Biomedical Properties of Propolis on Diverse Chronic Diseases and Its Potential Applications and Health Benefits
Abstract
:1. Introduction
Definition and History
2. Chemical Composition of Propolis
3. Biomedical Properties of Propolis on Diabetes, Obesity, and Cancer
3.1. Effect of Propolis on Diabetes
3.2. Effect of Propolis on Obesity
3.3. Effect of Propolis on Cancer
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghisalberti, E.L. Propolis: A Review. Bee World 1979, 60, 59–84. [Google Scholar] [CrossRef]
- Zabaiou, N.; Fouache, A.; Trousson, A.; Baron, S.; Zellagui, A.; Lahouel, M.; Lobaccaro, J.-M.A. Biological properties of propolis extracts: Something new from an ancient product. Chem. Phys. Lipids 2017, 207, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Marcucci, M.C. Propolis: Chemical composition, biological properties and therapeutic activity. Apidologie 1995, 26, 83–99. [Google Scholar] [CrossRef]
- Fokt, H.; Pereira, A.; Ferreira, A.M.; Cunha, A.; Aguiar, C. How do bees prevent hive infections? The antimicrobial properties of propolis. Curr. Res. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol. 2010, 1, 481–493. [Google Scholar]
- Wagh, V.D. Propolis: A Wonder Bees Product and Its Pharmacological Potentials. Adv. Pharmacol. Sci. 2013, 2013, 308249. [Google Scholar] [CrossRef] [Green Version]
- Bankova, V. Chemical diversity of propolis and the problem of standardization. J. Ethnopharmacol. 2005, 100, 114–117. [Google Scholar] [CrossRef]
- Siheri, W.; Alenezi, S.; Tusiimire, J.; Watson, D.G. The Chemical and Biological Properties of Propolis. In Bee Products–Chemical and Biological Properties; Alvarez-Suarez, J., Ed.; Springer: Cham, Switzerland, 2017; pp. 137–178. [Google Scholar]
- Burdock, G. Review of the biological properties and toxicity of bee propolis (propolis). Food Chem. Toxicol. 1998, 36, 347–363. [Google Scholar] [CrossRef]
- Sforcin, J.M. Biological Properties and Therapeutic Applications of Propolis. Phytother. Res. 2016, 30, 894–905. [Google Scholar] [CrossRef]
- Kuropatnicki, A.K.; Szliszka, E.; Krol, W. Historical Aspects of Propolis Research in Modern Times. Evid. Based Complement. Altern. Med. 2013, 2013, 964149. [Google Scholar] [CrossRef] [Green Version]
- Kujumgiev, A.; Tsvetkova, I.; Serkedjieva, Y.; Bankova, V.; Christov, R.; Popov, S. Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J. Ethnopharmacol. 1999, 64, 235–240. [Google Scholar] [CrossRef]
- Silva, J.C.; Rodrigues, S.; Feás, X.; Estevinho, L.M. Antimicrobial activity, phenolic profile and role in the inflammation of propolis. Food Chem. Toxicol. 2012, 50, 1790–1795. [Google Scholar] [CrossRef] [PubMed]
- Moreira, L.; Dias, L.G.; Pereira, J.A.; Estevinho, L. Antioxidant properties, total phenols and pollen analysis of propolis samples from Portugal. Food Chem. Toxicol. 2008, 46, 3482–3485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kocot, J.; Kiełczykowska, M.; Luchowska-Kocot, D.; Kurzepa, J.; Musik, I. Antioxidant Potential of Propolis, Bee Pollen, and Royal Jelly: Possible Medical Application. Oxidative Med. Cell. Longev. 2018, 2018, 7074209. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Hepburn, H.; Li, Y.; Chen, M.; Radloff, S.; Daya, S. Effects of ethanol and water extracts of propolis (bee glue) on acute inflammatory animal models. J. Ethnopharmacol. 2005, 100, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Bueno-Silva, B.; Kawamoto, D.; Ando-Suguimoto, E.S.; Alencar, S.M.; Rosalen, P.; Mayer, M.P.A. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages. PLoS ONE 2015, 10, e0144954. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.C.-F.; Cheung, K.-W.; Sze, D.M.-Y. The Immunomodulatory and Anticancer Properties of Propolis. Clin. Rev. Allergy Immunol. 2013, 44, 262–273. [Google Scholar] [CrossRef]
- Al-Hariri, M. Immune’s-boosting agent: Immunomodulation potentials of propolis. J. Fam. Commun. Med. 2019, 26, 57. [Google Scholar] [CrossRef]
- Sforcin, J.M.; Bankova, V. Propolis: Is there a potential for the development of new drugs? J. Ethnopharmacol. 2011, 133, 253–260. [Google Scholar] [CrossRef]
- Bankova, V.S.; de Castro, S.L.; Marcucci, M.C. Propolis: Recent advances in chemistry and plant origin. Apidologie 2000, 31, 3–15. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, C.; Wang, K.; Li, G.Q.; Hu, F.-L. Recent Advances in the Chemical Composition of Propolis. Molecules 2014, 19, 19610–19632. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, M.A.E.; Amarante, M.K.; Conti, B.J.; Sforcin, J.M. Cytotoxic constituents of propolis inducing anticancer effects: A review. J. Pharm. Pharmacol. 2011, 63, 1378–1386. [Google Scholar] [CrossRef]
- Lotfy, M. Biological activity of bee propolis in health and disease. Asian Pac. J. Cancer Prev. 2006, 7, 22–31. [Google Scholar]
- Kurek-Górecka, A.; Rzepecka-Stojko, A.; Górecki, M.; Stojko, J.; Sosada, M.; Świerczek-Zięba, G. Structure and Antioxidant Activity of Polyphenols Derived from Propolis. Molecules 2013, 19, 78–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bankova, V. Recent trends and important developments in propolis research. Evid. Based Complement. Altern. Med. 2005, 2, 29–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falcão, S.I.; Vilas-Boas, M.; Estevinho, L.M.; Barros, C.; Domingues, M.R.M.; Cardoso, S.M. Phenolic characterization of Northeast Portuguese propolis: Usual and unusual compounds. Anal. Bioanal. Chem. 2009, 396, 887–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bankova, V.; Galabov, A.; Antonova, D.; Vilhelmova, N.; Di Perri, B. Chemical composition of Propolis Extract ACF® and activity against herpes simplex virus. Phytomedicine 2014, 21, 1432–1438. [Google Scholar] [CrossRef]
- Alday-Provencio, S.; Diaz, G.; Rascon, L.; Quintero, J.; Alday, E.; Robles-Zepeda, R.; Garibay-Escobar, A.; Astiazaran, H.; Hernández, J.; Velázquez, C. Sonoran Propolis and Some of its Chemical Constituents Inhibit in vitro Growth of Giardia lamblia Trophozoites. Planta Medica 2015, 81, 742–747. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Yañez, N.; Rodriguez-Canales, M.; Nieto-Yañez, O.; Jiménez-Estrada, M.; Ibarra-Barajas, M.; Canales-Martinez, M.M.; Rodriguez-Monroy, M.A. Hypoglycaemic and Antioxidant Effects of Propolis of Chihuahua in a Model of Experimental Diabetes. Evid. Based Complement. Altern. Med. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Guzmán-Gutiérrez, S.L.; Nieto-Camacho, A.; Castillo-Arellano, J.I.; Huerta-Salazar, E.; Hernández-Pasteur, G.; Silva-Miranda, M.; Argüello-Nájera, O.; Sepúlveda-Robles, O.A.; Espitia, C.I.; Reyes-Chilpa, R. Mexican Propolis: A Source of Antioxidants and Anti-Inflammatory Compounds, and Isolation of a Novel Chalcone and ε-Caprolactone Derivative. Molecules 2018, 23, 334. [Google Scholar] [CrossRef] [Green Version]
- Rivero-Cruz, J.F.; Granados-Pineda, J.; Pedraza-Chaverri, J.; Pérez-Rojas, J.M.; Kumar-Passari, A.; Diaz-Ruiz, G.; Rivero-Cruz, B.E. Phytochemical Constituents, Antioxidant, Cytotoxic, and Antimicrobial Activities of the Ethanolic Extract of Mexican Brown Propolis. Antioxidants 2020, 9, 70. [Google Scholar] [CrossRef] [Green Version]
- Devequi-Nunes, D.; Machado, B.A.S.; Barreto, G.D.A.; Silva, J.R.; Da Silva, D.F.; Da Rocha, J.L.C.; Brandão, H.N.; Borges, V.M.; Umsza-Guez, M.A. Chemical characterization and biological activity of six different extracts of propolis through conventional methods and supercritical extraction. PLoS ONE 2018, 13, e0207676. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Reis, J.H.; de Abreu Barreto, G.; Cerqueira, J.C.; Anjos, J.P.d.; Andrade, L.N.; Padilha, F.F.; Druzian, J.I.; Machado, B.A.S. Evaluation of the antioxidant profile and cytotoxic activity of red propolis extracts from different regions of northeastern Brazil obtained by conventional and ultrasound-assisted extraction. PLoS ONE 2019, 14, e0219063. [Google Scholar]
- Machado, B.A.S.; Silva, R.P.D.; Barreto, G.D.A.; Costa, S.S.; Da Silva, D.F.; Brandão, H.N.; Da Rocha, J.L.C.; Dellagostin, O.A.; Henriques, J.A.P.; Umsza-Guez, M.A.; et al. Chemical Composition and Biological Activity of Extracts Obtained by Supercritical Extraction and Ethanolic Extraction of Brown, Green and Red Propolis Derived from Different Geographic Regions in Brazil. PLoS ONE 2016, 11, e0145954. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Liu, M.; He, J.; Li, K.; Zhang, X.; Yin, G. Identification and Determination of Seven Phenolic Acids in Brazilian Green Propolis by UPLC-ESI-QTOF-MS and HPLC. Molecules 2019, 24, 1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiveron, A.P.; Rosalen, P.L.; Franchin, M.; Lacerda, R.C.C.; Bueno-Silva, B.; Benso, B.; Denny, C.; Ikegaki, M.; De Alencar, S.M. Chemical Characterization and Antioxidant, Antimicrobial, and Anti-Inflammatory Activities of South Brazilian Organic Propolis. PLoS ONE 2016, 11, e0165588. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Omar, R.; Siheri, W.; Al Mutairi, S.; Clements, C.; Fearnley, J.; Edrada-Ebel, R.; Watson, D. Chromatographic analysis with different detectors in the chemical characterisation and dereplication of African propolis. Talanta 2014, 120, 181–190. [Google Scholar] [CrossRef]
- Trusheva, B.; Popova, M.; Naydenski, H.; Tsvetkova, I.; Rodriguez, J.G.; Bankova, V. New polyisoprenylated benzophenones from Venezuelan propolis. Fitoterapia 2004, 75, 683–689. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; García-Viguera, C.; Vit-Olivier, P.; Ferreres, F.; Tomás-Lorente, F. Phytochemical evidence for the botanical origin of tropical propolis from Venezuela. Phytochemistry 1993, 34, 191–196. [Google Scholar] [CrossRef]
- Veloz, J.J.; Alvear, M.; A Salazar, L. Antimicrobial and Antibiofilm Activity against Streptococcus mutans of Individual and Mixtures of the Main Polyphenolic Compounds Found in Chilean Propolis. BioMed Res. Int. 2019, 2019, 7602343. [Google Scholar] [CrossRef] [Green Version]
- Papachroni, D.; Graikou, K.; Kosalec, I.; Damianakos, H.; Ingram, V.; Chinou, I. Phytochemical Analysis and Biological Evaluation of Selected African Propolis Samples from Cameroon and Congo. Nat. Prod. Commun. 2015, 10, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Rushdi, A.I.; Adgaba, N.; Bayaqoob, N.I.M.; Al-Ghamdi, A.; Simoneit, B.R.T.; El-Mubarak, A.H.; Al-Mutlaq, K.F. Characteristics and chemical compositions of propolis from Ethiopia. SpringerPlus 2014, 3, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrova, A.; Popova, M.; Kuzmanova, C.; Tsvetkova, I.; Naydenski, H.; Muli, E.; Bankova, V. New biologically active compounds from Kenyan propolis. Fitoterapia 2010, 81, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Raheem, I.A.A.; Razek, A.A.; Elgendy, A.A.; Saleh, N.M.; Shaaban, M.I.; El-Hady, F.K.A. Design, Evaluation And Antimicrobial Activity Of Egyptian Propolis-Loaded Nanoparticles: Intrinsic Role As A Novel And Naturally Based Root Canal Nanosealer. Int. J. Nanomed. 2019, 14, 8379–8398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Touzani, S.; Embaslat, W.; Imtara, H.; Kmail, A.; Kadan, S.; Zaid, H.; Elarabi, I.; Lyoussi, B.; Saad, B. In Vitro Evaluation of the Potential Use of Propolis as a Multitarget Therapeutic Product: Physicochemical Properties, Chemical Composition, and Immunomodulatory, Antibacterial, and Anticancer Properties. BioMed Res. Int. 2019, 2019, 4836378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahouel, M.; Boutabet, K.; Kebsa, W.; Alyane, M. Polyphenolic fraction of Algerian propolis protects rat kidney against acute oxidative stress induced by doxorubicin. Indian J. Nephrol. 2011, 21, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Piccinelli, A.L.; Mencherini, T.; Celano, R.; Mouhoubi, Z.; Tamendjari, A.; Aquino, R.P.; Rastrelli, L. Chemical Composition and Antioxidant Activity of Algerian Propolis. J. Agric. Food Chem. 2013, 61, 5080–5088. [Google Scholar] [CrossRef]
- Kasiotis, K.M.; Anastasiadou, P.; Papadopoulos, A.; Machera, K. Revisiting Greek Propolis: Chromatographic Analysis and Antioxidant Activity Study. PLoS ONE 2017, 12, e0170077. [Google Scholar] [CrossRef] [Green Version]
- Popova, M.; Giannopoulou, E.; Skalicka-Woźniak, K.; Graikou, K.; Widelski, J.; Bankova, V.; Kalofonos, H.P.; Sivolapenko, G.B.; Gaweł-Bęben, K.; Antosiewicz, B.; et al. Characterization and Biological Evaluation of Propolis from Poland. Molecules 2017, 22, 1159. [Google Scholar] [CrossRef]
- Pobiega, K.; Kraśniewska, K.; Przybył, J.L.; Bączek, K.; Żubernik, J.; Witrowa-Rajchert, D.; Gniewosz, M. Growth Biocontrol of Foodborne Pathogens and Spoilage Microorganisms of Food by Polish Propolis Extracts. Molecules 2019, 24, 2965. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Tian, J.; Zheng, Y.; Zhang, Y.-Z.; Wu, Y.-Q.; Zhang, C.; Zheng, H.; Hu, F.-L. A New Propolis Type from Changbai Mountains in North-east China: Chemical Composition, Botanical Origin and Biological Activity. Molecules 2019, 24, 1369. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, A.; Duran, G.G.; Duran, N.; Jenedi, K.; Bolgul, B.S.; Miraloglu, M.; Muz, M. Antiviral Activity of Hatay Propolis Against Replication of Herpes Simplex Virus Type 1 and Type 2. Med. Sci. Monit. 2016, 22, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Pu, R.; Li, Y.; Wu, Z.; Li, C.; Miao, X.; Yang, W. Chemical Compositions of Propolis from China and the United States and their Antimicrobial Activities Against Penicillium notatum. Molecules 2019, 24, 3576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elnakady, Y.A.; Rushdi, A.I.; Franke, R.; AbuTaha, N.; Ebaid, H.; Baabbad, M.; Omar, M.O.M.; Al Ghamdi, A.A. Characteristics, chemical compositions and biological activities of propolis from Al-Bahah, Saudi Arabia. Sci. Rep. 2017, 7, 41453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, M.B.; Brinkman, D.; Spivak, M.; Gardner, G.; Cohen, J.D. Regional variation in composition and antimicrobial activity of US propolis against Paenibacillus larvae and Ascosphaera apis. J. Invertebr. Pathol. 2015, 124, 44–50. [Google Scholar] [CrossRef]
- Silva, R.P.D.; Machado, B.A.S.; Barreto, G.D.A.; Costa, S.S.; Andrade, L.N.; Amaral, R.G.; Carvalho, A.A.; Padilha, F.F.; Barbosa, J.D.V.; Umsza-Guez, M.A. Antioxidant, antimicrobial, antiparasitic, and cytotoxic properties of various Brazilian propolis extracts. PLoS ONE 2017, 12, e0172585. [Google Scholar] [CrossRef]
- Shi, H.; Yang, H.; Zhang, X.; Liang, L.; Lucy, Y. Identification and Quantification of Phytochemical Composition and Anti-inflammatory and Radical Scavenging Properties of Methanolic Extracts of Chinese Propolis. J. Agric. Food Chem. 2012, 60, 12403–12410. [Google Scholar] [CrossRef]
- Coutinho, H.D.; Barbosa-Filho, V.M.; Waczuk, E.P.; Leite, N.F.; Costa, J.G.; Lacerda, S.R.; A Adedara, I.; Kamdem, J.P.; Posser, T.; Menezes, I.R. Phytocompounds and modulatory effects of Anacardium microcarpum (cajui) on antibiotic drugs used in clinical infections. Drug Des. Dev. Ther. 2015, 9, 5965–5972. [Google Scholar] [CrossRef] [Green Version]
- Bellio, P.; Segatore, B.; Mancini, A.; Di Pietro, L.; Bottoni, C.; Sabatini, A.; Brisdelli, F.; Piovano, M.; Nicoletti, M.; Amicosante, G.; et al. Interaction between lichen secondary metabolites and antibiotics against clinical isolates methicillin-resistant Staphylococcus aureus strains. Phytomedicine 2015, 22, 223–230. [Google Scholar] [CrossRef]
- Pereira, R.B.; Sousa, C.; Costa, A.; Andrade, P.; Valentão, P. Glutathione and the Antioxidant Potential of Binary Mixtures with Flavonoids: Synergisms and Antagonisms. Molecules 2013, 18, 8858–8872. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, T.G.D.; Arruda, R.E.D.S.; Almeida, E.T.D.C.; Oliveira, J.M.D.S.; Basílio-Júnior, I.D.; Porto, I.C.C.D.M.; Sabino, A.R.; Tonholo, J.; Gray, A.; Edrada-Ebel, R.; et al. Comprehensive multivariate correlations between climatic effect, metabolite-profile, antioxidant capacity and antibacterial activity of Brazilian red propolis metabolites during seasonal study. Sci. Rep. 2019, 9, 1–16. [Google Scholar] [CrossRef]
- Woźniak, M.; Mrówczyńska, L.; Waśkiewicz, A.; Rogoziński, T.; Ratajczak, I. The role of seasonality on the chemical composition, antioxidant activity and cytotoxicity of Polish propolis in human erythrocytes. Rev. Bras. Farm. 2019, 29, 301–308. [Google Scholar] [CrossRef]
- Shahinozzaman; Obanda, D.N.; Tawata, S. Chemical composition and pharmacological properties of Macaranga -type Pacific propolis: A review. Phytother. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Cunha, I.B.S.; Sawaya, A.C.H.F.; Caetano, F.M.; Shimizu, M.T.; Marcucci, M.C.; Drezza, F.T.; Povia, G.S.; Carvalho, P.D.O. Factors that influence the yield and composition of Brazilian propolis extracts. J. Braz. Chem. Soc. 2004, 15, 964–970. [Google Scholar] [CrossRef]
- Inui, S.; Hosoya, T.; Kumazawa, S. Hawaiian Propolis: Comparative Analysis and Botanical Origin. Nat. Prod. Commun. 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Kumazawa, S.; Murase, M.; Momose, N.; Fukumoto, S. Analysis of antioxidant prenylflavonoids in different parts of Macaranga tanarius, the plant origin of Okinawan propolis. Asian Pac. J. Trop. Med. 2014, 7, 16–20. [Google Scholar] [CrossRef] [Green Version]
- Kumazawa, S.; Nakamura, J.; Murase, M.; Miyagawa, M.; Ahn, M.-R.; Fukumoto, S. Plant origin of Okinawan propolis: Honeybee behavior observation and phytochemical analysis. Naturwissenschaften 2008, 95, 781–786. [Google Scholar] [CrossRef]
- Trusheva, B.; Popova, M.; Koendhori, E.B.; Tsvetkova, I.; Naydenski, C.; Bankova, V. Indonesian propolis: Chemical composition, biological activity and botanical origin. Nat. Prod. Res. 2011, 25, 606–613. [Google Scholar] [CrossRef]
- Ristivojevic, P.; Dimkić, I.Z.; Guzelmeric, E.; Trifkovic, J.; Knežević, M.; Beric, T.; Yeşilada, E.; Milojković-Opsenica, D.; Stanković, S. Profiling of Turkish propolis subtypes: Comparative evaluation of their phytochemical compositions, antioxidant and antimicrobial activities. LWT 2018, 95, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Bankova, V.; Popova, M.; Trusheva, B. The phytochemistry of the honeybee. Phytochemisrty 2018, 155, 1–11. [Google Scholar] [CrossRef]
- Gómez-Caravaca, A.M.; Gómez-Romero, M.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Advances in the analysis of phenolic compounds in products derived from bees. J. Pharm. Biomed. Anal. 2006, 41, 1220–1234. [Google Scholar] [CrossRef]
- Volpi, N. Separation of flavonoids and phenolic acids from propolis by capillary zone electrophoresis. Electrophoresis 2004, 25, 1872–1878. [Google Scholar] [CrossRef] [PubMed]
- da Silveira Regueira-Neto, M.; Tintino, S.R.; Rolón, M.; Coronal, C.; Vega, M.C.; de Queiroz Balbino, V.; de Melo Coutinho, H.D. Antitrypanosomal, antileishmanial and cytotoxic activities of Brazilian red propolis and plant resin of Dalbergia ecastaphyllum (L) Taub. Food Chem. Toxicol. 2018, 119, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Patel, S. Emerging Adjuvant Therapy for Cancer: Propolis and its Constituents. J. Diet. Suppl. 2015, 13, 245–268. [Google Scholar] [CrossRef] [PubMed]
- Siheri, W.; Zhang, T.; Ebiloma, G.U.; Biddau, M.; Woods, N.; Hussain, M.Y.; Clements, C.J.; Fearnley, J.; Ebel, R.E.; Paget, T.; et al. Chemical and Antimicrobial Profiling of Propolis from Different Regions within Libya. PLoS ONE 2016, 11, e0155355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinrich, M.; Modarai, M.; Kortenkamp, A. Herbal Extracts used for Upper Respiratory Tract Infections: Are there Clinically Relevant Interactions with the Cytochrome P450 Enzyme System? Planta Med. 2008, 74, 657–660. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-N.; Wu, C.-L.; Lin, J.-K. Apoptosis of human melanoma cells induced by the novel compounds propolin A and propolin B from Taiwenese propolis. Cancer Lett. 2007, 245, 218–231. [Google Scholar] [CrossRef] [PubMed]
- Taira, N.; Nguyen, B.C.Q.; Tu, P.T.B.; Tawata, S. Effect of Okinawa Propolis on PAK1 Activity, Caenorhabditis elegans Longevity, Melanogenesis, and Growth of Cancer Cells. J. Agric. Food Chem. 2016, 64, 5484–5489. [Google Scholar] [CrossRef]
- El Rabey, H.A.; Al-Seeni, M.N.; Bakhashwain, A.S. The antidiabetic activity of Nigella sativa and propolis on streptozotocin-induced diabetes and diabetic nephropathy in male rats. Evid. Based Complement. Altern. Med. 2017, 2017, 5439645. [Google Scholar] [CrossRef] [Green Version]
- Association, A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37 (Suppl. S1), S81–S90. [Google Scholar] [CrossRef] [Green Version]
- Feingold, K.R.; Grunfeld, C.; Pang, M.; Doerrler, W.; Krauss, R.M. LDL subclass phenotypes and triglyceride metabolism in non-insulin-dependent diabetes. Arter. Thromb. A J. Vasc. Biol. 1992, 12, 1496–1502. [Google Scholar] [CrossRef] [Green Version]
- Khera, P.K.; Joiner, C.H.; Carruthers, A.; Lindsell, C.J.; Smith, E.P.; Franco, R.S.; Holmes, Y.R.; Cohen, R.M. Evidence for Interindividual Heterogeneity in the Glucose Gradient Across the Human Red Blood Cell Membrane and Its Relationship to Hemoglobin Glycation. Diabetes 2008, 57, 2445–2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kröger, J.; Zietemann, V.; Enzenbach, C.; Weikert, C.; Jansen, E.H.; Döring, F.; Joost, H.-G.; Boeing, H.; Schulze, M.B. Erythrocyte membrane phospholipid fatty acids, desaturase activity, and dietary fatty acids in relation to risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)–Potsdam Study. Am. J. Clin. Nutr. 2010, 93, 127–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, R. Chronic Oxidative Stress as a Central Mechanism for Glucose Toxicity in Pancreatic Islet Beta Cells in Diabetes. J. Biol. Chem. 2004, 279, 42351–42354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitra, R.; Mazumder, P.M.; Jain, U.K. Efficacy of a polyherbal formulation madhumehari in attenuating diabetic nephropathy. World J. Pharm. Pharm. Sci. 2017, 6, 1505–1513. [Google Scholar] [CrossRef]
- Khandouzi, N.; Shidfar, F.; Rajab, A.; Rahideh, T.; Hosseini, P.; Taheri, M.M. The Effects of Ginger on Fasting Blood Sugar, Hemoglobin A1c, Apolipoprotein B, Apolipoprotein A-I and Malondialdehyde in Type 2 Diabetic Patients. Iran. J. Pharm. Res. IJPR 2015, 14, 131–140. [Google Scholar]
- Atlas, D. International diabetes federation. In IDF Diabetes Atlas, 7th ed.; International Diabetes Federation: Brussels, Belgium, 2015. [Google Scholar]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [Green Version]
- Babatunde, I.R.; Abdulbasit, A.; Oladayo, M.I.; Olasile, O.I.; Olamide, F.R.; Gbolahan, B.W. Hepatoprotective and pancreatoprotective properties of the ethanolic extract of Nigerian propolis. J. Intercult. Ethnopharmacol. 2015, 4, 102. [Google Scholar]
- Oladayo, M.I. Nigerian propolis improves blood glucose, glycated hemoglobin A1c, very low-density lipoprotein, and high-density lipoprotein levels in rat models of diabetes. J. Intercult. Ethnopharmacol. 2016, 5, 233. [Google Scholar]
- Jain, D.K.; Arya, R.K. Anomalies in alloxan-induced diabetic model: It is better to standardize it first. Indian J. Pharmacol. 2011, 43, 91. [Google Scholar] [CrossRef]
- Misra, M.; Aiman, U. Alloxan: An unpredictable drug for diabetes induction? Indian J. Pharmacol. 2012, 44, 538–539. [Google Scholar] [CrossRef]
- El Menyiy, N.; Al-Wali, N.; El Ghouizi, A.; El-Guendouz, S.; Salom, K.; Lyoussi, B. Potential therapeutic effect of Moroccan propolis in hyperglycemia, dyslipidemia, and hepatorenal dysfunction in diabetic rats. Iranian J. Basic Med. Sci. 2019, 22, 1331–1339. [Google Scholar]
- Al Ghamdi, A.A.; Badr, G.; Hozzein, W.N.; A Allam, A.; Al-Waili, N.S.; Al-Wadaan, M.A.; Garraud, O. Oral supplementation of diabetic mice with propolis restores the proliferation capacity and chemotaxis of B and T lymphocytes towards CCL21 and CXCL12 by modulating the lipid profile, the pro-inflammatory cytokine levels and oxidative stress. BMC Immunol. 2015, 16, 54. [Google Scholar] [CrossRef] [PubMed]
- Usman, U.Z.; Abu Bakar, A.B.; Mohamed, M. Propolis improves pregnancy outcomes and placental oxidative stress status in streptozotocin-induced diabetic rats. BMC Complement. Altern. Med. 2018, 18, 324. [Google Scholar] [CrossRef] [PubMed]
- Nna, V.U.; Abu Bakar, A.B.; Lazin, R.M.L.M.; Mohamed, M. Antioxidant, anti-inflammatory and synergistic anti-hyperglycemic effects of Malaysian propolis and metformin in streptozotocin–induced diabetic rats. Food Chem. Toxicol. 2018, 120, 305–320. [Google Scholar] [CrossRef]
- Sameni, H.R.; Ramhormozi, P.; Bandegi, A.R.; Taherian, A.A.; Mirmohammadkhani, M.; Safari, M. Effects of ethanol extract of propolis on histopathological changes and anti-oxidant defense of kidney in a rat model for type 1 diabetes mellitus. J. Diabetes Investig. 2016, 7, 506–513. [Google Scholar] [CrossRef]
- Rifa’I, M.; Widodo, N. Significance of propolis administration for homeostasis of CD4(+)CD25(+) immunoregulatory T cells controlling hyperglycemia. SpringerPlus 2014, 3, 526. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-H.; Chien, Y.-W.; Chang, M.-L.; Hou, C.-C.; Chan, C.-H.; Tang, H.-W.; Huang, H.-Y. Taiwanese Green Propolis Ethanol Extract Delays the Progression of Type 2 Diabetes Mellitus in Rats Treated with Streptozotocin/High-Fat Diet. Nutrients 2018, 10, 503. [Google Scholar] [CrossRef] [Green Version]
- Kang, L.-J.; Lee, H.B.; Bae, H.-J.; Lee, S.-G. Antidiabetic effect of propolis: Reduction of expression of glucose-6-phosphatase through inhibition of Y279 and Y216 autophosphorylation of GSK-3α/β in HepG2 cells. Phytother. Res. 2010, 24, 1554–1561. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.; Xuan, H.; Hu, F. Effects of Encapsulated Propolis on Blood Glycemic Control, Lipid Metabolism, and Insulin Resistance in Type 2 Diabetes Mellitus Rats. Evid. Based Complement. Altern. Med. 2011, 2012, 981896. [Google Scholar] [CrossRef]
- Zhu, W.; Chen, M.; Shou, Q.; Li, Y.; Hu, F. Biological Activities of Chinese Propolis and Brazilian Propolis on Streptozotocin-Induced Type 1 Diabetes Mellitus in Rats. Evid.-Based Complement. Altern. Med. 2011, 2011, 468529. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, E.S.M.; Abo-Salem, O.M.; Aly, H.A.; Mansour, A.M. Potential antidiabetic and hypolipidemic effects of propolis extract in streptozotocin-induced diabetic rats. Pakistan J. Pharmaceutic. Sci. 2009, 22, 1–7. [Google Scholar]
- Zamami, Y.; Fujiwara, H.; Hosoda, M.; Hino, H.; Hirai, K.; Okamoto, K.; Jin, X.; Takatori, S.; Doi-Takaki, S.; Kawasaki, H. Ameliorative effect of propolis on insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. YAKUGAKU ZASSHI 2010, 130, 833–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoi, W.; Hosogi, S.; Niisato, N.; Yokoyama, N.; Hayata, H.; Miyazaki, H.; Kusuzaki, K.; Fukuda, T.; Fukui, M.; Nakamura, N.; et al. Improvement of insulin resistance, blood pressure and interstitial pH in early developmental stage of insulin resistance in OLETF rats by intake of propolis extracts. Biochem. Biophys. Res. Commun. 2013, 432, 650–653. [Google Scholar] [CrossRef] [PubMed]
- Kusunoki, M.; Natsume, Y.; Miyata, T.; Tsutsumi, K.; Oshida, Y. Effects of Concomitant Administration of Sodium Glucose Co-transporter 2 Inhibitor with Insulin on Hemoglobin A1c, Body Mass Index and Serum Lipid Profile in Japanese Type 2 Diabetic Patients. Drug Res. 2018, 68, 669–672. [Google Scholar] [CrossRef] [PubMed]
- Abdelrazeg, S.; Hussin, H.; Salih, M.; Shaharuddin, B. Propolis composition and applications in medicine and health. Int. Med. J. 2020, 25, 1505–1542. [Google Scholar]
- Pasupuleti, V.R.; Sammugam, L.; Ramesh, N.; Gan, S.H. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxidative Med. Cell. Longev. 2017, 2017, 1259510. [Google Scholar] [CrossRef]
- Al-Hariri, M.T. Propolis and its direct and indirect hypoglycemic effect. J. Fam. Commun. Med. 2011, 18, 152–154. [Google Scholar] [CrossRef] [Green Version]
- Ueda, M.; Hayashibara, K.; Ashida, H. Propolis extract promotes translocation of glucose transporter 4 and glucose uptake through both PI3K- and AMPK-dependent pathways in skeletal muscle. BioFactors 2013, 39, 457–466. [Google Scholar] [CrossRef]
- Shahinozzaman; Taira, N.; Ishii, T.; Halim, M.A.; Hossain, A.; Tawata, S. Anti-Inflammatory, Anti-Diabetic, and Anti-Alzheimer’s Effects of Prenylated Flavonoids from Okinawa Propolis: An Investigation by Experimental and Computational Studies. Molecules 2018, 23, 2479. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.-Z.; Liu, Y.-C.; Zheng, Y.-F.; Chen, Y.-F.; Si, J.-J.; Chen, M.-L.; Shou, Q.-Y.; Zheng, H.-Q.; Hu, F.-L. Ethanol Extract of Chinese Propolis Attenuates Early Diabetic Retinopathy by Protecting the Blood–Retinal Barrier in Streptozotocin-Induced Diabetic Rats. J. Food Sci. 2019, 84, 358–369. [Google Scholar] [CrossRef]
- Abdelmoaty, M.A.; Ibrahim, M.A.; Ahmed, N.S.; Abdelaziz, M.A. Confirmatory studies on the antioxidant and antidiabetic effect of quercetin in rats. Indian J. Clin. Biochem. 2010, 25, 188–192. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, P.K.; Maiti, K.; Mukherjee, K.; Houghton, P.J. Leads from Indian medicinal plants with hypoglycemic potentials. J. Ethnopharmacol. 2006, 106, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Coskun, O.; Kanter, M.; Korkmaz, A.; Oter, S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacol. Res. 2005, 51, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Gilbert, E.R.; Pfeiffer, L.; Zhang, Y.; Fu, Y.; Liu, D. Genistein ameliorates hyperglycemia in a mouse model of nongenetic type 2 diabetes. Appl. Physiol. Nutr. Metab. 2012, 37, 480–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brahmachari, G. Bio-flavonoids with promising antidiabetic potentials: A critical survey. Res. Signpost 2011, 661, 187–212. [Google Scholar]
- Juárez-Reyes, K.; Brindis, F.; Medina-Campos, O.N.; Pedraza-Chaverri, J.; Bye, R.; Linares, E.; Mata, R. Hypoglycemic, antihyperglycemic, and antioxidant effects of the edible plant Anoda cristata. J. Ethnopharmacol. 2015, 161, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Li, J.M.; Che, C.T.; Lau, C.B.; Leung, P.S.; Cheng, C.H.K. Inhibition of intestinal and renal Na+-glucose cotransporter by naringenin. Int. J. Biochem. Cell Biol. 2006, 38, 985–995. [Google Scholar] [CrossRef]
- Matsui, T.; Kobayashi, M.; Hayashida, S.; Matsumoto, K. Luteolin, a flavone, does not suppress postprandial glucose absorption through an inhibition of α-glucosidase action. Biosci. Biotechnol. Biochem. 2002, 66, 689–692. [Google Scholar] [CrossRef]
- Hickson, L.J.; Prata, L.G.L.; Bobart, S.A.; Evans, T.K.; Giorgadze, N.; Hashmi, S.K.; Herrmann, S.M.; Jensen, M.D.; Jia, Q.; Jordan, K.L.; et al. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine 2019, 47, 446–456. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.M.; Ahmed, Q.U.; So’Ad, S.Z.M.; Tunna, T.S. Animal models and natural products to investigate in vivo and in vitro antidiabetic activity. Biomed. Pharmacother. 2018, 101, 833–841. [Google Scholar] [CrossRef]
- Jung, M.; Park, M.; Lee, H.C.; Kang, Y.-H.; Kang, E.S.; Kim, S.K. Antidiabetic Agents from Medicinal Plants. Curr. Med. Chem. 2006, 13, 1203–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakerkish, M.; Jenabi, M.; Zaeemzadeh, N.; Hemmati, A.A.; Neisi, N. The Effect of Iranian Propolis on Glucose Metabolism, Lipid Profile, Insulin Resistance, Renal Function and Inflammatory Biomarkers in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blind Clinical Trial. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hesami, S.; Hashemipour, S.; Shiri-Shahsavar, M.R.; Koushan, Y.; Haghighian, H.K. Administration of Iranian Propolis attenuates oxidative stress and blood glucose in type II diabetic patients: A randomized, double-blind, placebo-controlled, clinical trial. Casp. J. Intern. Med. 2019, 10, 48–54. [Google Scholar] [CrossRef]
- Afsharpour, F.; Javadi, M.; Hashemipour, S.; Koushan, Y.; Haghighian, H.K. Propolis supplementation improves glycemic and antioxidant status in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled study. Complement. Ther. Med. 2019, 43, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Samadi, N.; Mozaffari-Khosravi, H.; Rahmanian, M.; Askarishahi, M. Effects of bee propolis supplementation on glycemic control, lipid profile and insulin resistance indices in patients with type 2 diabetes: A randomized, double-blind clinical trial. J. Integr. Med. 2017, 15, 124–134. [Google Scholar] [CrossRef]
- Gao, W.; Pu, L.; Wei, J.; Yao, Z.; Wang, Y.; Shi, T.; Zhao, L.; Jiao, C.; Guo, C. Serum Antioxidant Parameters are Significantly Increased in Patients with Type 2 Diabetes Mellitus after Consumption of Chinese Propolis: A Randomized Controlled Trial Based on Fasting Serum Glucose Level. Diabetes Ther. 2018, 9, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Pu, L.; Wei, J.; Li, J.; Wu, J.; Xin, Z.; Gao, W.; Guo, C. Brazilian Green Propolis Improves Antioxidant Function in Patients with Type 2 Diabetes Mellitus. Int. J. Environ. Res. Public Health 2016, 13, 498. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.B.; Smith, M.S. Obesity Statistics. Primary Care: Clinics in Office Practice; Elsevier Health Science: Philadelphia, PA, USA, 2016; Volume 43, pp. 121–135. [Google Scholar]
- Batsis, J.A.; E Nieto-Martinez, R.; Lopez-Jimenez, F. Metabolic Syndrome: From Global Epidemiology to Individualized Medicine. Clin. Pharmacol. Ther. 2007, 82, 509–524. [Google Scholar] [CrossRef]
- Bentham, J.; Di Cesare, M.; BIlano, V.; Boddy, L.M. Worldwide trends in children’s and adolescents’ body mass index, underweight and obesity, in comparison with adults, from 1975 to 2016: A pooled analysis of 2,416 population-based measurement studies with 128.9 million participants. Lancet 2017. [Google Scholar] [CrossRef] [Green Version]
- Buettner, R.; Schölmerich, J.; Bollheimer, L.C. High-fat Diets: Modeling the Metabolic Disorders of Human Obesity in Rodents*. Obesity 2007, 15, 798–808. [Google Scholar] [CrossRef]
- Ikemoto, S.; Takahashi, M.; Tsunoda, N.; Maruyama, K.; Itakura, H.; Ezaki, O. High-fat diet-induced hyperglycemia and obesity in mice: Differential effects of dietary oils. Metab. Clin. Exp. 1996, 45, 1539–1546. [Google Scholar] [CrossRef]
- Ghaben, A.L.; Scherer, P.E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 2019, 20, 242–258. [Google Scholar] [CrossRef] [PubMed]
- McNelis, J.C.; Olefsky, J.M. Macrophages, immunity, and metabolic disease. Immunity 2014, 41, 36–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mraz, M.; Haluzik, M. The role of adipose tissue immune cells in obesity and low-grade inflammation. J. Endocrinol. 2014, 222, R113–R127. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Gerhold, K.; Mayers, J.R.; Wiest, M.M.; Watkins, S.M.; Hotamisligil, G.S. Identification of a Lipokine, a Lipid Hormone Linking Adipose Tissue to Systemic Metabolism. Cell 2008, 134, 933–944. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.-W.L.; Lee, M.; Oh, K.-J. Adipose tissue-derived signatures for obesity and type 2 diabetes: Adipokines, batokines and microRNAs. J. Clin. Med. 2019, 8, 854. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Yang, Y.; Xiang, L.; Zhao, Z.; Ye, R. Adipose-derived exosomes: A novel adipokine in obesity-associated diabetes. J. Cell. Physiol. 2019, 234, 16692–16702. [Google Scholar] [CrossRef]
- Liu, J.; Yang, X.; Yu, S.; Zheng, R. The Leptin Resistance. In Advances in Experimental Medicine and Biology; Springer Science and Business Media LLC: Berlin, Germany, 2018; Volume 1090, pp. 145–163. [Google Scholar]
- Iio, A.; Ohguchi, K.; Inoue, H.; Maruyama, H.; Araki, Y.; Nozawa, Y.; Ito, M. Ethanolic extracts of Brazilian red propolis promote adipocyte differentiation through PPARγ activation. Phytomedicine 2010, 17, 974–979. [Google Scholar] [CrossRef]
- Washio, K.; Shimamoto, Y.; Kitamura, H. Brazilian propolis extract increases leptin expression in mouse adipocytes. Biomed. Res. 2015, 36, 343–346. [Google Scholar] [CrossRef] [Green Version]
- Jensen, V.F.; Mølck, A.-M.; Dalgaard, M.; McGuigan, F.E.; Akesson, K.E. Changes in bone mass associated with obesity and weight loss in humans: Applicability of animal models. Bone 2020, 115781. [Google Scholar] [CrossRef]
- Vakrou, S.; Aravani, D.; Kassi, E.; Chatzigeorgiou, A. Cardiometabolic Syndrome: An Update on Available Mouse Models. Thromb. Haemost. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, H.; Naoe, Y.; Kimura, S.; Miyamoto, T.; Okamoto, S.; Toda, C.; Shimamoto, Y.; Iwanaga, T.; Miyoshi, I. Beneficial effects of Brazilian propolis on type 2 diabetes in ob/ob mice: Possible involvement of immune cells in mesenteric adipose tissue. Adipocyte 2013, 2, 227–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koya-Miyata, S.; Arai, N.; Mizote, A.; Taniguchi, Y.; Ushio, S.; Iwaki, K.; Fukuda, S. Propolis prevents diet-induced hyperlipidemia and mitigates weight gain in diet-induced obesity in mice. Biol. Pharm. Bull. 2009, 32, 2022–2028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roquetto, A.R.; Monteiro, N.E.S.; Moura, C.S.; Toreti, V.C.; De Pace, F.; Santos, A.; Park, Y.K.; Amaya-Farfan, J. Green propolis modulates gut microbiota, reduces endotoxemia and expression of TLR4 pathway in mice fed a high-fat diet. Food Res. Int. 2015, 76, 796–803. [Google Scholar] [CrossRef]
- Ichi, I.; Hori, H.; Takashima, Y.; Adachi, N.; Kataoka, R.; Okihara, K.; Hashimoto, K.; Kojo, S. The Beneficial Effect of Propolis on Fat Accumulation and Lipid Metabolism in Rats Fed a High-Fat Diet. J. Food Sci. 2009, 74, H127–H131. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, Y.-Q.; Tao, L.; Chen, X.; Jones, T.; Wang, K.; Hu, F.-L. Chinese Propolis Prevents Obesity and Metabolism Syndromes Induced by a High Fat Diet and Accompanied by an Altered Gut Microbiota Structure in Mice. Nutrients 2020, 12, 959. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, H. Effects of Propolis Extract and Propolis-Derived Compounds on Obesity and Diabetes: Knowledge from Cellular and Animal Models. Molecules 2019, 24, 4394. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.K.; Dayem, A.A.; Han, J.; Yin, Y.; Kim, K.; Saha, S.K.; Yang, G.-M.; Choi, H.Y.; Cho, S.-G. Molecular Mechanisms of the Anti-Obesity and Anti-Diabetic Properties of Flavonoids. Int. J. Mol. Sci. 2016, 17, 569. [Google Scholar] [CrossRef] [Green Version]
- Oršolić, N.; Jurčević, I.L.; Đikić, D.; Rogic, D.; Odeh, D.; Balta, V.; Junaković, E.P.; Terzić, S.; Jutrić, D. Effect of Propolis on Diet-Induced Hyperlipidemia and Atherogenic Indices in Mice. Antioxidants 2019, 8, 156. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.-Y.; Della-Fera, M.A.; Rayalam, S.; Ambati, S.; Hartzell, D.L.; Park, H.J.; Baile, C.A. Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sci. 2008, 82, 1032–1039. [Google Scholar] [CrossRef]
- Eseberri, I.; Miranda, J.; Lasa, A.; Churruca, I.; Portillo, M. Doses of Quercetin in the Range of Serum Concentrations Exert Delipidating Effects in 3T3-L1 Preadipocytes by Acting on Different Stages of Adipogenesis, but Not in Mature Adipocytes. Oxidative Med. Cell. Longev. 2015, 2015, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Frayn, K.N.; Karpe, F.; A Fielding, B.; A Macdonald, I.; Coppack, S.W. Integrative physiology of human adipose tissue. Int. J. Obes. 2003, 27, 875–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harmon, A.W.; Patel, Y.M. Naringenin inhibits phosphoinositide 3-kinase activity and glucose uptake in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 2003, 305, 229–234. [Google Scholar] [CrossRef]
- Huong, D.T.T.; Takahashi, Y.; Ide, T. Activity and mRNA levels of enzymes involved in hepatic fatty acid oxidation in mice fed citrus flavonoids. Nutrition 2006, 22, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Otto, T.; Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer 2017, 17, 93. [Google Scholar] [CrossRef] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Khacha-Ananda, S.; Tragoolpua, K.; Chantawannakul, P.; Tragoolpua, Y. Antioxidant and Anti-cancer Cell Proliferation Activity of Propolis Extracts from Two Extraction Methods. Asian Pac. J. Cancer Prev. 2013, 14, 6991–6995. [Google Scholar] [CrossRef] [Green Version]
- Wezgowiec, J.; Wieczynska, A.; Wieckiewicz, W.; Kulbacka, J.; Saczko, J.; Pachura, N.; Wieckiewicz, M.; Gancarz, R.; Wilk, K.A. Polish Propolis—Chemical Composition and Biological Effects in Tongue Cancer Cells and Macrophages. Molecules 2020, 25, 2426. [Google Scholar] [CrossRef]
- Valente, M.J.; Baltazar, A.F.; Henrique, R.; Estevinho, L.; Carvalho, M.; Estevinho, L.M. Biological activities of Portuguese propolis: Protection against free radical-induced erythrocyte damage and inhibition of human renal cancer cell growth in vitro. Food Chem. Toxicol. 2011, 49, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Valença, I.; Morais-Santos, F.; Miranda-Gonçalves, V.; Ferreira, A.M.; Almeida-Aguiar, C.; Baltazar, F. Portuguese propolis disturbs glycolytic metabolism of human colorectal cancer in vitro. BMC Complement. Altern. Med. 2013, 13, 184. [Google Scholar] [CrossRef] [Green Version]
- Silva-Carvalho, R.; Miranda-Gonçalves, V.; Ferreira, A.M.; Cardoso, S.M.; Sobral, A.J.; Almeida-Aguiar, C.; Baltazar, F. Antitumoural and antiangiogenic activity of Portuguese propolis in in vitro and in vivo models. J. Funct. Foods 2014, 11, 160–171. [Google Scholar] [CrossRef]
- Sulaiman, G.M.; Ad’Hiah, A.H.; Al-Sammarrae, K.W.; Bagnati, R.; Frapolli, R.; Bello, E.; Uboldi, S.; Romano, M.; Panini, N.; Scanziani, E.; et al. Assessing the anti-tumour properties of Iraqi propolis in vitro and in vivo. Food Chem. Toxicol. 2012, 50, 1632–1641. [Google Scholar] [CrossRef] [PubMed]
- Eom, H.S.; Lee, E.J.; Yoon, B.S.; Yoo, B.S. Propolis inhibits the proliferation of human leukaemia HL-60 cells by inducing apoptosis through the mitochondrial pathway. Nat. Prod. Res. 2010, 24, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Suzui; Ishihara, M.; Naoi, K.; Hashita, M.; Itoh, Y. Growth inhibitory activity of ethanol extracts of Chinese and Brazilian propolis in four human colon carcinoma cell lines. Oncol. Rep. 2009, 22, 349–354. [Google Scholar] [CrossRef]
- Alizadeh, A.M.; Afrouzan, H.; Djadid, N.D.; Sawaya, A.C.H.F.; Azizian, S.; Hemmati, H.R.; Mohagheghi, M.A.; Erfani, S. Chemoprotection of MNNG-initiated gastric cancer in rats using Iranian propolis. Arch. Iran. Med. 2015, 18, 18–23. [Google Scholar] [PubMed]
- Li, H.; Kapur, A.; Yang, J.X.; Srivastava, S.; McLeod, D.G.; Paredes-Guzman, J.F.; Daugsch, A.; Park, Y.K.; Rhim, J.S. Antiproliferation of human prostate cancer cells by ethanolic extracts of Brazilian propolis and its botanical origin. Int. J. Oncol. 2007, 31, 601–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braga, V.N.L.; Juanes, C.D.C.; Júnior, H.D.S.P.; De Sousa, J.R.; Cavalcanti, B.C.; Jamacaru, F.V.F.; De Lemos, T.L.G.; Dornelas, C.A.; Peres, H.D.S. Gum arabic and red propolis protecteting colorectal preneoplastic lesions in a rat model of azoxymethane. Acta Cir. Bras. 2019, 34, e201900207. [Google Scholar] [CrossRef]
- Ribeiro, D.R.; Alves, Â.V.F.; Dos Santos, E.P.; Padilha, F.F.; Gomes, M.Z.; Rabelo, A.S.; Cardoso, J.C.; Massarioli, A.P.; De Alencar, S.M.; De Albuquerque-Júnior, R.L.C. Inhibition of DMBA-induced Oral Squamous Cells Carcinoma Growth by Brazilian Red Propolis in Rodent Model. Basic Clin. Pharmacol. Toxicol. 2015, 117, 85–95. [Google Scholar] [CrossRef]
- Cekanova, M.; Rathore, K. Animal models and therapeutic molecular targets of cancer: Utility and limitations. Drug Des. Dev. Ther. 2014, 8, 1911. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, S.S.; Rahman, S.; Rupasinghe, H.P.V.; Vazhappilly, C.G. Dietary Flavonoids in p53—Mediated Immune Dysfunctions Linking to Cancer Prevention. Biomedicines 2020, 8, 286. [Google Scholar] [CrossRef]
- Drost, J.; Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 2018, 18, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Olson, B.; Li, Y.; Lin, Y.; Liu, E.T.; Patnaik, A. Mouse Models for Cancer Immunotherapy Research. Cancer Discov. 2018, 8, 1358–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szliszka, E.; Krol, W. Polyphenols isolated from propolis augment TRAIL-induced apoptosis in cancer cells. Evid.-Based Complement. Alter. Med. 2013, 2013, 731940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Awale, S.; Tezuka, Y.; Kadota, S. Cytotoxicity of Constituents from Mexican Propolis against a Panel of Six Different Cancer Cell Lines. Nat. Prod. Commun. 2010, 5, 1601–1606. [Google Scholar] [CrossRef] [Green Version]
- Ren, K.-W.; Li, Y.-H.; Wu, G.; Ren, J.-Z.; Lu, H.-B.; Li, Z.-M.; Han, X.-W. Quercetin nanoparticles display antitumor activity via proliferation inhibition and apoptosis induction in liver cancer cells. Int. J. Oncol. 2017, 50, 1299–1311. [Google Scholar] [CrossRef]
- Kubina, R.; Kabała-Dzik, A.; Dziedzic, A.; Bielec, B.; Wojtyczka, R.D.; Bułdak, R.J.; Wyszynska, M.; Stawiarska-Pięta, B.; Szaflarska-Stojko, E. The Ethanol Extract of Polish Propolis Exhibits Anti-Proliferative and/or Pro-Apoptotic Effect on HCT 116 Colon Cancer and Me45 Malignant Melanoma Cells In Vitro Conditions. Adv. Clin. Exp. Med. 2015, 24, 203–212. [Google Scholar] [CrossRef] [Green Version]
- De Mendonça, I.C.G.; de Moraes Porto, I.C.C.; do Nascimento, T.G.; de Souza, N.S.; dos Santos Oliveira, J.M.; dos Santos Arruda, R.E. Brazilian red propolis: Phytochemical screening, antioxidant activity and effect against cancer cells. BMC Complement. Alter. Med. 2015, 15, 357. [Google Scholar] [CrossRef] [Green Version]
- Xavier, J.D.A.; Valentim, I.B.; Camatari, F.O.; de Almeida, A.M.; Goulart, H.F.; Ferro, J.N.D.S. Polyphenol profile by UHPLC-MS/MS, anti-glycation, antioxidant and cytotoxic activities of several samples of propolis from the northeastern semi-arid region of Brazil. Pharmaceut. Biol. 2017, 55, 1884–1893. [Google Scholar] [CrossRef]
- Bonamigo, T.; Campos, J.F.; Oliveira, A.S.; Torquato, H.F.V.; Balestieri, J.B.P.; Cardoso, C.A.L.; Paredes-Gamero, E.J.; Souza, K.D.P.; Dos Santos, U.P. Antioxidant and cytotoxic activity of propolis of Plebeia droryana and Apis mellifera (Hymenoptera, Apidae) from the Brazilian Cerrado biome. PLoS ONE 2017, 12, e0183983. [Google Scholar] [CrossRef] [Green Version]
- Rzepecka-Stojko, A.; Kabała-Dzik, A.; Moździerz, A.; Kubina, R.; Wojtyczka, R.D.; Stojko, R.; Dziedzic, A.; Jastrzębska-Stojko, Ż.; Jurzak, M.; Buszman, E.; et al. Caffeic Acid Phenethyl Ester and Ethanol Extract of Propolis Induce the Complementary Cytotoxic Effect on Triple-Negative Breast Cancer Cell Lines. Molecules 2015, 20, 9242–9262. [Google Scholar] [CrossRef]
- Czyżewska, U.; Siemionow, K.; Ościłowska, I.; Miltyk, W. Proapoptotic Activity of Propolis and Their Components on Human Tongue Squamous Cell Carcinoma Cell Line (CAL-27). PLoS ONE 2016, 11, e0157091. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.-R.; Kunimasa, K.; Kumazawa, S.; Nakayama, T.; Kaji, K.; Uto, Y.; Hori, H.; Nagasawa, H.; Ohta, T. Correlation between antiangiogenic activity and antioxidant activity of various components from propolis. Mol. Nutr. Food Res. 2009, 53, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-M.; Chang, H.; Li, S.-Y.; Wu, I.-H.; Chiu, J.-H. Chrysin Inhibits Lipopolysaccharide-Induced Angiogenesis via Down-Regulation of VEGF/VEGFR-2(KDR) and IL-6/IL-6R Pathways. Planta Medica 2006, 72, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.-S.; Jeong, C.-H.; Choi, J.-S.; Kim, K.-J.; Jeong, J.-W. Antiangiogenic Effects of P -Coumaric Acid in Human Endothelial Cells. Phytother. Res. 2012, 27, 317–323. [Google Scholar] [CrossRef]
- Chung, T.-W.; Kim, S.-J.; Choi, H.-J.; Kwak, C.-H.; Song, K.-H.; Suh, S.-J.; Kim, K.-J.; Ha, K.-T.; Park, Y.-G.; Chang, Y.-C.; et al. CAPE suppresses VEGFR-2 activation, and tumor neovascularization and growth. J. Mol. Med. 2013, 91, 271–282. [Google Scholar] [CrossRef]
- Alday, E.; Valencia, D.; Carreño, A.L.; Picerno, P.; Piccinelli, A.L.; Rastrelli, L.; Robles-Zepeda, R.; Hernandez, J.; Velazquez, C. Apoptotic induction by pinobanksin and some of its ester derivatives from Sonoran propolis in a B-cell lymphoma cell line. Chem. Interact. 2015, 242, 35–44. [Google Scholar] [CrossRef]
- Asgharpour, F.; Moghadamnia, A.A.; Zabihi, E.; Kazemi, S.; Namvar, A.E.; Gholinia, H.; Motallebnejad, M.; Nouri, H.R. Iranian propolis efficiently inhibits growth of oral streptococci and cancer cell lines. BMC Complement. Altern. Med. 2019, 19, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Wang, Y.; Yin, X.; Liu, X.; Xuan, H. Ethanol extract of propolis and its constituent caffeic acid phenethyl ester inhibit breast cancer cells proliferation in inflammatory microenvironment by inhibiting TLR4 signal pathway and inducing apoptosis and autophagy. BMC Complement. Altern. Med. 2017, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Salim, E.I.; El-Magid, A.D.A.; Farara, K.M.; Maria, D.S.M. Antitumoral and Antioxidant Potential of Egyptian Propolis Against the PC3 Prostate Cancer Cell Line. Asian Pac. J. Cancer Prev. 2015, 16, 7641–7651. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.-B.; Tian, Q.; Zhang, J.-F.; Xiang, Y. Antitumor effects and molecular mechanisms of action of natural products in ovarian cancer (Review). Oncol. Lett. 2020, 20, 141. [Google Scholar] [CrossRef]
Origin of Propolis | Compounds Identified | Ref. |
---|---|---|
Canada | Benzoic acid, cinnamic acid, vanillinic acid, p-coumaric acid, ferulic acid, caffeic acid, palmitic acid, oleic acid, pinocembrin, pinobanksin, chrysin, galangin, isosakuranetin, alpinone, kaempferol, pinostrobin chalcone, pinocembrin chalcone. | [27] |
Mexico | Rutin, naringenin, hesperetin, pinocembrin, CAPE, chrysin, naringin, kaempferol, quercetin, acacetin, luteolin, pinostrobin, izalpinin, rhamnetin, galangin, alpinetin, dillenetin, cinnamic acid, caffeic acid, ferulic acid, syringic acid. | [28,29,30,31] |
Brazil (red, green and brown) | Caffeic acid, gallic acid, transferulic acid, p-coumaric acid, catechin, epicatechin, kaempferol, formononetin, quercetin, rutin hydrate, luteolin, artepillin C, CAPE. | [32,33,34,35] |
Southern Brazil | Gallic acid, caffeic acid and coumaric acid, artepillin C, pinocembrin. | [36] |
Southern Nigeria | Preylated isoflavones, stilbenoid compounds. | [37] |
Venezuela | Polyisoprenylated benzophenones and usual constituents found in samples of tropical regions. | [6,38,39] |
Chile | Apigenin, pinocembrin, quercetin, CAPE. | [40] |
Cameroon, Congo, Ethiopia and Kenya | Amyrin, lupeol, lupenona, ursolic acid, cycloartenol, ambonic acid and magniferolic acid. | [41,42,43] |
Egypt | Ferulic acid, cis- and trans-caffeic acids, pinostrobin, galangine. | [44] |
Morocco | Caffeic acid, p-coumaric acid, ferulic acid, naringenin, pinocembrin, chrysin, galangin, pinobanksin, and quercetin. | [45] |
Argelia | Pinocembrin, chicoric and caffeic acids and their esters, galangin, diterpenic acids, chrysin, aromatic acids. | [46,47] |
Greece | Protocatechuic acid, pinocembrin, kaempferol, apigenin, chrysin, galangin, chlorogenic acid, daidzein, ellagic acid, ferulicacid, gallicacid, hesperetin, hydroxytyrosol, luteolin, p-coumaric acid, pinobanksin, quercetin, tectochrysin, caffeic acid, sakuranetin, rhamnetin, CAPE, pinostrobin, syringic acid, kaempferide, acacetin, rutin, protocatechuic acid ethyl ester, resveratrol, phloridzin, maslinic acid, naringenin, eriodictyol, diosmetin, rosmarinic acid, myricetin, isorhamnetin, isosakuranetin, (+)-catechin, orientin, vitexin, trans-cinnamic acid, pinobanksin 3-O-acetate, cinnamylideneacetic acid, artepillin C, adipic acid, ursolic acid, suberic acid, genistein, hesperidin, corosolic acid, betulinic acid, isoferulic acid, naringin, tangeretin, diosmin, vanillin, chrysoeriol. | [48] |
Poland | Benzoic acid, dihydrocinnamic acid, cinnamic acid, p-hydroxybenzoic acid, vanillic acid, p-coumaric acid, p-methoxycinnamic acid, ferulic acid, dimethoxycinnamic acid, isoferulic acid, caffeic acid, palmitic acid, linoleic acid, oleic acid, syringic acid, cichoric acid, pinostrobin chalcone, pinocembrin chalcone, pinocembrin, pinobanksin chalcone, sakuranetin, pinobanksin, chrysin, galangin, apigenin, kaempferol, quercetin, acacetin, (+/−)-pinostrobin, (+)-catechin, isosakuranetin chalcone, isosakuranetin, alpinon chalcone, alpinon and some esters. | [49,50] |
China | Caffeic acid, p-coumaric acid, ferulic acid, iosuofmeraurlic acid, pinobanksin, naringenin, quercetin, kaempferol, apigenin, pinocembrin, chrysin, CAPE, galangin. | [51] |
Turkey | Gallic acid, (±)-catechin, caffeic acid, syringic acid, epigallokatechin, p-coumaric acid, trans-ferulic acid, trans-isoferulic acid, myricetin, trans-cinnamic acid, daidzein, luteolin, pinobanksin, (±)-naringenin, apigenin, kaempferol, chrysin, pinocembrin, galangin, CAPE. | [52] |
Propolis Administered | Model/Diabetes Type | Effects | Ref. |
---|---|---|---|
Nigeria | Alloxan-induced Wistar rats | Decrease fasting blood glucose, reduces serum MDA, elevate serum SOD, improves histological in the pancreas and liver. | [89] |
Alloxan-induced rats | Decrease fasting blood glucose, VLDL and cholesterol, partially decrease HbA1c, increases HDL. | [90] | |
Morocco | STZ-induced type 2 diabetic Wistar rats | Lower blood glucose and lactic acid dehydrogenase, increases body weight, and ameliorates dyslipidemia and abnormal liver and kidney function caused by diabetes. | [93] |
Saudi Arabia | STZ-induced type I diabetic mice | Improves body weight, decrease blood glucose, increases serum insulin, restore plasma cytokine (IL-1β, IL-6 and TNF-α), ROS levels and lipid profile to nearly normal levels. | [94] |
STZ-induced type 2 diabetic rats | Reduces glucose levels and lipid peroxide, increases SOD, CAT, and glutathione-S-transferase enzyme activities, ameliorates carboxymethyl lysine, IL-6 and immunoglobulins. | [79] | |
Malaysia | STZ-induced type 1 diabetic SD rats | Decrease the fasting blood glucose. | [95] |
STZ-induced type 2 diabetic SD rats | In both treatments, propolis and propolis combined with metformin, fasting blood glucose and serum insulin level decreased; body weight, pancreatic antioxidant enzymes, total antioxidant capacity, IL-10 and PCNA increased; MDA, NF-kB, TNF-α, IL-1β and cleaved caspase-3 decreased; histopathologically, islet area and number of beta cells increased comparable to normal control. Propolis from Malaysia showed in vitro α-glucosidase inhibition activity. | [96] | |
Iran | STZ-induced type 1 diabetic Wistar rats | Inhibits body weight loss, reduces serum glucose. Reduces MDA content, increases activity of SOD, GPx, and total antioxidant activity in the kidney tissue. | [97] |
Indonesia | S961 peptide- induced type 2 diabetic mice (BALB/c) | Lower blood glucose level in a dose-dependent manner. | [98] |
Taiwan | HFD-STZ-induced type 2 diabetic SD rats | Delay the development and progression of diabetes and reduces the severity of β-cell failure; attenuates the inflammation (serum TNF-α, IL-1β, and IL-6) and ROS; reduces MDA content; increases activity of SOD, GPx and total antioxidant activity in kidney tissue; promotes hepatic genes PPAR-α and CYP7A1. | [99] |
Korea | Hepatocytes | Reduces expression and enzyme activity of G6Pase by inhibiting the phosphorylation of serine and tyrosine, which are involved in the activation of GSK3α and β, which maintain G6Pase gene expression. | [100] |
China (encapsulated propolis) | HFD and low-dose STZ- induced type 2 diabetic SD rats | Attenuates fasting blood glucose and triglycerides, improves insulin action. | [101] |
China and Brazil | STZ-induced type 1 diabetic SD rats | Chinese propolis: decrease HbA1c levels. Brazilian propolis: slightly decrease total cholesterol levels. Both propolis inhibits body weight loss, decrease blood glucose, reduces levels of alanine transaminase, aspartate transaminase, blood urea nitrogen and urine microalbuminuria-excretion rate. | [102] |
Brazil (green propolis) | STZ-induced type 1 diabetic Wistar rats | Ameliorates body weight, decrease serum glucose, triglycerides, total cholesterol and LDL-C, increase serum HDL-C, reduces pancreatic MDA and serum NO, increases serum GSH and CAT, and pancreatic SOD. | [103] |
Brazil | Non-insulin-dependent type 2 diabetic OLETF rats | Decrease plasma levels insulin and insulin resistance index HOMA-IR. | [104] |
OLETF rats | Decrease blood glucose associated with a reduction in plasma insulin levels. | [105] |
Propolis Administered | Model/Diabetes Type | Identified Compounds | Effects | Ref. |
---|---|---|---|---|
China | STZ-induced type 1 diabetic rats | Caffeic acid, p-coumaric acid, ferulic acid, isoferulic acid, pinobanksin, quercetin, kaempferol, apigenin, pinocembrin, chrysin, CAPE, galangin. | Attenuates diabetes via directly decreasing the levels of fasting blood glucose and HbA1c; reduces MDA, ROS and RNS. | [112] |
Mexico | STZ-induced type 1 diabetic mice | Pinocembrin, quercetin, naringin, naringenin, kaempferol, acacetin, luteolin, chrysin. | Decreases blood glucose and loss of body weight; increases plasma insulin levels and activities of the enzymes SOD, CAT, and GPx in serum. | [29] |
Brazil | Skeletal muscle cells (L6 myotubes) | Artepillin C, coumaric acid, and kaempferide | Promotes GLUT-4 translocation and glucose uptake activity by PI3K and AMPK phosphorylation in a dose-dependent manner. | [110] |
Propolis Administered (Capsules) | Type Study/Characteristics of the Patients | Effects | Ref. |
---|---|---|---|
Iran | Randomized double-blind clinical trial. 94 type 2 diabetes mellitus patients. Propolis group: 55.40 ± 9.09 year; 33 female, 17 male. Placebo group: 54.86 ± 8.89 year; 28 female, 16 male. | Improves serum levels of HbA1c, two-hour postprandial glucose, blood insulin and insulin resistance indices (including HOMA-IR and HOMA-β); blood C-reactive protein and TNF-α levels decreases; notable reduction in serum liver transaminases (ALT and AST) and blood urea nitrogen concentrations. | [124] |
Randomized, double-blind, placebo-controlled, clinical trial. 60 type 2 diabetes mellitus patients. Propolis group: 51.81 ± 6.35 year; 30 patients, unspecified sex. Placebo group: 49.05 ± 8.2 year; 30 patients, unspecified sex. | Decreases fructosamine and the level of oxidized LDL, and CAT activity improves. | [125] | |
Randomized, double-blind, placebo-controlled, clinical trial. 60 type 2 diabetes mellitus patients. Propolis group: 51.81 ± 6.35 year; 30 patients, female and male. Placebo group: 49.05 ± 8.2 year; 30 patients, female and male. | Decreases fasting blood glucose, two-hour postprandial glucose, blood insulin, insulin resistance index (HOMA-IR) and HbA1c; increases blood levels of total antioxidant capacity and activity of GPx and SOD. | [126] | |
Randomized, double-blind, placebo-controlled, clinical trial. 57 type 2 diabetes mellitus patients. Propolis group: 51.3 ± 6.57 year; 17 female, 13 male. Placebo group: 56.07 ± 9.02 year; 11 female, 16 male. | Decreases fasting blood glucose, HbA1c, cholesterol total and LDL. | [127] | |
China | Randomized controlled trial. 61 type 2 diabetes mellitus patients. Propolis group: 57.7 ± 7.5 year; 20 female, 11 male. Control group: 60.6 ± 8.4 year; 16 female, 14 male. | Increases serum GSH and reduces LDH. | [128] |
Brazil | Randomized controlled trial. 65 type 2 diabetes mellitus patients. Propolis group: 59.5 ± 8.0 year; 15 female, 18 male. Control group: 60.8 ± 8.6 year; 18 female, 14 male. | Increases GSH in blood and decreases LDH and TNF-α. | [129] |
Propolis Administered | In Vitro/In Vivo Model | Effects | Ref. |
---|---|---|---|
Brazil (red propolis) | 3T3-L1 preadipocytes | Induces adiponectin mRNA, probably through activation of the adiponectin promoter by PPAR-γ. | [142] |
Brazil (green propolis) | Differentiated 3T3-L1 adipocytes | Elevates leptin expression. | [143] |
HFD-induced obese C57BL/6 mice | Suppress feeding and increases leptin mRNA production in the visceral adipose tissues. | ||
C57BL/6JHamSlc-ob/ob mice | Decreases mesenteric adipose tissue mass, plasma cholesterol levels attenuate. | [146] | |
Brazil | HFD-induced obese C57BL/6N mice | Reduces body weight gain, weight of visceral adipose tissue, liver and serum triglycerides, cholesterol, and non-esterified fatty acids; down-regulates of mRNA expression associated with fatty acid biosynthesis, including fatty acid synthase, acetyl-CoA carboxylase a, and sterol regulatory element binding protein in liver. | [147] |
HFD-induced C57BL/6 mice | Decreases blood triglyceride levels | [148] | |
HFD-induced obese Wistar rats | Repress weight gain of mesenteric, perirenal, and total white adipose tissues; liver PPAR-α protein level was higher; liver HMG-CoA reductase protein and level of protein PPAR-γ in the adipose tissues were lower; reduces level of cholesterol and triglyceride in plasma and liver. | [149] | |
China | HFD-induced C57BL/6 mice | Reduces body weight and improves insulin resistance in a dose-dependent manner; reverses liver weight loss and triglyceride accumulation in association with hepatic steatosis. | [150] |
Propolis Administered | Patient Cells/ Cell Lines/Model | Effects | Ref. |
---|---|---|---|
Poland | SCC-25. | Affects cell viability and cellular proliferation; presents cancer-selective antiproliferative activity. | [162] |
Portugal (Northeast and Centre) | Cancerous renal cells derived from renal carcinoma patients; A-498. | Both exhibits selective antiproliferative activity against malignant cells; inhibits cell growth of cancerous renal cells derived from renal carcinoma patients in a concentration-dependent manner. In A-498 cell line, propolis from northeast of Portugal exerted higher antitumor activity than propolis from central Portugal. | [163] |
Portugal | HCT-15. | Exhibits antitumor activity both in terms of inhibition of viability and cell death in a dose- and time-dependent way; decreases glucose consumption and lactate production. | [164] |
MDA-MB-468, MCF7, 22RV1, U251, SW1088. | Decreases cell viability of tumor cells; decreases MDA-MB-231 and DU145 cell proliferation and migration, with cell cycle changes, and increased cell death. | [165] | |
Iraq | HL-60, HCT-116. | Induces antitumor effect in HL-60 cells, the apoptosis was associated with down-regulation of Bcl-2 and activation of Bax, and the increased levels of γ-H2AX in a dose dependent manner; induces inhibitory effect in colony potential of HCT-116 cells and necrotic features were observed, size of cells was dramatically increased by swelling of cytoplasm and loss of membrane integrity, cell rupture and release of cellular contents; induces cell cycle perturbations in both cell lines. | [166] |
HCT-116 tumor-bearing mice | Administration of propolis was associated with a decrease in mitotic cells, increased p53 and decreased Ki-67 expression of cells in tumor sections. | ||
Korea | HL-60 | Decreases proliferation dose- and time-dependent manner; induces activation of caspase-3 and ADP-ribose polymerase; induces release of cytochrome c from mitochondria to cytosol. | [167] |
China | HCT-116, HT29, SW480. | Causes dose-dependent antitumor activity in all cells. In HCT-116, induces apoptosis and causes a dose-dependent increase in the cellular mRNA levels of p21CIP1 and p53. | [168] |
Thailand | A549, HeLa. | Presents antitumor activity. | [161] |
Iran | MNNG-induced gastric cancer rats. | Declines tumor incidence, number of lesions, structural abnormalities, and beta-catenin; induces the expression of proapoptotic Bax and reduces antiapoptotic Bcl-2 expression. | [169] |
Mexico | HeLa, SiHa, CaSki. | Presents antitumor activity. | [31] |
Brazil | OVCAR-8, HCT-116, SF-295. | Presents antitumor activity. | [56] |
Brazil (southeastern and southern) | DU145, PC-3, RC-58T/h/SA#4. | Both presents antitumor activity more marked in DU145 and PC3; in RC58T/h/SA#4 cells, propolis from southeastern induces antitumor activity that was associated with S phase arrest, and showed inhibition of cyclin D1, CDK4 and cyclin B1 expression; propolis from southern induces antitumor activity that was associated with G2 arrest, and also showed higher induction of p21 expression. | [170] |
Brazilian (red propolis) | Azoxymethane-induced colorectal preneoplastic lesions in rats. | Reduces number of aberrant crypt foci in distal colon and TBARS levels in peripheral blood. | [171] |
DMBA-induced oral squamous cell carcinomas in rats. | Inhibits 40% of oral squamous cell carcinomas growth and promoted a three-week delay in development of clinically detectable tumors. | [172] |
Propolis Administered | Cell Lines | Identified Compounds | Effects | Ref. |
---|---|---|---|---|
Poland | Me45, HCT-116 | Pinostrobin, kaempferol, galangin, chrysin, apigenin, quercetin, gallic acid, ferulic acid, caffeic acid, coumaric acid and benzoic acid. | Presents antitumor activity in a dose-dependent manner; HCT-116 cells are more susceptible and showed typical changes for cell necrosis; Me45 cells death was mainly through apoptotic pathway. | [180] |
South Poland | Caco-2, DLD-1, HT-29, H23, A549, MCF-7, MDA-MB-468, LN18, U87. | Aromatic acids, fatty acids, flavonoids, chalcones and some esters. | Strong antitumor effect on Caco-2 cells; decreases cell numbers in a dose-dependent manner in cells H23, A549, MCF-7, MDA-MB-468, LN18 and U87. | [49] |
Brazilian (red, green and brown propolis from Northeast, South, Southeast and Midwest) | B16F10, SF-295, OVCAR-8, HCT-116, HL-60, Jurkat, MOLT-4, K562 | Coumaric acid, p-coumaric acid, gallic acid, caffeic acid, ferulic acid, cinnamic acid, artepillin C, genistein, kaempferol, catechin, epicatechin, daidzein, naringenin, pinobanksin, formononetin, pinostrobin, rutin, quercetin, luteolin, apigenin, terpenes, tocopherol. | Presents antitumor activity. | [34,181,182,183] |
Propolis/Compound Administered | Cell Lines | Effects | Ref. |
---|---|---|---|
Poland/CAPE | MDA-MB-231, Hs578T. | Both presents antitumor activity in a dose-dependent and exposure time-dependent manner. | [184] |
Poland/chrysin, galangin, pinocembrin, caffeic acid, p-coumaric acid, ferulic acid | CAL-27. | Propolis, individual components and mixture of compounds presents antitumor activity in a dose dependent manner; antitumor mechanism induced by these components was through apoptosis. The propolis activates caspases -3, -8, -9, and mixture of compounds are the most potent inducer of apoptosis thorough both intrinsic and extrinsic pathway. | [185] |
Iran/quercetin | A431, KB. | Both showed a dose-dependent antitumor effect. | [191] |
Saudi Arabia/ethyl acetate fraction | Jurkat, A549, HepG2. | Propolis presents antitumor activity in a concentration-dependent manner through apoptosis; tubulin and/or microtubules are the cellular targets of the ethyl acetate fraction. | [54] |
China/CAPE | MDA-MB-231 | Both activates caspase 3 and PARP to induce cell apoptosis, upregulated LC3-II and decreases p62 level to induces autophagy during the process, down-regulates molecules TLR4, MyD88, IRAK4, TRIF and NF-κB p65; propolis inhibits proliferation, migration and nitric oxide production. | [192] |
Egypt | PC3 | Activates cellular apoptosis and increased the mRNA expression levels for p53 and Bax genes. | [193] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera-Yañez, N.; Rivera-Yañez, C.R.; Pozo-Molina, G.; Méndez-Catalá, C.F.; Méndez-Cruz, A.R.; Nieto-Yañez, O. Biomedical Properties of Propolis on Diverse Chronic Diseases and Its Potential Applications and Health Benefits. Nutrients 2021, 13, 78. https://doi.org/10.3390/nu13010078
Rivera-Yañez N, Rivera-Yañez CR, Pozo-Molina G, Méndez-Catalá CF, Méndez-Cruz AR, Nieto-Yañez O. Biomedical Properties of Propolis on Diverse Chronic Diseases and Its Potential Applications and Health Benefits. Nutrients. 2021; 13(1):78. https://doi.org/10.3390/nu13010078
Chicago/Turabian StyleRivera-Yañez, Nelly, C. Rebeca Rivera-Yañez, Glustein Pozo-Molina, Claudia F. Méndez-Catalá, Adolfo R. Méndez-Cruz, and Oscar Nieto-Yañez. 2021. "Biomedical Properties of Propolis on Diverse Chronic Diseases and Its Potential Applications and Health Benefits" Nutrients 13, no. 1: 78. https://doi.org/10.3390/nu13010078
APA StyleRivera-Yañez, N., Rivera-Yañez, C. R., Pozo-Molina, G., Méndez-Catalá, C. F., Méndez-Cruz, A. R., & Nieto-Yañez, O. (2021). Biomedical Properties of Propolis on Diverse Chronic Diseases and Its Potential Applications and Health Benefits. Nutrients, 13(1), 78. https://doi.org/10.3390/nu13010078