, M.; Cabana, M.; DiLorenzo, C.; Gottrand, F.; Gupta, S.; Langendam, M.; Staiano, A.; Thapar, N.; et al. Pediatric Gastroesophageal Reflux Clinical Practice Guidelines: Joint Recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastro-enterology, Hepatology, and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 516–554. [Google Scholar] [PubMed]
- Poddar, U.; Yachha, S.K.; Krishnani, N.; Srivastava, A. Cow’s milk protein allergy: An entity for recognition in developing countries. J. Gastroenterol. Hepatol. 2010, 25, 178–182. [Google Scholar] [CrossRef]
- Vandenplas, Y.; Dupont, C.; Eigenmann, P.; Host, A.; Kuitunen, M.; Ribes-Koninckx, C.; Shah, N.; Shamir, R.; Staiano, A.; Szajewska, H.; et al. A workshop report on the development of the Cow’s Milk-related Symptom Score awareness tool for young children. Acta Paediatr. 2015, 104, 334–339. [Google Scholar] [CrossRef]
- Vandenplas, Y.; Mukherjee, R.; Dupont, C.; Eigenmann, P.; Høst, A.; Mikael Kuitunen, M.; Ribes-Koninkx, C.; Shah, N.; Szajewska, H.; von Berg, A.; et al. Protocol for the validation of sensitivity and specificity of the Cow’s Milk-related Symptom Score (CoMiSS) against open food challenge in a single-blind, prospective, multicentre trial in infants. BMJ Open 2018, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Vandenplas, Y.; Steenhout, P.; Grathwohl, D.; Althera Study Group. A pilot study on the application of a symptom-based score for the diagnosis of cow’s milk protein allergy. SAGE Open Med. 2014, 2, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Vandenplas, Y.; Salvatore, S.; Ribes-Koninckx, C.; Carvajal, E.; Szajewska, H.; Huysentruyt, K. The Cow Milk Symptom Score (CoMiSSTM) in presumed healthy infants. PLoS ONE 2018, 13, e0200603. [Google Scholar] [CrossRef] [PubMed]
- Bigorajska, K.; Filipiak, Z.; Winiarska, P.; Adamiec, A.; Trent, B.; Vandenplas, Y.; Ruszczyński, M.; Szajewska, H. Cow’s Milk-Related Symptom Score in Presumed Healthy Polish Infants Aged 0–6 Months. Pediatr. Gastroenterol. Hepatol. Nutr. 2020, 23, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, A.; Sahay, K. The use of cow’s milk related Symptom Score (CoMiSS) as a predictor of cow’s milk protein allergy. Clin. Exp. Allergy 2017, 47, 12. [Google Scholar]
- Rigley, L.; Cribb, E. Using a symptom scoring tool aid diagnosis and management of cow’s milk protein allergy. J. Pediatr. Gastroenterol. Nutr. 2017, 64 (Suppl. 1), 958–959. [Google Scholar]
- Bajerova, K.; Bajer, M. CoMiSS usage in practice-our first experience. J. Pediatr. Gastroenterol. Nutr. 2017, 64 (Suppl. 1), 919. [Google Scholar]
- Prasad, R.; Venkata, R.S.A.; Ghokale, P.; Chakravarty, P.; Anwar, F. Cow’s Milk-related Symptom Score as a predictive tool for cow’s milk allergy in Indian children aged 0–24 months. Asia Pac. Allergy 2018, 8, e36. [Google Scholar] [CrossRef]
- Armano, C.; Ottaviano, G.; Fumagalli, L.; Luini, C.; Salvatore, S. CoMiSS score and the response to cow’s milk free diet in infants and children. Dig. Liver Dis. 2017, 49, e269. [Google Scholar] [CrossRef]
- Salvatore, S.; Bertoni, E.; Bogni, F.; Bonaita, V.; Armano, C.; Moretti, A.; Baù, M.; Luini, C.; D’Auria, E.; Marinoni, M.; et al. Testing the Cow’s Milk-Related Symptom Score (CoMiSSTM) for the Response to a Cow’s Milk-Free Diet in Infants: A Pro-spective Study. Nutrients 2019, 11, 2402. [Google Scholar] [CrossRef] [Green Version]
- Moretti, A.; Bertoni, E.; Armano, C.; Marinoni, M.; Bogni, F.; Agosti, M.; Salvatore, S. Test and validation of the Cow’s Milk-related Symptom Score (CoMiSS®) in a population of symptomatic and healthy infants. J. Pediatr. Gastroenterol. Nutr. 2019, 68 (Suppl. 1), 1103. [Google Scholar]
- Vandenplas, Y.; Steenhout, P.; Järvi, A.; Garreau, A.S.; Mukherjee, R. Pooled Analysis of the Cow’s Milk-related-Symptom-Score (CoMiSSTM) as a Predictor for Cow’s Milk Related Symptoms. Pediatr. Gastroenterol. Hepatol. Nutr. 2017, 20, 22–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandenplas, Y.; Steenhout, P.; Planoudis, Y.; Grathwohl, D.; Althera Study Group. Treating cow’s milk protein allergy: A dou-ble-blind randomized trial comparing two extensively hydrolysed formulas with probiotics. Acta Paediatr. 2013, 102, 990–998. [Google Scholar] [CrossRef] [PubMed]
- Vandenplas, Y.; De Greefe, E.; Hauser, B.; Paradice Study Group. Safety and tolerance of a new extensively hydrolyzed rice pro-tein-based formula in the management of infants with cow’s milk protein allergy. Eur. J. Pediatr. 2014, 17, 1209–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandenplas, Y.; De Greef, E.; Xinias, I.; Vrani, O.; Mavroudi, A.; Hammoud, M.; Al Refai, F.; Khalife, M.C.; Sayad, A.; Noun, P.; et al. Safety of a thickened extensively casein hydrolysate formula. Nutrition 2016, 32, 206–212. [Google Scholar] [CrossRef]
- Kose, S.S.; Atakul, G.; Asilsoy, S.; Uzuner, N.; Anal, O.; Karaman, O. The efficiency of the symptom-based score in infants diagnosed with cow’s milk protein and hen’s egg allergy. Allergol. Immunopathol. 2019, 47, 265–271. [Google Scholar] [CrossRef]
- Seda, S.K.; Gizem, A.; Suna, A.; Nevin, U.; Ozkan, K.; Ozden, A. The effectiveness of symptom-based score on the diagnosis and follow-up of food allergy. Clin. Transl. Allergy 2018, 8 (Suppl. 2), P61. [Google Scholar]
- Selbuz, S.K.; Astuntaș, C.; Kansu, A.; Kırsaçlıoğlu, C.T.; Kuloğlu, Z.; İlarslan, N.; Doğulu, N.; Günay, F.; Topçu, S.; Ulukol, B. Assessment of cow’s milk-related symptom scoring awareness tool in young Turkish children. J. Paediatr. Child. Health 2020, 56, 1799–1805. [Google Scholar] [CrossRef]
- Kaymak, S.; Kirsaҫlioğlu, C.T.; Kansu, A.; Kuloğlu, Z.; Altuntaș, C.; Doğulu, N.; Ilarslan, N.E.C.; Günai, F.; Topҫu, S.; Ulukol, B. Assessment of Cow’s milk-related symptom scoring awareness tool in Turkish infants. J. Pediatr. Gastroenterol. Nutr. 2018, 66 (Suppl. 2), 1030. [Google Scholar]
- Vandenplas, Y.; Carvajal, E.; Peeters, S.; Balduck, N.; Jaddioui, Y.; Ribes-Koninckx, C.; Huysentruyt, K. The Cow’s Milk-Related Symptom Score (CoMiSSTM): Health Care Professional and Parent and Day-to-Day Variability. Nutrients 2020, 12, 438. [Google Scholar] [CrossRef] [Green Version]
- Huysentruyt, K.; Peeters, S.; Balduck, N.; Vandenplas, Y. Day to Day and inter-rater variability of the Cow’s Milk-related Symptom Score (CoMiSSTM). J. Ped. Gastr. Nutr. 2019, 68 (Suppl. 1), 1089. [Google Scholar]
- Mukherjee, S.; Harding, J.; Daniel, E.; Natarajan, S.; Farmer, H.; Allan-Smith, D.; Holland, S. Computer based diagnosis and man-agement algorithm for cow’s milk protein allergy (CMPA) in primary care in United Kingdom-a proof of concept study. Allergy Eur. J. Allergy Clin. Immunol. 2019, 74, 357. [Google Scholar]
- Kherkheulidze, M.; Kavlashvili, N.; Kandelaki, E. Clinical symptoms and development of infants with cow’s milk allergy fed with hydrolyzed formula. World Allergy Organ. J. 2017, 10 (Suppl. 1), 25. [Google Scholar]
- Zeng, Y.; Zhang, J.; Dong, G.; Liu, P.; Xiao, F.; Li, W.; Wang, L.; Wu, Q. Assessment of Cow’s milk-related symptom scores in early identification of cow’s milk protein allergy in Chinese infants. BMC Pediatr. 2019, 19, 191. [Google Scholar] [CrossRef] [PubMed]
- Devonshire, A.L.; Durrani, S.; Assa’ad, A. Non-IgE-mediated food allergy during infancy. Curr. Opin. Allergy Clin. Immunol. 2020, 20, 292–298. [Google Scholar] [CrossRef]
- Sugaya, M. Chemokines and Skin Diseases. Arch. Immunol. Ther. Exp. 2014, 63, 109–115. [Google Scholar] [CrossRef]
- Fujisawa, T.; Nagao, M.; Hiraguchi, Y.; Katsumata, H.; Nishimori, H.; Iguchi, K.; Kato, Y.; Higashiura, M.; Ogawauchi, I.; Tamaki, K. Serum measurement of thymus and activation-regulated chemokine/CCL17 in children with atopic dermatitis: Elevated normal levels in infancy and age-specific analysis in atopic dermatitis. Pediatr. Allergy Immunol. 2009, 20, 633–641. [Google Scholar] [CrossRef]
- Hamano, S.; Yamamoto, A.; Fukuhara, D.; Yan, K. Serum thymus and activation regulated chemokine level as a potential bi-omarker for food protein induced enterocolitis syndrome. Pediatr. Allergy Immunol. 2019, 30, 387–389. [Google Scholar] [CrossRef]
- Aparicio, M.; Alba, C.; Proctocolitis Study Group of CAM Public Health Area 6 Proctocolitis Study Group of CAM Public Health Area 6; Rodríguez, J.M.; Fernández, L. Microbiological and Immunological Markers in Milk and Infant Feces for Common Gastrointestinal Disorders: A Pilot Study. Nutrients 2020, 12, 634. [Google Scholar] [CrossRef] [Green Version]
- Dong, P.; Feng, J.-J.; Yan, D.-Y.; Lyu, Y.-J.; Xu, X. Early-life gut microbiome and cow’s milk allergy—A prospective case-control 6-month follow-up study. Saudi J. Biol. Sci. 2018, 25, 875–880. [Google Scholar] [CrossRef]
- Zhao, W.; Ho, H.E.; Bunyavanich, S. Faculty Opinions recommendation of The gut microbiome in food allergy. Fac. Opin. Post-Publication Peer Rev. Biomed. Lit. 2020, 122, 276–282. [Google Scholar] [CrossRef]
- Mehr, S.; Lee, E.; Hsu, P.; Anderson, D.; de Jong, E.; Bosco, A.; Campbell, D.E. Innate immune activation occurs in acute food pro-tein-induced enterocolitis syndrome reactions. J. Allergy Clin. Immunol. 2019, 144, 600–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schouten, B.; Van Esch, B.C.; Van Thuijl, A.O.; Blokhuis, B.R.; Kormelink, T.G.; Hofman, G.A.; Moro, G.E.; Boehm, G.; Arslanoglu, S.; Sprikkelman, A.B.; et al. Contribution of IgE and immunoglobulin free light chain in the allergic reaction to cow’s milk proteins. J. Allergy Clin. Immunol. 2010, 125, 1308–1314. [Google Scholar] [CrossRef] [PubMed]
- Brusca, I.; Bizzaro, N.; Pesce, G.; Caponi, L.; Caruso, B.; Villalta, D. Recommendations for the use of the basophil activation test in the diagnosis of allergic diseases. La Rivista Italiana della Medicina di Laboratorio-Italian. J. Lab. Med. 2015, 11, 225–231. [Google Scholar]
- Ansotegui, I.J.; Melioli, G.; Canonica, G.W.; Caraballo, L.; Villa, E.; Ebisawa, M.; Passalacqua, G.; Savi, E.; Ebo, D.; Gómez, R.M.; et al. IgE allergy diagnostics and other relevant tests in allergy, a World Allergy Organization position paper. World Allergy Organ. J. 2020, 13, 100080. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.P.; Sicherer, S.H. Food allergy: Epidemiology, pathogenesis, diagnosis, prevention, and treatment. Curr. Opin. Immunol. 2020, 66, 57–64. [Google Scholar] [CrossRef]
- Jimbo, K.; Ohtsuka, Y.; Kono, T.; Arai, N.; Kyoudo, R.; Hosoi, K.; Aoyagi, Y.; Kudo, T.; Arai, N.; Shimizu, T. Ultrasonographic study of intestinal Doppler blood flow in infantile non-IgE-mediated gastrointestinal food allergy. Allergol. Int. 2019, 68, 199–206. [Google Scholar] [CrossRef]
- Lack, G. Update on risk factors for food allergy. J. Allergy Clin. Immunol. 2012, 129, 1187–1197. [Google Scholar] [CrossRef]
- Renz, H.; Autenrieth, I.B.; Brandtzaeg, P. Gene environment interaction in chronic disease: A European Science Foundation Forward Look. J. Allergy Clin. Immunol. 2011, 128 (Suppl. 6), S27–S49. [Google Scholar] [CrossRef]
- Simmons, R.A. Epigenetics and maternal nutrition: Nature v. nurture. Proc. Nutr. Soc. 2010, 70, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Feil, R.; Fraga, M.F. Epigenetics and the environment: Emerging patterns and implications. Nat. Rev. Genet. 2012, 13, 97–109. [Google Scholar] [CrossRef]
- Alhamwe, B.A.; Meulenbroek, L.A.P.M.; Veening-Griffioen, D.H.; Wehkamp, T.M.D.; Alhamdan, F.; Miethe, S.; Harb, H.; Hogenkamp, A.; Knippels, L.M.J.; Von Strandmann, E.P.; et al. Decreased Histone Acetylation Levels at Th1 and Regulatory Loci after Induction of Food Allergy. Nutrients 2020, 12, 3193. [Google Scholar] [CrossRef] [PubMed]
- Potaczek, D.P.; Harb, H.; Michel, S.; Alhamwe, B.A.; Renz, H.; Tost, J. Epigenetics and allergy: From basic mechanisms to clinical applications. Epigenomics 2017, 9, 539–571. [Google Scholar] [CrossRef] [PubMed]
- van Esch, B.C.A.M.; Porbahaie, M.; Abbring, S.; Garssen, J.; Potaczek, D.P.; Savelkoul, H.F.J.; van Neerven, R.J.J. The Impact of Milk and Its Components on Epigenetic Programming of Immune Function in Early Life and Beyond: Implications for Allergy and Asthma. Front Immunol. 2020, 11, 2141. [Google Scholar] [CrossRef] [PubMed]
- Martino, D.; Joo, J.E.; Sexton-Oates, A. Epigenome wide association study reveals longitudinally stable DNA methylation differences in CD4+ T cells from children with IgE-mediated food allergy. Epigenetics 2014, 9, 998–1006. [Google Scholar] [CrossRef]
- Hill, D.J.; Ball, G.; Hosking, C.S. Clinical manifestations of cows’ milk allergy in childhood. I. Associations with in-vitro cellular immune responses. Clin. Exp. Allergy 1988, 18, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, N.A.; Bennett, B.L.; Graham, N.M.; Pirozzi, G.; Stahl, N.; Yancopoulos, G.D. Targeting key proximal drivers of type 2 in-flammation in disease. Nat. Rev. Drug Discov. 2016, 15, 35–50. [Google Scholar] [CrossRef]
- Berni Canani, R.; Paparo, L.; Nocerino, R. Differences in DNA methylation profile of Th1 and Th2 cytokine genes are asso-ciated with tolerance acquisition in children with IgE mediated cow’s milk allergy. Clin. Epigenet. 2015, 7, 38. [Google Scholar] [CrossRef]
- Jensen, E.T.; Langefeld, C.D.; Zimmerman, K.D.; Howard, T.D.; Dellon, E.S. Epigenetic methylation in Eosinophilic Esophagitis: Mo-lecular ageing and novel biomarkers for treatment response. Clin. Exp. Allergy 2020, 500, 1372–1380. [Google Scholar] [CrossRef]
- Wąsik, M.; Nazimek, K.; Nowak, B.; Askenase, P.W.; Bryniarski, K. Delayed-Type Hypersensitivity Underlying Casein Allergy Is Suppressed by Extracellular Vesicles Carrying miRNA-150. Nutrients 2019, 11, 907. [Google Scholar] [CrossRef] [Green Version]
- Volpicella, M.; Leoni, C.; Dileo, M.C.G.; Ceci, L.R. Progress in the Analysis of Food Allergens through Molecular Biology Approaches. Cells 2019, 8, 1073. [Google Scholar] [CrossRef] [Green Version]
Food Protein Induced Allergic Proctocolitis (FPIPC) | Acute Food Protein Induced Enterocolitis (FPIES) | Chronic Food Protein Induced Enterocolitis (FPIES) | Food Protein Induced Enteropathy Syndrome (FPE) | Eosinophilic Esophagitis (EoE) | Allergic Eosinophilic Gastroenteritis (AEG) | Eosinophilic Colitis (EC) | |
---|---|---|---|---|---|---|---|
Age | First months of life | First year, often after the first intake of allergenic food | Weeks or months after the first administrations of the responsible food | First year of life | About 10% of children with GERD who need medication | First years of life to adult | First years of life to adult |
Food allergy | Cow’s milk, egg, soya | Cow’s milk, soya, grains, pulses, poultry, fish, variable in different countries | Cow’s milk, soya, grains, pulses, poultry, fish, variable in different countries | Cow’s milk, soya, egg, wheat | Cow’s milk, soya, egg, wheat, peanut, walnut, fish | Cow’s milk, egg, fish and seafood, soya, nuts, wheat | Cow’s milk, egg |
Food aversion | No | No | Sometimes | Sometimes | Yes | Sometimes | No |
General condition | Good | Compromised | Compromised | Compromised | Good | Compromised | Compromised |
Growth | Good at the beginning | Good at the beginning | Poor in 30% of cases | Poor | Sometimes poor | Poor | Sometimes poor |
Vomiting | No | Immediate and repeated, 1-4 h after ingestion | Intermittent but progressive if the food is not withdrawn | More than half of cases | Yes | Yes | Sometimes |
Regurgitation | No | No | No | No | Yes | Yes | No |
Crying/colic/abdominal pain | No | No | No | No | Yes | Yes | Yes |
Constipation | No | No | No | No | No | Sometimes | No |
Watery diarrhea | No | in 20–50% after a few hours | Yes, chronic | Yes, chronic | Sometimes | Sometimes | Yes |
Mucous diarrhea | Yes | No | No | No | No | Sometimes | Yes |
Bloody diarrhea | Yes | No | Yes, in about 50% of cases | No | No | Sometimes | Yes |
Abdominal distension | No | No | No | Yes | No | Yes | Yes |
Acute symptoms | No | Yes | Only after the food is withdrawn | No | No | No | No |
Fever | No | Sometimes | Only if acute onset after food withdrawal | No | No | No | No |
Lethargy/Shock | No | Often | Only if acute onset after food withdrawal | No | No | No | No |
Anemia | If not on a diet in severe forms | No | Sometimes | Yes | Sometimes | Sometimes | No |
Hypoalbuminemia | Sometimes | Sometimes | Sometimes | Sometimes | No |
Food Protein Induced Allergic Proctocolitis (FPIPC) | Acute Food Protein Induced Enterocolitis (FPIES) | Chronic Food Protein Induced Enterocolitis (FPIES) | Food Protein Induced Enteropathy Syndrome (FPE) | Eosinophilic Esophagitis (EoE) | Allergic Eosinophilic Gastroenteritis (AEG) | Eosinophilic Colitis (EC) | |
---|---|---|---|---|---|---|---|
Skin Prick Test/Specific IgEs | Usually negative | Positive only in 10–20% (atypical forms) | Positive only in 10–20% (atypical forms) | Usually negative | Positive for food in about 15–20% but not always related to the responsible food | Positive for food but not always related to the responsible food | Positive for food but not always related to the responsible food |
Patch test | Usually negative | Positive in different percentages between studies (21–84%) | Positive in different percentages between studies (21–84%) | Not known | Positive for food in about 10% but not always related to the responsible food | Positive for food but not always related to the responsible food | Not known |
Shows lymphonodular hyperplasia or aphthous ulceration. Histologic examination shows focal aggregates of eosinophils in the large intestinal epithelium, lamina propria, crypt epithelium, and muscularis mucosa | Not indicated | Not indicated | If performed, it demonstrates damage to the intestinal mucosa with villi atrophy | Required for diagnosis. Shows eosinophilic infiltration (>15 per hpf) | Required for diagnosis. Shows eosinophilic infiltration (>30 per hpf) | Required for diagnosis. Shows eosinophilic infiltration (often >40 per hpf) | |
Response to diet | Within a few days (3–5, < 10) | Immediate | Within 72 h | Within 1–4 weeks | Clinical within weeks, histological within months | Clinical within weeks, histological within months | Clinical within weeks, histological within months |
Diagnosis | Possible gradual home introduction after 1–2 months | If it does not meet the diagnostic criteria | OFC in absence of previous acute reaction | OFC or reintroduction after 1–2 months | Clinical and histological remission | Clinical and histological remission | Clinical and histological remission |
Author Year Ref | Study Design | Study Population and Sample Size | OFC | FC before Elimination Diet | FC after Elimination Diet | p | Comment |
---|---|---|---|---|---|---|---|
Baldassarre 2010 [70] | Prospective cohort study | 30 (median age 8.57 months) with CMA 4 IgE mediated 26 non-IgE mediated vs. 32 (age-matched) healthy controls | No | 325.89 ± 152.31 vs. 131.97 ± 37.98 p < 0.001 | 157.5 ± 149.13 | p < 0.001 | FC useful for diagnosis and monitoring of non-Ige mediated CMA |
Besęr 2014 [71] | Prospective cohort study | 32 (median age 12.5 ± 8.5 months) IgE mediated CMA 8 (median age 2.8 ± 1.7 months) non-IgE mediated CMA vs. 39 (median age 11.5 ± 7.6 months) healthy controls | Yes | 392 ± 209 886 ± 278 vs. 296 ± 94 p < 0.001 p = 0.142 | 218 ± 90 359 ± 288 | p < 0.001 p = 0.025 | FC useful for diagnosis and monitoring of non-IgE mediated CMA |
Trillo Belizon 2016 [72] | Prospective | 40 (median age 3.68 months) with non-IgE mediated CMA vs. 12 (median age 3.25 months) without non-IgE mediated CMA vs. 30 (median age 3.8 months) healthy controls | Yes | 442.65 vs. 268.58 vs. 100.30 p < 0.0001 | 228.51 ° 92.78 °° | p < 0.001 | FC < 138 µg/g rules out non-IgE mediated CMA. FC > 138 µg/g offers sensitivity 95% specificity 78.57% PPV 80.9% NPV 94% |
Ataee 2018 [75] | Prospective cohort study | 29 (median age 117.2 days) with non-IgE mediated CMA | No | 209.1 (SD 387.9) | 189.9 § (SD 382.4) 125.2 §§ (SD 105.4) | p = 0.741 p = 0.284 | FC not useful for diagnosis or follow-up of CMA |
Lendvai/Emmert 2018 [73] | Prospective cohort study | 46 (median age 7.28 years) with CMA of which 36 following a strict diet | No | 61.17 (SD 63.72) 77 | 68.35 (SD 74.74) 41.69 (SD 34.68) | p = 0.21 p < 0.001 | FC useful parameter in diagnosing CMA |
Diaz 2018 [76] | Prospective cohort study | 17 (13–23 months) with non-IgE mediated CMA vs. 10 (age-matched) healthy controls | Yes | 47.25 (28.80–106.10) vs. 68.4 (30.38–76.73) p = 1.0 | FC not useful | ||
Prikhodchenko/Russia [74] | Prospective cohort study | 18 (1-2 months) non IgE mediated vs. 20 (age matched) controls | No | 384.41 ± 46.05 vs. 58.38 ± 8.05 p < 0.001 | 186.29 ± 14.16 | p < 0.001 | FC is the marker of intestinal inflammation in FPE and is useful for monitoring the disease course and evaluating the treatment |
Author/Country/ Year/Ref | Study Design | Study Population and Sample Size | OFC | FC before Elimination Diet | FC after Elimination Diet | ||
---|---|---|---|---|---|---|---|
BerniCanani/ Italy 2013 [77] | Prospective | 60 (median age 37 months) with CMA 29 IgE-mediated 31 non-IgE mediated | Yes | 36.3 ± 21.6 | 32.5 ± 23.8 * 33.5 ± 21.6 ^ | FC useful for monitoring intestinal response to OFC in IgE and non-IgE mediated CMA | |
Merras-Salmio/ Finland 2014 [90] | Prospective cohort study | 57 (median age 8.7 months) with non-IgE mediated CMA vs. 22 (13.2 months) healthy controls | Yes | 18 OFC positive 52 (33–86) vs. 39 OFC negative 28 (24–44) | 60(30–122) 33(24–44) | p = 0.5 p = 0.4 | FC not useful for diagnosis in non-IgE mediated CMA |
Symptom | Score | ||||
---|---|---|---|---|---|
Crying (only considered if the child has been crying for 1 week or more, assessed by parents) | 0 | ≤1 h/day | |||
1 | 1 to 1.5 h/day | ||||
2 | 1.5 to 2 h/day | ||||
3 | 2 to 3 h/day | ||||
4 | 3 to 4 h/day | ||||
5 | 4 to 5 h/day | ||||
6 | ≥5 h/day | ||||
Regurgitation | 0 | 0 to 2 episodes/day | |||
1 | ≥3 to ≤5 of small volumes | ||||
2 | >5 episodes of >1 coffee spoon | ||||
3 | >5 episodes of ± half of the feeds in half of the feeds | ||||
4 | Continuous regurgitations of small volumes >30 min after each feed | ||||
5 | Regurgitation of half to complete volume of a feed in at least half of the feeds | ||||
6 | Regurgitation of the complete feed after each feeding | ||||
Stools (Bristol scale) | 4 | Type 1 and 2 (hard stools) | |||
0 | Type 3 and 4 (normal stools) | ||||
2 | Type 5 (soft stools) | ||||
4 | Type 6 (liquid stools, if unrelated to infection) | ||||
6 | Type 7 (watery stools) | ||||
Skin | 0 to 6 | Atopic eczema head-neck-trunk arms-hands-legs-feet | |||
Absent | 0 | 0 | |||
Mild | 1 | 1 | |||
Moderate | 2 | 2 | |||
Severe | 3 | 3 | |||
Urticaria | 0 or 6 | YES | NO | ||
6 | 0 | ||||
RespiratorySymptoms | 0 | No respiratory symptoms | |||
1 | Slight symptoms | ||||
2 | Mild symptoms | ||||
3 | Severe symptoms |
Author (Year) | Study Design | Number (Age) | Cases with +ve IgE and/or SPT | CoMiSS vs. OFC | CoMiSS and Elimination Diet | Sensitivity/ Specificity PPV-NPV | Author’s Conclusions |
---|---|---|---|---|---|---|---|
Vandenplas (2014) [131] | Cohort | 116 (2 weeks– 6 months) | sIgE>0.35 KU/L = 8% +ve SPT = 10% | OFC in 85/116 (73%) +ve in 59 (69%) | Basal score ≥12 If reduced to ≤6, 80% positivity of OFC. | ND | Score ≥12 useful for CMA diagnosis If reduction >50% with diet, high VPP for positive OFC |
Chakrabarty (2017) [132] | Prospective | 30 (24–136 days) | ND | OFC +ve in 8/10 | Significant score reduction (from >12 to 6) | ND | Useful for early diagnosis and to monitor response to therapy |
Rigley (2017) [133] | Prospective | 58 (<1 year) | ND | OFC +ve in 2/2 | Score reduction in all (from 16.5 to 3.4, average values) | ND | Useful for early diagnosis, may help reduce specialist consultations |
Bajerova (2017) [134] | Cohort | 121 (6 weeks– 1 year) | ND | OFC +ve in 11/18 | Performed in 21 | ND | A cut-off of 8 reached much more frequently in allergic patients, but a lower threshold could increase sensitivity |
Prasad (2018) [135] | Observational Cross-sectional | 83 (0–24 months) | +ve sIgE and/or SPT = 26/83 (31%) | Diagnosis confirmed in 70: by OFC in 56% of cases | ND | CoMiSS>12 Sens = 77% Spec = 66% PPV = 93% NPV = 33% | High PPV confirming the reliability of parameters included in CoMiSS |
Armano (2017) [136] | Prospective | 40 (3–41 months) | ND | OFC +ve in 40/40 | 38/40 score reduction >50% | Score ≥ 12 (in 17/40, 42.5%) predicted diet efficacy with 100% PPV and 9% NPV | Selection of candidate patients for diet |
Salvatore (2019) [137] | Prospective | 47 (1–12 months) | +ve SPT in 8/47 = 17% | OFC in 21/39 patients responsive to diet +ve in 6 (29%) | In 19/47 (40%) score reduction ≥50% | Best cut-off = 9 for response to diet: Sens = 84% Spec = 85% PPV = 80% NPV = 88% | To predict diet response in children with persistent GI symptoms. |
Vandenplas (2013) [138] | Prospective /Multicentric | 116 (80-64 days (median of two groups respectively) | sIgE>0.35 KU/L = 7.5% +ve SPT = 17% (rash); 10.5% (papule) | OFC in 85/116 (74%) +ve in 69% | Significant score reduction after 1 month diet | ND | CoMiSS useful for CMA diagnosis (OFC positive in 70% with score ≥12) |
Vandenplas (2014) [139] | Prospective/ Multicentric | 40 (3.4 months) (mean age) | SPT = 15/40 (37.5%) tested only 17 cases | OFC in 38/40 +ve in 38/40 | Score significantly reduced after 1,3,6 months of diet | ND | ND |
Vandenplas (2016) [140] | Prospective/ Multicentric | 71 (6 months) | ND | OFC in 50/71 (70.4%) +ve in 34 | After 1 month of diet, score significantly reduced in both confirmed and unconfirmed CMA (OFC not performed or negative) | ND | ND |
Vandenplas (2017) [141] | Aggregate analysis of the previous 3 studies | See above | See above | See above | Both a score <5 (median) and a score reduction from 13 to 5 (median) after 1 month of diet increase likelihood of CMA (+ve OFC) | See above | See above |
Kose (2018) [142] | Cohort | 112 (5.6 months (mean) | sIgE and SPT +ve = 66/112 (59%). | OFC in 46/112 (41%) | Significant score reduction after 1 month of diet in infants allergic to milk, egg or both. | Score reduction after diet ≥50%: Sens = 83.7% 84.6%, 87.5% for milk, egg allergy or both respectively | Score reduction after diet ≥50% to be used for diagnosis of FA |
Selbuz (2020) [143,144] | Prospective | 168 (0–12 months) | +ve sIgE = 23/168 (13.8); +ve SPT = 20/168 (12%). | OFC in 154/168 (91.7%) +ve in 91/168 (54,2%) | After 4 weeks of diet, score reduced by ≥3 points in 154 (91.7%) | Cut-off 12.5: Sens = 64.8% Spec = 54.4% | Association of symptoms in CoMiSS helps in recognition of CM-allergic infants |
Vandenplas (2020) [145,146] | Cohort | 148 2.3 months (median) = Spanish cohort. 72 3 months (mean) = Belgian cohort. | ND | Spanish cohort: OFC in 13, score ≥10 +ve in 10/13 (76%), score>12 +ve in 7/8 | ND | ND | ND |
Kherkhheulidze (2017) [147] | Prospective | 34/<1 year | ND | ND | Significant score reduction after 2 weeks of diet. | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calvani, M.; Anania, C.; Cuomo, B.; D’Auria, E.; Decimo, F.; Indirli, G.C.; Marseglia, G.; Mastrorilli, V.; Sartorio, M.U.A.; Santoro, A.; et al. Non–IgE- or Mixed IgE/Non–IgE-Mediated Gastrointestinal Food Allergies in the First Years of Life: Old and New Tools for Diagnosis. Nutrients 2021, 13, 226. https://doi.org/10.3390/nu13010226
Calvani M, Anania C, Cuomo B, D’Auria E, Decimo F, Indirli GC, Marseglia G, Mastrorilli V, Sartorio MUA, Santoro A, et al. Non–IgE- or Mixed IgE/Non–IgE-Mediated Gastrointestinal Food Allergies in the First Years of Life: Old and New Tools for Diagnosis. Nutrients. 2021; 13(1):226. https://doi.org/10.3390/nu13010226
Chicago/Turabian StyleCalvani, Mauro, Caterina Anania, Barbara Cuomo, Enza D’Auria, Fabio Decimo, Giovanni Cosimo Indirli, Gianluigi Marseglia, Violetta Mastrorilli, Marco Ugo Andrea Sartorio, Angelica Santoro, and et al. 2021. "Non–IgE- or Mixed IgE/Non–IgE-Mediated Gastrointestinal Food Allergies in the First Years of Life: Old and New Tools for Diagnosis" Nutrients 13, no. 1: 226. https://doi.org/10.3390/nu13010226
APA StyleCalvani, M., Anania, C., Cuomo, B., D’Auria, E., Decimo, F., Indirli, G. C., Marseglia, G., Mastrorilli, V., Sartorio, M. U. A., Santoro, A., & Veronelli, E. (2021). Non–IgE- or Mixed IgE/Non–IgE-Mediated Gastrointestinal Food Allergies in the First Years of Life: Old and New Tools for Diagnosis. Nutrients, 13(1), 226. https://doi.org/10.3390/nu13010226