Serum and Whole Blood Cu and Zn Status in Predicting Mortality in Lung Cancer Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Endpoints
2.2. Study Subjects
2.3. Sociodemographic Characteristics
2.4. Clinical Characteristics
2.5. Anthropometric Measurements and Dietary Intake
2.6. Blood Sample Collection
2.7. Whole Blood and Serum Zn and Cu Determination
2.8. Statistical Analysis
3. Results
3.1. Baseline Characteristic
3.2. Serum and Whole blood Cu and Zn Status in Lung Cancer and Its Relationships with Clinical, Sociodemographic, and Nutritional Data
3.3. Associations between Serum and Whole Blood Cu and Zn Status and All-Cause Mortality Among Patients with Lung Cancer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barta, J.A.; Powell, C.A.; Wisnivesky, J.P. Global epidemiology of lung cancer. Ann. Glob. Health 2019, 85, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.Z.; Kuo, P.L.; Huang, Y.L.; Tang, E.K.; Chen, C.S.; Wu, M.T.; Lin, Y.P. Differences in lung cancer characteristics and mortality rate between screened and non-screened cohorts. Sci. Rep. 2019, 9, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rzyman, W.; Didkowska, J.; Dziedzic, R.; Grodzki, T.; Orłowski, T.; Szurowska, E.; Langfort, R.; Biernat, W.; Kowalski, D.M.; Dyszkiewicz, W.; et al. Consensus statement on a screening programme for the detection of early lung cancer in Poland. Adv. Respir. Med. 2018, 86, 53–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietrzak, S.; Wójcik, J.; Scott, R.J.; Kashyap, A.; Grodzki, T.; Baszuk, P.; Bielewicz, M.; Marciniak, W.; Wójcik, N.; Dębniak, T.; et al. Influence of the selenium level on overall survival in lung cancer. J. Trace Elem. Med. Biol. 2019, 56, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Juloski, J.T.; Rakic, A.; Ćuk, V.V.; Ćuk, V.M.; Stefanović, S.; Nikolić, D.; Janković, S.; Trbovich, A.M.; De Luka, S.R. Colorectal cancer and trace elements alteration. J. Trace Elem. Med. Biol. 2020, 59. [Google Scholar] [CrossRef] [PubMed]
- Caglayan, A.; Katlan, D.C.; Tuncer, Z.S.; Yüce, K. Evaluation of trace elements associated with antioxidant enzymes in blood of primary epithelial ovarian cancer patients. J. Trace Elem. Med. Biol. 2019, 52, 254–262. [Google Scholar] [CrossRef]
- Gurusamy, K. Trace element concentration in primary liver cancers—A systematic review. Biol. Trace Elem. Res. 2007, 118, 191–206. [Google Scholar] [CrossRef]
- Unrine, J.M.; Slone, S.A.; Sanderson, W.; Johnson, N.; Durbin, E.B.; Shrestha, S.; Hahn, E.J.; Feltner, F.; Huang, B.; Christian, W.J.; et al. A case-control study of trace-element status and lung cancer in Appalachian Kentucky. PLoS ONE 2019, 14, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Al-Fartusie, F.S.; Hafudh, A.; Mustafa, N.; Al-Bermani, H.; Majid, A.Y. Levels of Some Trace Elements in Sera of Patients with Lung Cancer and in Smokers. Indian J. Adv. Chem. Sci. 2017, 5, 344–352. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Q. Association between serum copper levels and lung cancer risk: A meta-analysis. J. Int. Med. Res. 2018, 46, 4863–4873. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Sun, Z.; Li, A.; Zhang, Y. Association between serum zinc levels and lung cancer: A meta-analysis of observational studies. World J. Surg. Oncol. 2019, 17, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zabłocka-Słowińska, K.; Płaczkowska, S.; Prescha, A.; Pawełczyk, K.; Porębska, I.; Kosacka, M.; Pawlik-Sobecka, L.; Grajeta, H. Serum and whole blood Zn, Cu and Mn profiles and their relation to redox status in lung cancer patients. J. Trace Elem. Med. Biol. 2018, 45, 78–84. [Google Scholar] [CrossRef]
- Osredkar, J. Copper and Zinc, Biological Role and Significance of Copper/Zinc Imbalance. J. Clin. Toxicol. 2011, s3. [Google Scholar] [CrossRef] [Green Version]
- Beshgetoor, D.; Hambidge, M. Clinical conditions altering copper metabolism in humans. Am. J. Clin. Nutr. 1998, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanbhag, V.C.; Gudekar, N.; Jasmer, K.; Papageorgiou, C.; Singh, K.; Petris, M.J. Copper metabolism as a unique vulnerability in cancer. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 118893. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Suzuki, K.; Sasaki, R.; Otani, M.; Aoki, K. Mortality rates from cancer or all causes and SOD activity level and Zn/Cu ratio in peripheral blood: Population-based follow-up study. J. Epidemiol. 2002, 12, 14–21. [Google Scholar] [CrossRef]
- Leone, N.; Courbon, D.; Ducimetiere, P.; Zureik, M. Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology 2006, 17, 308–314. [Google Scholar] [CrossRef]
- Beutler, E.; Waalen, J. The definition of anemia: What is the lower limit of normal of the blood hemoglobin concentration? Blood 2006, 107, 1747–1750. [Google Scholar] [CrossRef] [Green Version]
- Ayhan, A.; Bozdag, G.; Taskiran, C.; Gultekin, M.; Yuce, K.; Kucukali, T. The value of preoperative platelet count in the prediction of cervical involvement and poor prognostic variables in patients with endometrial carcinoma. Gynecol. Oncol. 2006, 103, 902–905. [Google Scholar] [CrossRef]
- Kowall, B.; Rathmann, W.; Bongaerts, B.; Kuss, O.; Stang, A.; Roden, M.; Herder, C.; Koenig, W.; Huth, C.; Heier, M.; et al. Incidence rates of type 2 diabetes in people with impaired fasting glucose (ADA vs. WHO Criteria) and impaired glucose tolerance: Results from an older population (KORA S4/F4/FF4 Study). Diabetes Care 2019, 42, E18–E20. [Google Scholar] [CrossRef] [Green Version]
- Van Biesen, W.; Vanholder, R.; Veys, N.; Verbeke, F.; Delanghe, J.; De Bacquer, D.; Lameire, N. The importance of standardization of creatinine in the implementation of guidelines and recommendations for CKD: Implications for CKD management programmes. Nephrol. Dial. Transplant. 2006, 21, 77–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rios-Lugo, M.J.; Madrigal-Arellano, C.; Gaytán-Hernández, D.; Hernández-Mendoza, H.; Romero-Guzmán, E.T. Association of Serum Zinc Levels in Overweight and Obesity. Biol. Trace Elem. Res. 2020, 198, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Gu, K.; Li, X.; Xiang, W.; Jiang, X. The Relationship Between Serum Copper and Overweight/Obesity: A Meta-analysis. Biol. Trace Elem. Res. 2020, 194, 336–347. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation (WHO). Waist Circumference and Waist–Hip Ratio; Report of a WHO Expert Consultation. Geneva, 8–11 December 2008; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Epstein, M.M.; Kasperzyk, J.L.; Andrén, O.; Giovannucci, E.L.; Wolk, A.; Håkansson, N.; Andersson, S.O.; Johansson, J.E.; Fall, K.; Mucci, L.A. Dietary zinc and prostate cancer survival in a Swedish cohort. Am. J. Clin. Nutr. 2011, 93, 586–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Cole, P.; Mi, Z.; Xing, L. Dietary trace elements and esophageal cancer mortality in Shanxi, China. Epidemiology 1992, 3, 402–406. [Google Scholar] [CrossRef]
- Lin, Y.S.; Caffrey, J.L.; Lin, J.W.; Bayliss, D.; Faramawi, M.F.; Bateson, T.F.; Sonawane, B. Increased risk of cancer mortality associated with cadmium exposures in Older Americans with low Zinc Intake. J. Toxicol. Environ. Health Part A Curr. Issues 2013, 76, 1–15. [Google Scholar] [CrossRef]
- Malavolta, M.; Giacconi, R.; Piacenza, F.; Santarelli, L.; Cipriano, C.; Costarelli, L.; Tesei, S.; Pierpaoli, S.; Basso, A.; Galeazzi, R.; et al. Plasma copper/zinc ratio: An inflammatory/nutritional biomarker as predictor of all-cause mortality in elderly population. Biogerontology 2010, 11, 309–319. [Google Scholar] [CrossRef]
- Feng, Y.; Zeng, J.W.; Ma, Q.; Zhang, S.; Tang, J.; Feng, J.F. Serum copper and zinc levels in breast cancer: A meta-analysis. J. Trace Elem. Med. Biol. 2020, 62, 126629. [Google Scholar] [CrossRef]
- Stepien, M.; Hughes, D.J.; Hybsier, S.; Bamia, C.; Tjønneland, A.; Overvad, K.; Affret, A.; His, M.; Boutron-Ruault, M.C.; Katzke, V.; et al. Circulating copper and zinc levels and risk of hepatobiliary cancers in Europeans. Br. J. Cancer 2017, 116, 688–696. [Google Scholar] [CrossRef]
- Golabek, T.; Darewicz, B.; Borawska, M.; Socha, K.; Markiewicz, R.; Kudelski, J. Copper, zinc, and Cu/Zn ratio in transitional cell carcinoma of the bladder. Urol. Int. 2012, 89, 342–347. [Google Scholar] [CrossRef]
- Geetha, A.; Saranya, P.; Jeyachristy, S.A.; Surendran, R.; Sundaram, A. Relevance of non-ceruloplasmin copper to oxidative stress in patients with hepatocellular carcinoma. Biol. Trace Elem. Res. 2009, 130, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Warsinggih; Irawan, B.; Labeda, I.; Lusikooy, R.E.; Sampetoding, S.; Kusuma, M.I.; Uwuratuw, J.A.; Syarifuddin, E.; Prihantono; Faruk, M. Association of superoxide dismutase enzyme with staging and grade of differentiation colorectal cancer: A cross-sectional study. Ann. Med. Surg. 2020, 58, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Fang, A.P.; Chen, P.Y.; Wang, X.Y.; Liu, Z.Y.; Zhang, D.M.; Luo, Y.; Liao, G.C.; Long, J.A.; Zhong, R.H.; Zhou, Z.G.; et al. Serum copper and zinc levels at diagnosis and hepatocellular carcinoma survival in the Guangdong Liver Cancer Cohort. Int. J. Cancer 2019, 144, 2823–2832. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, X.; Luo, J.; Chen, X.; Ma, K.; He, H.; Li, W.; Cui, J. Serum Copper Level and the Copper-to-Zinc Ratio Could Be Useful in the Prediction of Lung Cancer and Its Prognosis: A Case-Control Study in Northeast China. Nutr. Cancer 2020, 1–8. [Google Scholar] [CrossRef]
- Baudry, J.; Kopp, J.F.; Boeing, H.; Kipp, A.P.; Schwerdtle, T.; Schulze, M.B. Changes of trace element status during aging: Results of the EPIC-Potsdam cohort study. Eur. J. Nutr. 2020, 59, 3045–3058. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Zhao, Y.; Zhao, S.; Yang, Y.; Huang, Y.; Hou, X.; Zhao, H.; Zhang, L. Comparison of the prognostic value of systemic inflammation response markers in small cell lung cancer patients. J. Cancer 2019, 10, 1685–1692. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Wang, L.; Hou, J.; Zhu, B.; Min, Z.; Zhang, M.; Song, D.; Cheng, Y.; Wang, X. Targeting roles of inflammatory microenvironment in lung cancer and metastasis. Cancer Metastasis Rev. 2015, 34, 319–331. [Google Scholar] [CrossRef]
- Aapro, M.; Scotte, F.; Bouillet, T.; Currow, D.; Vigano, A. A Practical Approach to Fatigue Management in Colorectal Cancer. Clin. Colorectal Cancer 2017, 16, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Khoshdel, Z.; Naghibalhossaini, F.; Abdollahi, K.; Shojaei, S.; Moradi, M.; Malekzadeh, M. Serum Copper and Zinc Levels Among Iranian Colorectal Cancer Patients. Biol. Trace Elem. Res. 2016, 170, 294–299. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.H.; Zhang, H.T.; Wang, Y.T.; Liu, S.; Zhou, W.L.; Yuan, X.Z.; Li, T.Y.; Wu, C.F.; Yang, J.Y. Disulfiram combined with copper inhibits metastasis and epithelial–mesenchymal transition in hepatocellular carcinoma through the NF-κB and TGF-β pathways. J. Cell. Mol. Med. 2018, 22, 439–451. [Google Scholar] [CrossRef]
- Blockhuys, S.; Wittung-Stafshede, P. Roles of copper-binding proteins in breast cancer. Int. J. Mol. Sci. 2017, 18, 871. [Google Scholar] [CrossRef] [Green Version]
- Li, Y. Copper homeostasis: Emerging target for cancer treatment. IUBMB Life 2020, 72, 1900–1908. [Google Scholar] [CrossRef] [PubMed]
- Fukai, T.; Ushio-Fukai, M.; Kaplan, J.H. Copper transporters and copper chaperones: Roles in cardiovascular physiology and disease. Am. J. Physiol. Cell Physiol. 2018, 315, C186–C201. [Google Scholar] [CrossRef] [PubMed]
- Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology 2005, 69, 4–10. [Google Scholar] [CrossRef]
- Skrajnowska, D.; Bobrowska-Korczak, B. Role of zinc in immune system and anti-cancer defense mechanisms. Nutrients 2019, 11, 2273. [Google Scholar] [CrossRef] [Green Version]
- Guynn, J.; Chan, A.W.E. Zinc and Zinc-Dependent Proteins in Cancer and Chemotherapeutics. In Essential and Non-Essential Metals Carcinogenesis, Prevention and Cancer Therapeutics; Anuradha, M., Zelikoff, J.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 69–94. ISBN 9783319554464. [Google Scholar]
- Aldor, Y.; Walach, N.; Modai, D.; Horn, Y. Zinc and copper levels in plasma, erythrocytes, and whole blood in cancer patients. Klinische Wochenschrift 1982, 60, 375–377. [Google Scholar] [CrossRef]
- Memon, A.R.; Kazi, T.G.; Afridi, H.I.; Jamali, M.K.; Arain, M.B.; Jalbani, N.; Syed, N. Evaluation of zinc status in whole blood and scalp hair of female cancer patients. Clin. Chim. Acta 2007, 379, 66–70. [Google Scholar] [CrossRef]
- Zowczak, M.; Iskra, M.; Torliński, L.; Cofta, S. Analysis of serum copper zinc concentrations in cancer patients. Biol. Trace Elem. Res. 2001, 82, 1–8. [Google Scholar] [CrossRef]
- Kucharzewski, M.; Braziewicz, J.; Majewska, U.; Góźdź, S. Copper, zinc, and selenium in whole blood and thyroid tissue of people with various thyroid diseases. Biol. Trace Elem. Res. 2003, 93, 9–18. [Google Scholar] [CrossRef]
- Madeddu, C.; Gramignano, G.; Astara, G.; Demontis, R.; Sanna, E.; Atzeni, V.; Macciò, A. Pathogenesis and treatment options of cancer related anemia: Perspective for a targeted mechanism-based approach. Front. Physiol. 2018, 9, 1–20. [Google Scholar] [CrossRef]
- Xu, E.; Chen, M.; Zheng, J.; Maimaitiming, Z.; Zhong, T.; Chen, H. Deletion of hephaestin and ceruloplasmin induces a serious systemic iron deficiency and disrupts iron homeostasis. Biochem. Biophys. Res. Commun. 2018, 503, 1905–1910. [Google Scholar] [CrossRef] [PubMed]
- Nurden, A.T. Platelets, inflammation and tissue regeneration. Thromb. Haemost. 2011, 105, 13–33. [Google Scholar] [CrossRef] [PubMed]
- Nash, G.F.; Turner, L.F.; Scully, M.F.; Kakkar, A.K. Platelets and cancer. Lancet Oncol. 2002, 3, 425–430. [Google Scholar] [CrossRef]
- Buergy, D.; Wenz, F.; Groden, C.; Brockmann, M.A. Tumor-platelet interaction in solid tumors. Int. J. Cancer 2012, 130, 2747–2760. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.B.; Wang, X.; Zhang, X.; Liu, L.; Wang, R.T. Mean platelet volume predicts survival in pancreatic cancer patients with synchronous liver metastases. Sci. Rep. 2018, 8, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Long, Y.; Wang, T.; Gao, Q.; Zhou, C. Prognostic significance of pretreatment elevated platelet count in patients with colorectal cancer: A meta-analysis. Oncotarget 2016, 7, 81849–81861. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Zhong, H.; Ye, L.; Li, Q.; Fang, S.; Gu, W.; Qian, Y. Prognostic value of pretreatment platelet counts in lung cancer: A systematic review and meta-analysis. BMC Pulm. Med. 2020, 20, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kirkil, G.; Hamdi Muz, M.; Seçkin, D.; Şahin, K.; Küçük, Ö. Antioxidant effect of zinc picolinate in patients with chronic obstructive pulmonary disease. Respir. Med. 2008, 102, 840–844. [Google Scholar] [CrossRef] [Green Version]
- Chu, A.; Foster, M.; Samman, S. Zinc status and risk of cardiovascular diseases and type 2 diabetes mellitus—A systematic review of prospective cohort studies. Nutrients 2016, 8, 707. [Google Scholar] [CrossRef]
- Luo, J.; Chen, Y.J.; Chang, L.J. Fasting blood glucose level and prognosis in non-small cell lung cancer (NSCLC) patients. Lung Cancer 2012, 76, 242–247. [Google Scholar] [CrossRef]
- Król, E.; Bogdański, P.; Suliburska, J.; Krejpcio, Z. The Relationship between Dietary, Serum and Hair Levels of Minerals (Fe, Zn, Cu) and Glucose Metabolism Indices in Obese Type 2 Diabetic Patients. Biol. Trace Elem. Res. 2019, 189, 34–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Lung Cancer Patients | Control Group | p |
---|---|---|---|
Sociodemographic Factors | |||
Sex, F/M (%, n) | 45.8/54.2 (76/90) | 54.2/45.8 (26/22) | 0.306 |
Age, years (median (Q–Q3)) | 66.0 (60.0–73.0) | 58.0 (45.0–66.0) | <0.001 |
Education: Primary/vocational/high school/college (%, n) | 16.3/32.7/34.6/16.3 (25/50/53/25) | 6.7/22.2/42.2/28.9 (3/10/19/13) | 0.118 |
Smoking status: Never/previous/current (%, n) | 26.5/45.2/28.4 (40/70/44) | 66.7/8.9/24.4 (30/4/11) | <0.001 |
Passive smoking: Yes/no (%, n) | 21.9/78.1 (22/122) | 24.4/75.6 (11/34) | 0.788 |
Number of cigarettes per day: Zero/<20/≥20 (%, n) | 71.6/4.5/23.9 (110/7/37) | 77.8/2.2/20.0 (35/1/9) | 0.900 |
Alcohol consumption: Yes/no (%, n) | 49.0/51.0 (76/79) | 84.4/15.6 (38/7) | <0.001 |
Number of alcoholic drinks (10 g ethanol) per week: 0/1–4/5–10/11–20/>20 (%, n) | 51.0/21.3/13.6/10.3/3.9 (79/33/21/16/6) | 15.6/43.2/20.5/13.6/6.8 (7/19/9/6/3) | 0.005 |
Nutritional factors | |||
Weight, kg (median (Q1–Q3)) | 71.0 (60.0–81.0) | 78.0 (68.7–86.5) | 0.005 |
BMI, kg/m2 (median (Q1–Q3) | 26.5 (22.9–29.6) | 27.1 (24.6–30.5) | 0.121 |
Underweight/proper weight/overweight, obese (%, n) | 8.0/32.5/59.6 (12/49/90) | 0.0/26.7/73.3 (0/12/33) | 0.082 |
Adipose tissue, % (median (Q1–Q3)) | 27.8 (20.9–33.8) | 33.1 (26.8–39.4) | 0.004 |
WHR, arbitrary unit (median (Q1–Q3)) | 0.94 (0.88–0.97) | 0.85 (0.80–0.93) | <0.001 |
Abdominal obesity: Yes/no (%, n) | 77.1/22.9 (111/33) | 50.0/50.0 (19/19) | 0.001 |
Diet energy from carbohydrate/fat/protein (%) | 51.9/30.2/15.4 | 50.6/28.7/16.3 | |
Nutrient intake (median (Q1–Q3)) | |||
Energy intake (kcal/day) | 2052.0 (1583.4–2546.3) | 1932.5 (1560.0–2284.4) | 0.277 |
Protein intake (g/day) | 79.2 (59.7–102.5) | 79.9 (68.7–98.7) | 0.990 |
Carbohydrate intake (g/day) | 285.1 (223.0–339.0) | 244.8 (204.3–320.0) | 0.110 |
Fat intake (g/day) | 67.6 (50.8–91.9) | 66.1 (45.6–79.2) | 0.211 |
Cu intake (mg/day) | 1.36 (1.14–1.67) | 1.31 (1.10–1.46) | 0.089 |
Zn intake (mg/day) | 10.3 (8.19–13.7) | 10.04 (8.64–11.69) | 0.390 |
Fe intake (mg/day) | 12.3 (9.85–15.3) | 12.58 (10.0–13.64) | 0.739 |
Mn intake (mg/day) | 4.53 (3.78–5.71) | 4.78 (3.15–5.94) | 0.844 |
Ca intake (mg/day) | 743.1 (565.6–970.9) | 571.1 (479.3–822.0) | 0.006 |
Mg intake (mg/day) | 341.1 (290.6–413.4) | 340.1 (279.7–385.3) | 0.356 |
Dietary fiber intake (g/day) | 22.5 (18.4–26.9) | 20.8 (16.9–29.9) | 0.578 |
Clinical characteristics | |||
Clinical stage of disease: I/II/III/IV (%, n) | 44.9/19.1/14.7/21.3 (61/26/20/29) | NA | |
Chemotherapy: Yes (%, n) * | 40.7 (68) | ||
Radiotherapy: Yes (%, n) | 10.8 (18) | ||
Lung cancer resection: Yes (%, n) | 66.5 (111) | ||
Type of lung cancer: NSCLC/SCLC/carcinoid (%, n) | 93.4/5.4/1.2 (156/9/2) | ||
CVD: Yes/no (%, n) | 43.8/56.2 (67/86) | ||
COPD: Yes/no (%, n) | 13.7/86.3 (21/132) | ||
DM: Yes/no (%, n) | 15.0/84.9 (23/130) | ||
Hb, g/dL (median (Q1–Q3)) | 12.9 (11.8–14.1) | ||
Anemia: Yes/no (%, n) | 39.1/60.9 (61/95) | ||
Platelets, 103 cells/µL, (median (Q1–Q3)) | 254.0 (196.0–308.0) | ||
Platelets <150/150–400/>400 (%, n) | 8.3/84.0/7.7 (13/131/12) | ||
NLR, arbitrary unit (median (Q1–Q3)) | 2.36 (1.61–4.97) | ||
eGFR ≥ 90/<90 mL/min/1.73 m2 (%, n) | 64.3/35.7 (81/45) | ||
Creatinine, mg/dL, (median (Q1–Q3)) | 0.78 (0.65–0.9) | ||
Creatinine <0.7/0.7–1.2/>1.2 (%, n) | 34.0/58.3/7.6 (49/84/11) | ||
Glucose, mg/dL, (median (Q1–Q3)) | 101.0 (93.2–112.2) | ||
Glucose <100.0/100.0–125.9/≥126.0 (%, n) | 45.0/41.3/13.7 (49/45/15) |
Group | Serum Cu (mg/L) | p | Serum Zn (mg/L) | p | Serum Cu:Zn Ratio (Arbitrary Unit) | p | Whole Blood Cu (mg/L) | P | Whole Blood Zn (mg/L) | p | Whole Blood Cu:Zn (Arbitrary Unit) | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|
All study participants | ||||||||||||
Lung cancer group | 1.02 (0.86–1.22) | 0.327 | 0.88 (0.78–1.02) | <0.001 | 1.18 (0.91–1.50) | <0.001 | 1.05 (0.88–1.26) | <0.001 | 6.57 (5.73–7.55) | <0.001 | 0.16 (0.13–0.20) | <0.001 |
Control group | 0.95 (0.86–1.16) | 1.23 (1.14–1.36) | 0.83 (0.71–0.94) | 0.73 (0.51–0.83) | 8.79 (7.29–9.46) | 0.08 (0.06–0.10) | ||||||
Only lung cancer patients | ||||||||||||
Sex | ||||||||||||
F (n = 76) | 1.07 (0.95–1.27) | 0.007 | 0.89 (0.78–1.03) | 0.775 | 1.23 (1.02–1.63) | 0.017 | 1.08 (0.92–1.32) | 0.083 | 6.36 (5.62–7.17) | 0.071 | 0.17 (0.14–0.21) | 0.009 |
M (n = 90) | 0.96 (0.81–1.19) | 0.88 (0.79–1.02) | 1.09 (0.88–1.43) | 1.04 (0.85–1.21) | 6.97 (5.87–7.72) | 0.15 (0.11–0.18) | ||||||
CVD | ||||||||||||
Yes (n = 67) | 0.96 (0.84–1.26 | 0.485 | 0.87 (0.77–1.02) | 0.500 | 1.19 (0.89–1.45) | 0.995 | 1.04 (0.83–1.21) | 0.227 | 6.98 (6.23–7.60) | 0.009 | 0.16 (0.12–0.18) | <0.046 |
No (n = 85) | 1.03 (0.87–1.22) | 0.88 (0.79–1.04) | 1.15 (0.91–1.57) | 1.08 (0.91–1.32) | 6.75 (5.63–8.03) | 0.17 (0.13–0.22) | ||||||
COPD | ||||||||||||
Yes (n = 21) | 0.96 (0.86–1.26) | 0.872 | 0.88 (0.83–0.99) | 0.693 | 1.05 (0.98–1.46) | 0.769 | 1.00 (0.90–1.14) | 0.566 | 7.49 (6.29–8.09) | 0.022 | 0.13 (0.12–0.17) | 0.034 |
No (n = 131) | 1.00 (0.85–1.22) | 0.88 (0.77–1.03) | 1.18 (0.89–1.51) | 1.08 (0.88–1.28) | 6.48 (5.62–7.35) | 0.16 (0.13–0.20) | ||||||
Clinical stage of disease | ||||||||||||
I (n = 61) | 0.96 (0.80–1.22) a | 0.022 | 0.91 (0.78–1.06) | 0.518 | 1.05 (0.82–1.47) | 0.170 | 1.04 (0.88–1.24) | 0.051 | 6.09 (5.44–7.10) a | <0.004 | 0.16 (0.13–0.21) ab | 0.013 |
II (n = 26) | 1.03 (0.85–1.24) ab | 0.84 (0.75–0.95) | 0.84 (0.75–0.95) | 1.09 (1.00–1.27) | 6.35 (5.30–7.06) a | 0.19 (0.15–0.21) a | ||||||
III (n = 20) | 0.99 (0.92–1.26) ab | 0.90 (0.81–1.02) | 0.90 (0.81–1.02) | 0.90 (0.77–1.05) | 6.68 (5.94–7.61) ab | 0.13 (0.10–0.17) b | ||||||
IV (n = 29) | 1.18 (0.93–1.49) b | 0.87 (0.80–1.03) | 1.34 (1.00–1.88) | 1.14 (0.87–1.37) | 7.54 (6.28–8.18) b | 0.16 (0.10–0.21) ab | ||||||
Hb (g/dL) | ||||||||||||
<13.7 M, <13.2 M#, <12.2 F (n = 61) | 1.17 (0.94–1.40) | <0.001 | 0.82 (0.76–0.95) | 0.006 | 1.39 (1.07–1.71) | <0.001 | 1.05 (0.91–1.26) | 0.561 | 6.56 (5.90–7.55) | 0.765 | 0.16 (0.13–0.21) | 0.367 |
≥13.7 M, ≥13.2 M#, ≥12.2 F (n = 95) | 1.13 (1.01–1.35) | 0.91 (0.81–1.06) | 1.06 (0.82–1.33) | 1.06 (0.86–1.29) | 6.48 (5.61–7.48) | 0.16 (0.13–0.20) | ||||||
Platelets (103 cells/µL) | ||||||||||||
<150 (n = 12) | 0.87 (0.78–1.18) a | 0.012 | 0.86 (0.74–1.02) | 0.606 | 1.18 (0.78–1.35) | 0.352 | 0.89 (0.77–1.32) | 0.431 | 5.97 (5.52–7.24) | 0.763 | 0.16 (0.13–0.18) | 0.701 |
150–400 (n = 131) | 1.00 (0.85–1.21) a | 0.88 (0.79–1.02) | 1.15 (0.90–1.51) | 1.07 (0.88–1.28) | 6.57 (5.87–7.49) | 0.16 (0.13–0.20) | ||||||
>400 (n = 13) | 1.41 (1.06–1.49) b | 0.89 (0.80–1.08) | 1.39(1.05–1.89) | 1.08 (0.91–1.28) | 6.25 (5.63–7.69) | 0.16 (0.13–0.23) | ||||||
Glucose (mg/dL) | ||||||||||||
<100 (n = 49) | 0.98 (0.84–1.22) | 0.579 | 0.91 (0.81–1.09) | 0.887 | 1.10 (0.83–1.45) | 0.600 | 1.04 (0.86–1.33) | 0.573 | 6.37 (5.33–7.37) a | 0.020 | 0.17 (0.13–0.23) | 0.634 |
100–125 (n = 45) | 1.04 (0.93–1.21) | 0.88 (0.75–1.04) | 1.18 (0.93–1.59) | 1.10 (0.83–1.32) | 6.40 (5.72–7.63) ab | 0.16 (0.12–0.21) | ||||||
>125 (n = 15) | 1.19 (0.85–1.41) | 0.89 (0.84–1.41) | 1.33 (0.92–1.65) | 1.15 (0.94–1.31) | 7.54 (6.57–9.13) b | 0.14 (0.11–0.17) | ||||||
Ca intake (mg/day) | ||||||||||||
<EAR | 1.04 (0.90–1.27) | 0.045 | 0.90 (0.80–1.03) | 0.231 | 1.20 (0.93–1.57) | 0.344 | 1.06 (0.92–1.30) | 0.122 | 6.57 (5.61–7.43) | 0.525 | 0.17 (0.13–0.21) | |
≥EAR | 0.98 (0.82–1.19) | 0.86 (0.76–1.01) | 1.14 (0.89–1.44) | 1.04 (0.79–1.23) | 6.56 (5.87–7.66) | 0.15 (0.12–0.18) |
Risk Factor | Univariate Cox Regression Models | ||
---|---|---|---|
HR | 95% CI HR | p | |
Smoking vs. nonsmoking | 1.81 | 1.00–3.29 | 0.049 |
Clinical stage III vs. I | 2.31 | 1.15–4.64 | 0.019 |
Clinical stage IV vs. I | 4.52 | 2.53–8.11 | <0.001 |
NLR >2.36 vs. <2.36 arbitrary unit | 1.91 | 1.14–3.20 | 0.013 |
Glucose >125 vs. <100 mg/dL | 2.25 | 1.13–4.50 | 0.021 |
Platelets >400 × 103 vs. 150–400 × 103 cells/µL | 2.13 | 1.09–4.17 | 0.027 |
Serum Cu per 0.1 mg/L | 1.18 | 1.10–1.27 | <0.001 |
Serum Cu:Zn ratio per 0.1 arbitrary unit | 1.06 | 1.02–1.11 | <0.008 |
Whole blood Zn per 1 mg/L | 1.32 | 1.15–1.51 | <0.001 |
Model | Parameters | HR | 95% CI HR | p |
---|---|---|---|---|
I (for serum Cu) | Serum Cu per 0.1 mg/L | 1.13 | 1.03–1.24 | 0.010 |
Clinical stage IV vs. I | 3.14 | 1.43–6.89 | 0.004 | |
Clinical stage III vs. I | 3.25 | 1.35–7.78 | 0.008 | |
Clinical stage II vs. I | 0.75 | 0.26–2.20 | 0.604 | |
II (for serum Zn) | Clinical stage IV vs. I | 3.72 | 1.73–8.03 | <0.001 |
Clinical stage III vs. I | 3.52 | 1.48–8.37 | 0.004 | |
Clinical stage II vs. I | 0.89 | 0.31–2.59 | 0.842 | |
III (for serum Cu:Zn ratio) | Serum Cu:Zn per 0.1 arbitrary unit | 1.06 | 1.01–1.11 | 0.009 |
DM: yes vs. no | 1.83 | 1.00–3.35 | 0.049 | |
IV (for whole blood Cu) | Whole blood Cu per 0.1 mg/L | 1.09 | 1.00–1.19 | 0.04 |
Clinical stage IV vs. I | 3.24 | 1.49–7.06 | 0.003 | |
Clinical stage III vs. I | 3.81 | 1.52–9.49 | 0.004 | |
Clinical stage II vs. I | 0.77 | 0.27–2.25 | 0.639 | |
V (for whole blood Zn) | Whole blood Zn per 1 mg/L | 1.25 | 1.04–1.52 | 0.021 |
Clinical stage IV vs. I | 2.59 | 1.13–5.94 | 0.024 | |
Clinical stage III vs. I | 2.99 | 1.26–7.14 | 0.013 | |
Clinical stage II vs. I | 0.69 | 0.24–2.01 | 0.496 | |
VI (for whole blood Cu:Zn) | Clinical stage IV vs. I | 3.54 | 1.65–7.59 | 0.001 |
Clinical stage III vs. I | 3.12 | 1.28–7.57 | 0.012 | |
Clinical stage II vs. I | 0.91 | 0.31–2.61 | 0.853 |
Parameters | Person-Months | Number of Events | Incidence Rates * | Median (Range) of Follow-up Time |
---|---|---|---|---|
Overall | 6929.26 | 83 | 11.98 | 43.04 (0.23–85.81) |
Serum Cu < median | 3903.98 | 33 | 8.45 | 51.00 (0.23–79.40) |
Serum Cu > median | 3025.28 | 50 | 16.53 | 34.95 (0.98–85.80) |
Serum Cu:Zn < median | 3972.40 | 36 | 9.06 | 55.79 (0.23–80.52) |
Serum Cu:Zn > median | 2953.28 | 46 | 15.58 | 44.45 (0.99–85.81) |
Whole blood Zn < median | 3659.15 | 35 | 9.56 | 51.55 (1.05–85.81) |
Whole blood Zn > median | 2970.31 | 47 | 15.82 | 43.46 (0.23–78.71) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zabłocka-Słowińska, K.; Prescha, A.; Płaczkowska, S.; Porębska, I.; Kosacka, M.; Pawełczyk, K. Serum and Whole Blood Cu and Zn Status in Predicting Mortality in Lung Cancer Patients. Nutrients 2021, 13, 60. https://doi.org/10.3390/nu13010060
Zabłocka-Słowińska K, Prescha A, Płaczkowska S, Porębska I, Kosacka M, Pawełczyk K. Serum and Whole Blood Cu and Zn Status in Predicting Mortality in Lung Cancer Patients. Nutrients. 2021; 13(1):60. https://doi.org/10.3390/nu13010060
Chicago/Turabian StyleZabłocka-Słowińska, Katarzyna, Anna Prescha, Sylwia Płaczkowska, Irena Porębska, Monika Kosacka, and Konrad Pawełczyk. 2021. "Serum and Whole Blood Cu and Zn Status in Predicting Mortality in Lung Cancer Patients" Nutrients 13, no. 1: 60. https://doi.org/10.3390/nu13010060
APA StyleZabłocka-Słowińska, K., Prescha, A., Płaczkowska, S., Porębska, I., Kosacka, M., & Pawełczyk, K. (2021). Serum and Whole Blood Cu and Zn Status in Predicting Mortality in Lung Cancer Patients. Nutrients, 13(1), 60. https://doi.org/10.3390/nu13010060