The “Adipo-Cerebral” Dialogue in Childhood Obesity: Focus on Growth and Puberty. Physiopathological and Nutritional Aspects
Abstract
:1. Introduction
2. Adipokines in Childhood Obesity
2.1. Leptin
- -
- first, insulin drive on leptin synthesis and release, which can partly explain hyperleptinemia in obesity; experimental data in animals and in humans with a hyperinsulinemic–euglycemic clamp suggest that this phenomenon is observed with supraphysiological insulin levels in humans, with physiological levels in rodents [67].
- -
2.2. Resistin
2.3. Chemerin
Vaspin
2.4. Adipocyte-Fatty-Acid-Binding Protein
2.5. Adiponectin
2.6. Visfatin
2.7. Apelin
3. Leptin–Kisspeptin Interplay in Pubertal Development
4. GH/IGF-1 Axis: The Model of GH Deficiency
5. Nutritional Aspects
5.1. Traditional Approach
5.1.1. Dietary Approach: The Role of Carbohydrate and Fat Intake
5.1.2. The Role of Lifestyle: Physical Exercise
5.2. New Approaches
5.2.1. Hormones and Inflammation: A Viable Option?
5.2.2. The Paradigm Shift: Gut Microbiome and Obesity
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADSF | adipose tissue-specific secretory factor |
BOBP | adipocyte-fatty-acid-binding protein |
AgRP | agouti-related peptide |
AVPV | antero-ventral periventricular nucleus |
BCAAs | branched-chain amino acids |
BMI | body mass index |
C-DII | Children’s Dietary Inflammatory Index |
CART | cocaine-and-amphetamine-regulated-transcript |
cKD | ketogenic diets |
CMKLR1 | chemokine-like receptor 1 |
CNS | central nervous system |
CRP | C reactive protein |
CSF | cerebro-spinal fluid |
DHEA | dehydroepiandrosterone |
FXR | farnesoid X receptor |
FGF-21 | Fibroblast growth factor-21 |
FIZZ3 | found in inflammatory zone 3 |
GABA | gamma-aminobutyric acid |
GH | growth hormone |
GnRH | gonadotropin-releasing hormone |
HDL | High-density lipoprotein |
HL | lateral nucleus |
HVM | hypothalamic ventromedial |
IGF-1 | insulin-like growth factor-1 |
IGFBP | IGF binding protein |
IL | interleukin |
IR | insulin resistance |
IRS | insulin-related substrate |
LCD | low-carbohydrate diet |
LCLFD | low-carbohydrate and low-fat diet |
LEP-R | leptin receptor |
LH | luteinizing hormone |
LGI | low-grade inflammation |
Mcr | melanocortin receptor |
MetS | metabolic syndrome |
NAFLD | non-alcoholic fatty liver disease |
NAD | nicotinamide adenine dinucleotide |
NPY | neuropeptide Y |
OS | oxidative stress |
POMC | proopiomelanocortin |
PPM1K | protein phosphatase Mg2+/Mn2+-dependent 1k |
T2DM | type 2 diabetes mellitus |
TCDCA | taurochenodeoxycholic acid |
TNF | tumor necrosis factor |
TSH | thyroid-stimulating hormone |
UCP-1 | uncoupling protein-1 |
WHO | World Health Organization |
α-MSH | α-melanocyte-stimulating hormone |
References
- Codoñer-Franch, P.; Valls-Bellés, V.; Arilla-Codoñer, A.; Alonso-Iglesias, E. Oxidant mechanisms in childhood obesity: The link between inflammation and oxidative stress. Transl. Res. 2011, 158, 369–384. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- Whitaker, R.C.; Wright, J.A.; Pepe, M.S.; Seidel, K.D.; Dietz, W.H. Predicting Obesity in Young Adulthood from Childhood and Parental Obesity. N. Engl. J. Med. 1997, 337, 869–873. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.-H.; Lee, J.-H.; Kim, J.-W.; Cho, J.H.; Choi, Y.H.; Ko, S.-H.; Zimmet, P.; Son, H.-Y. Epidemic obesity and type 2 diabetes in Asia. Lancet 2006, 368, 1681–1688. [Google Scholar] [CrossRef]
- Lakshman, R.; Elks, C.E.; Ong, K.K. Childhood Obesity. Circulation 2012, 126, 1770–1779. [Google Scholar] [CrossRef]
- Bussler, S.; Penke, M.; Flemming, G.; Elhassan, Y.; Kratzsch, J.; Sergeyev, E.; Lipek, T.; Vogel, M.; Spielau, U.; Körner, A.; et al. Novel Insights in the Metabolic Syndrome in Childhood and Adolescence. Horm. Res. Paediatr. 2017, 88, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Aristizabal, J.C.; Barona, J.; Hoyos, M.; Ruiz, M.; Marin, C.R. Association between anthropometric indices and cardiometabolic risk factors in pre-school children. BMC Pediatr. 2015, 15, 170. [Google Scholar] [CrossRef] [Green Version]
- Luciano, R.; Shashaj, B.; Spreghini, M.; Del Fattore, A.; Rustico, C.; Sforza, R.W.; Morino, G.S.; Dallapiccola, B.; Manco, M. Percentiles of serum uric acid and cardiometabolic abnormalities in obese Italian children and adolescents. Ital. J. Pediatr. 2017, 43, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, M.; Oliveira, T.; Fernandes, R. Biochemistry of adipose tissue: An endocrine organ. Arch. Med. Sci. 2013, 9, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, H.; Mori, M. The brain–adipose axis: A review of involvement of molecules. Nutr. Neurosci. 2005, 8, 7–20. [Google Scholar] [CrossRef]
- Beall, C.; Hanna, L.; Ellacott, K.L.J. CNS Targets of Adipokines. Compr. Physiol. 2017, 7, 1359–1406. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.-Y.; Cheng, K.K.-Y.; Hoo, R.L.-C.; Siu, P.M.-F.; Yau, S.-Y. The Novel Perspectives of Adipokines on Brain Health. Int. J. Mol. Sci. 2019, 20, 5638. [Google Scholar] [CrossRef] [Green Version]
- De la Monte, S.M.; Wands, J.R. Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: Relevance to Alzheimer’s disease. J. Alzheimer’s Dis. 2005, 7, 45–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoeckel, L.E.; Arvanitakis, Z.; Gandy, S.; Small, D.; Kahn, C.R.; Pascual-Leone, A.; Pawlyk, A.; Sherwin, R.; Smith, P. “White Paper” meeting summary and catalyst for future inquiry: Complex mechanisms linking neurocognitive dysfunction to insulin resistance and other metabolic dysfunction. F1000Research 2016, 5, 353. [Google Scholar] [CrossRef] [Green Version]
- Mancini, A.; Leo, F.; Di Segni, C.; Raimondo, S.; Rossodivita, A.N. Relationship between Hormonal Milieu and Oxidative Stress in Childhood Obesity: A Physiopathological Basis for Antioxidant Treatment and Prevention of Cardiovascular Risk. In Anti-Obesity Drug Discovery and Development; Bentham Science Publishers: Sharjah, United Arab Emirates, 2017; pp. 149–203. [Google Scholar] [CrossRef]
- Mancini, A.; Currò, D.; Cipolla, C.; Barini, A.; Bruno, C.; Vergani, E.; Di Segni, C.; Guidi, F.; Nicolotti, N.; Silvestrini, A.; et al. Evaluation of Kisspeptin levels in prepubertal obese and overweight children: Sexual dimorphism and modulation of antioxidant levels. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 941–949. [Google Scholar]
- Kotnik, P.; Fischer-Posovszky, P.; Wabitsch, M. Endocrine and Metabolic Effects of Adipose Tissue in Children and Adolescents/Endokrina in Presnovna Funkcija Maščobnega Tkiva Pri Otrocih in Mladostnikih. Slov. J. Public Health 2015, 54, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Shao, J. Role of adipocytokines in obesity-associated insulin resistance. J. Nutr. Biochem. 2008, 19, 277–286. [Google Scholar] [CrossRef]
- Yan, Q.-W.; Yang, Q.; Mody, N.; Graham, T.E.; Hsu, C.-H.; Xu, Z.; Houstis, N.E.; Kahn, B.B.; Rosen, E.D. The Adipokine Lipocalin 2 Is Regulated by Obesity and Promotes Insulin Resistance. Diabetes 2007, 56, 2533–2540. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Jin, D.; Zhang, Y.; Wright, W.; Bazuine, M.; Brockman, D.A.; Bernlohr, D.A.; Chen, X. Lipocalin-2 Deficiency Impairs Thermogenesis and Potentiates Diet-Induced Insulin Resistance in Mice. Diabetes 2010, 59, 1376–1385. [Google Scholar] [CrossRef] [Green Version]
- Law, I.K.; Xu, A.; Lam, K.S.; Berger, T.; Mak, T.W.; Vanhoutte, P.M.; Liu, J.T.; Sweeney, G.; Zhou, M.; Yang, B.; et al. Lipocalin-2 Deficiency Attenuates Insulin Resistance Associated With Aging and Obesity. Diabetes 2010, 59, 872–882. [Google Scholar] [CrossRef] [Green Version]
- Curro, D.; Vergani, E.; Bruno, C.; Comi, S.; D’Abate, C.; Mancini, A. Plasmatic lipocalin-2 levels in chronic low-grade inflammation syndromes: Comparison between metabolic syndrome, total and partial adult growth hormone deficiency. BioFactors 2020, 46, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Kanaka-Gantenbein, C.; Margeli, A.; Pervanidou, P.; Sakka, S.; Mastorakos, G.; Chrousos, G.P.; Papassotiriou, I. Retinol-Binding Protein 4 and Lipocalin-2 in Childhood and Adolescent Obesity: When Children Are Not Just “Small Adults”. Clin. Chem. 2008, 54, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Corripio, R.; Gónzalez-Clemente, J.-M.; Pérez-Sánchez, J.; Näf, S.; Gallart, L.; Nosàs, R.; Vendrell, J.; Caixàs, A. Weight loss in prepubertal obese children is associated with a decrease in adipocyte fatty-acid-binding protein without changes in lipocalin-2: A 2-year longitudinal study. Eur. J. Endocrinol. 2010, 163, 887–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceia, F.; Fonseca, C.; Mota, T.; Morais, H.; Matias, F.; de Sousa, A.; Oliveira, A.G. On behalf of the EPICA Investigators Prevalence of chronic heart failure in Southwestern Europe: The EPICA study. Eur. J. Heart Fail. 2002, 4, 531–539. [Google Scholar] [CrossRef]
- Yamawaki, H.; Tsubaki, N.; Mukohda, M.; Okada, M.; Hara, Y. Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels. Biochem. Biophys. Res. Commun. 2010, 393, 668–672. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.-Z.; Lee, M.-J.; Hu, H.; Pray, J.; Wu, H.-B.; Hansen, B.C.; Shuldiner, A.R.; Fried, S.K.; McLenithan, J.C.; Gong, D.-W. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: Possible role in modulating insulin action. Am. J. Physiol. Endocrinol. Metab. 2006, 290, E1253–E1261. [Google Scholar] [CrossRef]
- Brunetti, L.; Di Nisio, C.; Orlando, G.; Ferrante, C.; Vacca, M. The Regulation of Feeding: A Cross Talk between Peripheral and Central Signalling. Int. J. Immunopathol. Pharmacol. 2005, 18, 201–212. [Google Scholar] [CrossRef]
- Catli, G.; Anik, A.; Abaci, A.; Kume, T.; Bober, E. Low Omentin-1 Levels Are Related with Clinical and Metabolic Parameters in Obese Children. Exp. Clin. Endocrinol. Diabetes 2013, 121, 595–600. [Google Scholar] [CrossRef]
- Prats-Puig, A.; Bassols, J.; Bargalló, E.; Mas-Parareda, M.; Ribot, R.; Soriano-Rodríguez, P.; Berengüí, À.; Díaz, M.; De Zegher, F.; Ibanez, L.; et al. Toward an Early Marker of Metabolic Dysfunction: Omentin-1 in Prepubertal Children. Obesity 2011, 19, 1905–1907. [Google Scholar] [CrossRef]
- Rothermel, J.; Lass, N.; Barth, A.; Reinehr, T. Link between omentin-1, obesity and insulin resistance in children: Findings from a longitudinal intervention study. Pediatr. Obes. 2020, 15, e12605. [Google Scholar] [CrossRef]
- Goralski, K.; McCarthy, T.C.; Hanniman, E.A.; Zabel, B.A.; Butcher, E.C.; Parlee, S.D.; Muruganandan, S.; Sinal, C.J. Chemerin, a Novel Adipokine That Regulates Adipogenesis and Adipocyte Metabolism. J. Biol. Chem. 2007, 282, 28175–28188. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.-Y.; Lee, D.C.; Chu, S.H.; Jeon, J.; Lee, M.K.; Im, J.A.; Lee, J.W. Chemerin levels are positively correlated with abdominal visceral fat accumulation. Clin. Endocrinol. 2012, 77, 47–50. [Google Scholar] [CrossRef]
- Chu, S.H.; Lee, M.K.; Ahn, K.Y.; Im, J.-A.; Park, M.S.; Lee, D.-C.; Jeon, J.Y.; Lee, J.W. Chemerin and Adiponectin Contribute Reciprocally to Metabolic Syndrome. PLoS ONE 2012, 7, e34710. [Google Scholar] [CrossRef] [PubMed]
- Arslan, N.; Erdur, B.; Aydin, A. Hormones and cytokines in childhood obesity. Indian Pediatr. 2010, 47, 829–839. [Google Scholar] [CrossRef]
- Van der Veer, E.; Nong, Z.; O’Neil, C.; Urquhart, B.; Freeman, D.; Pickering, J.G. Pre–B-Cell Colony–Enhancing Factor Regulates NAD+-Dependent Protein Deacetylase Activity and Promotes Vascular Smooth Muscle Cell Maturation. Circ. Res. 2005, 97, 25–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garten, A.; Schuster, S.; Penke, M.; Gorski, T.; De Giorgis, T.; Kiess, W. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat. Rev. Endocrinol. 2015, 11, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Salama, H.M.; Galal, A.; Motawie, A.; Kamel, A.F.; Ibrahim, D.; Aly, A.; Hassan, E.A. Adipokines Vaspin and Visfatin in Obese Children. Open Access Maced. J. Med. Sci. 2015, 3, 563–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boucher, J.; Masri, B.; Daviaud, D.; Gesta, S.; Guigneé, C.; Mazzucotelli, A.; Castan-Laurell, I.; Tack, I.; Knibiehler, B.; Carpeéneé, C.; et al. Apelin, a Newly Identified Adipokine Up-Regulated by Insulin and Obesity. Endocrinology 2005, 146, 1764–1771. [Google Scholar] [CrossRef]
- Xu, S.; Tsao, P.S.; Yue, P. Apelin and insulin resistance: Another arrow for the quiver? J. Diabetes 2011, 3, 225–231. [Google Scholar] [CrossRef]
- Antunes, H.; Santos, C.; Carvalho, S. Serum leptin levels in overweight children and adolescents. Br. J. Nutr. 2009, 101, 1262–1266. [Google Scholar] [CrossRef] [Green Version]
- Donato, J.; Cravo, R.M.; Frazao, R.; Elias, C.F. Hypothalamic Sites of Leptin Action Linking Metabolism and Reproduction. Neuroendocrinology 2011, 93, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Bjørbaek, C. Central leptin receptor action and resistance in obesity. J. Investig. Med. 2009, 57, 789–794. [Google Scholar] [CrossRef]
- Wong, I.P.; Nguyen, A.D.; Khor, E.C.; Enriquez, R.F.; Eisman, J.; Sainsbury, A.; Herzog, H.; Baldock, P. Neuropeptide Y is a critical modulator of Leptin’s regulation of cortical bone. J. Bone Miner. Res. 2013, 28, 886–898. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.B.; Reams, G.P.; Spear, R.M.; Freeman, R.H.; Villarreal, D. Leptin: Linking obesity, the metabolic syndrome, and cardiovascular disease. Curr. Hypertens. Rep. 2008, 10, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Wauman, J.; Tavernier, J. Leptin receptor signaling: Pathways to leptin resistance. Front. Biosci. 2011, 16, 2771–2793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernasconi, S.; Iughetti, L. L’obesità in Età Evolutiva; McGraw-Hill: Milan, Italy, 2005. [Google Scholar]
- Funahashi, H.; Yada, T.; Suzuki, R.; Shioda, S. Distribution, function, and properties of leptin receptors in the brain. Int. Rev. Cytol. 2003, 224, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.-M.; Hess, J.; Yu, H.; Hey, P.J.; Van Der Ploeg, L.H. Differential expression of mRNA for leptin receptor isoforms in the rat brain. Mol. Cell. Endocrinol. 1997, 133, 1–7. [Google Scholar] [CrossRef]
- Kelesidis, T.; Kelesidis, I.; Chou, S.; Mantzoros, C.S. Narrative Review: The Role of Leptin in Human Physiology: Emerging Clinical Applications. Ann. Intern. Med. 2010, 152, 93–100. [Google Scholar] [CrossRef]
- Ramos, E.J.; Meguid, M.M.; Campos, A.C.; Coelho, J.C. Neuropeptide Y, α-melanocyte–stimulating hormone, and monoamines in food intake regulation. Nutrition 2005, 21, 269–279. [Google Scholar] [CrossRef]
- Jacobowitz, D.M.; O’Donohue, T.L. Alpha-Melanocyte stimulating hormone: Immunohistochemical identification and mapping in neurons of rat brain. Proc. Natl. Acad. Sci. USA 1978, 75, 6300–6304. [Google Scholar] [CrossRef] [Green Version]
- Wikberg, J.E. Melanocortin receptors: Perspectives for novel drugs. Eur. J. Pharmacol. 1999, 375, 295–310. [Google Scholar] [CrossRef]
- Alvaro, J.; Tatro, J.; Duman, R. Melanocortins and opiate addiction. Life Sci. 1997, 61, 1–9. [Google Scholar] [CrossRef]
- Löhr, H.; Hess, S.; Pereira, M.M.; Reinoß, P.; Leibold, S.; Schenkel, C.; Wunderlich, C.M.; Kloppenburg, P.; Brüning, J.C.; Hammerschmidt, M. Diet-Induced Growth Is Regulated via Acquired Leptin Resistance and Engages a Pomc-Somatostatin-Growth Hormone Circuit. Cell Rep. 2018, 23, 1728–1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coccurello, R.; Maccarrone, M. Hedonic Eating and the “Delicious Circle”: From Lipid-Derived Mediators to Brain Dopamine and Back. Front. Neurosci. 2018, 12, 271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristino, L.; Busetto, G.; Imperatore, R.; Ferrandino, I.; Palomba, L.; Silvestri, C.; Petrosino, S.; Orlando, P.; Bentivoglio, M.; Mackie, K.; et al. Obesity-driven synaptic remodeling affects endocannabinoid control of orexinergic neurons. Proc. Natl. Acad. Sci. USA 2013, 110, E2229–E2238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leinninger, G.M.; Jo, Y.-H.; Leshan, R.L.; Louis, G.W.; Yang, H.; Barrera, J.G.; Wilson, H.; Opland, D.M.; Faouzi, M.A.; Gong, Y.; et al. Leptin Acts via Leptin Receptor-Expressing Lateral Hypothalamic Neurons to Modulate the Mesolimbic Dopamine System and Suppress Feeding. Cell Metab. 2009, 10, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.H.; Kim, M.-S. Molecular mechanisms of central leptin resistance in obesity. Arch. Pharm. Res. 2013, 36, 201–207. [Google Scholar] [CrossRef]
- Leo, F.; Rossodivita, A.N.; Segni, C.D.; Raimondo, S.; Canichella, S.; Silvestrini, A.; Miggiano, G.A.D.; Meucci, E.; Mancini, A. Frailty of Obese Children: Evaluation of Plasma Antioxidant Capacity in Pediatric Obesity. Exp. Clin. Endocrinol. Diabetes 2016, 124, 481–486. [Google Scholar] [CrossRef]
- Park, H.-K.; Ahima, R.S. Physiology of leptin: Energy homeostasis, neuroendocrine function and metabolism. Metabolism 2015, 64, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Farooqi, S.; Jebb, S.A.; Langmack, G.; Lawrence, E.; Cheetham, C.H.; Prentice, A.M.; Hughes, I.A.; McCamish, M.A.; O’Rahilly, S. Effects of Recombinant Leptin Therapy in a Child with Congenital Leptin Deficiency. N. Engl. J. Med. 1999, 341, 879–884. [Google Scholar] [CrossRef]
- Caron, A.; Lee, S.; Elmquist, J.K.; Gautron, L. Leptin and brain–adipose crosstalks. Nat. Rev. Neurosci. 2018, 19, 153–165. [Google Scholar] [CrossRef]
- Zeng, W.; Pirzgalska, R.; Pereira, M.M.; Kubasova, N.; Barateiro, A.; Seixas, E.; Lu, Y.-H.; Kozlova, A.; Voss, H.; Martins, G.; et al. Sympathetic Neuro-adipose Connections Mediate Leptin-Driven Lipolysis. Cell 2015, 163, 84–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richard, D. Cognitive and autonomic determinants of energy homeostasis in obesity. Nat. Rev. Endocrinol. 2015, 11, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Barrios, V.; Frago, L.; Canelles, S.; Guerra-Cantera, S.; Arilla-Ferreiro, E.; Chowen, J.; Argente, J. Leptin Modulates the Response of Brown Adipose Tissue to Negative Energy Balance: Implication of the GH/IGF-I Axis. Int. J. Mol. Sci. 2021, 22, 2827. [Google Scholar] [CrossRef] [PubMed]
- Marques-Oliveira, G.H.; Silva, T.; Lima, W.G.; Valadares, H.M.S.; Chaves, V.E. Insulin as a hormone regulator of the synthesis and release of leptin by white adipose tissue. Peptides 2018, 106, 49–58. [Google Scholar] [CrossRef]
- Honda, J.; Manabe, Y.; Matsumura, R.; Takeuchi, S.; Takahashi, S. IGF-I regulates pro-opiomelanocortin and GH gene expression in the mouse pituitary gland. J. Endocrinol. 2003, 178, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Balagopal, P.; De Ferranti, S.D.; Cook, S.; Daniels, S.R.; Gidding, S.S.; Hayman, L.L.; McCrindle, B.W.; Mietus-Snyder, M.; Steinberger, J. Nontraditional Risk Factors and Biomarkers for Cardiovascular Disease: Mechanistic, Research, and Clinical Considerations for Youth: A scientific statement from the american heart association. Circulation 2011, 123, 2749–2769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koerner, A.; Kratzsch, J.; Kiess, W. Adipocytokines: Leptin—The classical, resistin—The controversical, adiponectin—The promising, and more to come. Best Pract. Res. Clin. Endocrinol. Metab. 2005, 19, 525–546. [Google Scholar] [CrossRef] [PubMed]
- Steppan, C.M.; Bailey, S.T.; Bhat, S.; Brown, E.J.; Banerjee, R.R.; Wright, C.M.; Patel, H.R.; Ahima, R.S.; Lazar, M.A. The hormone resistin links obesity to diabetes. Nature 2001, 409, 307–312. [Google Scholar] [CrossRef]
- Kosari, S.; Rathner, J.; Chen, F.; Badoer, E. Centrally Administered Resistin Enhances Sympathetic Nerve Activity to the Hindlimb but Attenuates the Activity to Brown Adipose Tissue. Endocrinology 2011, 152, 2626–2633. [Google Scholar] [CrossRef] [Green Version]
- Vaézquez, M.J.; Gonzaélez, C.R.; Varela, L.; Lage, R.; Tovar, S.; Sangiao-Alvarellos, S.; Williams, L.M.; Vidal-Puig, A.; Nogueiras, R.; López, M.; et al. Central Resistin Regulates Hypothalamic and Peripheral Lipid Metabolism in a Nutritional-Dependent Fashion. Endocrinology 2008, 149, 4534–4543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriéguez-Pacheco, F.; Vaézquez-Martiénez, R.; Martiénez-Fuentes, A.J.; Pulido, M.R.; Gahete, M.D.; Vaudry, H.; Navarro, F.G.; Dieéguez, C.; Castaño, J.P.; Malagon, M.M. Resistin Regulates Pituitary Somatotrope Cell Function through the Activation of Multiple Signaling Pathways. Endocrinology 2009, 150, 4643–4652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landgraf, K.; Friebe, D.; Ullrich, T.; Kratzsch, J.; Dittrich, K.; Herberth, G.; Adams, V.; Kiess, W.; Erbs, S.; Körner, A. Chemerin as a Mediator between Obesity and Vascular Inflammation in Children. J. Clin. Endocrinol. Metab. 2012, 97, E556–E564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyman, M.; Stuart, A.A.V.; Van Summeren, M.; Rakhshandehroo, M.; Nuboer, R.; De Boer, F.K.; Ham, H.-J.V.D.; Kalkhoven, E.; Prakken, B.; Schipper, H. Vitamin D deficiency in childhood obesity is associated with high levels of circulating inflammatory mediators, and low insulin sensitivity. Int. J. Obes. 2014, 38, 46–52. [Google Scholar] [CrossRef]
- Kłusek-Oksiuta, M.; Bialokoz-Kalinowska, I.; Tarasów, E.; Wojtkowska, M.; Werpachowska, I.; Lebensztejn, D.M. Chemerin as a novel non-invasive serum marker of intrahepatic lipid content in obese children. Ital. J. Pediatr. 2014, 40, 84. [Google Scholar] [CrossRef] [Green Version]
- Helfer, G.; Ross, A.; Thomson, L.M.; Mayer, C.D.; Stoney, P.N.; McCaffery, P.; Morgan, P.J. A neuroendocrine role for chemerin in hypothalamic remodelling and photoperiodic control of energy balance. Sci. Rep. 2016, 6, 26830. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xu, N.; Ding, Y.; Doycheva, D.; Zhang, Y.; Li, Q.; Flores, J.; Haghighiabyaneh, M.; Tang, J.; Zhang, J.H. Chemerin reverses neurological impairments and ameliorates neuronal apoptosis through ChemR23/CAMKK2/AMPK pathway in neonatal hypoxic–ischemic encephalopathy. Cell Death Dis. 2019, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Heiker, J.T. Vaspin (serpinA12) in obesity, insulin resistance, and inflammation. J. Pept. Sci. 2014, 20, 299–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youn, B.-S.; Klöting, N.; Kratzsch, J.; Lee, N.; Park, J.W.; Song, E.-S.; Ruschke, K.; Oberbach, A.; Fasshauer, M.; Stumvoll, M.; et al. Serum Vaspin Concentrations in Human Obesity and Type 2 Diabetes. Diabetes 2008, 57, 372–377. [Google Scholar] [CrossRef] [Green Version]
- Barraco, G.M.; Luciano, R.; Semeraro, M.; Prieto-Hontoria, P.L.; Manco, M. Recently Discovered Adipokines and Cardio-Metabolic Comorbidities in Childhood Obesity. Int. J. Mol. Sci. 2014, 15, 19760–19776. [Google Scholar] [CrossRef] [Green Version]
- Blüher, M. Vaspin in obesity and diabetes: Pathophysiological and clinical significance. Endocrine 2012, 41, 176–182. [Google Scholar] [CrossRef]
- Khalyfa, A.; Gozal, L.; Bhattacharjee, R.; Khalyfa, A.A.; Gozal, D. Circulating microRNAs as Potential Biomarkers of Endothelial Dysfunction in Obese Children. Chest 2016, 149, 786–800. [Google Scholar] [CrossRef] [Green Version]
- Reinehr, T.; Stoffel-Wagner, B.; Roth, C.L. Adipocyte fatty acid–binding protein in obese children before and after weight loss. Metabolism 2007, 56, 1735–1741. [Google Scholar] [CrossRef] [PubMed]
- Kralisch, S.; Klöting, N.; Ebert, T.; Kern, M.; Hoffmann, A.; Krause, K.; Jessnitzer, B.; Lossner, U.; Sommerer, I.; Stumvoll, M.; et al. Circulating adipocyte fatty acid-binding protein induces insulin resistance in mice in vivo. Obesity 2015, 23, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Krzystek-Korpacka, M.; Patryn, E.; Bednarz-Misa, I.; Mierzchala, M.; Hotowy, K.; Czapinska, E.; Kustrzeba-Wojcicka, I.; Gamian, A.; Noczynska, A. Circulating adipocyte fatty acid-binding protein, juvenile obesity, and metabolic syndrome. J. Pediatr. Endocrinol. Metab. 2011, 24, 921–928. [Google Scholar] [CrossRef] [Green Version]
- Jeffery, A.N.; Murphy, M.J.; Metcalf, B.S.; Hosking, J.; Voss, L.D.; English, P.; Sattar, N.; Wilkin, T.J. Adiponectin in childhood. Int. J. Pediatr. Obes. 2008, 3, 130–140. [Google Scholar] [CrossRef]
- Qi, Y.; Takahashi, N.; Hileman, S.M.; Patel, H.R.; Berg, A.H.; Pajvani, U.B.; Scherer, P.E.; Ahima, R.S. Adiponectin acts in the brain to decrease body weight. Nat. Med. 2004, 10, 524–529. [Google Scholar] [CrossRef]
- Yau, S.Y.; Li, A.; Hoo, R.L.C.; Ching, Y.P.; Christie, B.R.; Lee, T.M.C.; Xu, A.; So, K.-F. Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin. Proc. Natl. Acad. Sci. USA 2014, 111, 15810–15815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suyama, S.; Lei, W.; Kubota, N.; Kadowaki, T.; Yada, T. Adiponectin at physiological level glucose-independently enhances inhibitory postsynaptic current onto NPY neurons in the hypothalamic arcuate nucleus. Neuropeptides 2017, 65, 1–9. [Google Scholar] [CrossRef]
- Nestler, E.J.; Carlezon, W.A. The Mesolimbic Dopamine Reward Circuit in Depression. Biol. Psychiatry 2006, 59, 1151–1159. [Google Scholar] [CrossRef]
- Cheng, X.-B.; Wen, J.-P.; Yang, J.; Yang, Y.; Ning, G.; Li, X.-Y. GnRH secretion is inhibited by adiponectin through activation of AMP-activated protein kinase and extracellular signal-regulated kinase. Endocrine 2011, 39, 6–12. [Google Scholar] [CrossRef]
- Wen, J.-P.; Lv, W.-S.; Yang, J.; Nie, A.-F.; Cheng, X.-B.; Yang, Y.; Ge, Y.; Li, X.-Y.; Ning, G. Globular adiponectin inhibits GnRH secretion from GT1-7 hypothalamic GnRH neurons by induction of hyperpolarization of membrane potential. Biochem. Biophys. Res. Commun. 2008, 371, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.-P.; Liu, C.; Bi, W.-K.; Hu, Y.-T.; Chen, Q.; Huang, H.; Liang, J.-X.; Li, L.-T.; Lin, L.-X.; Chen, G. Adiponectin inhibits KISS1 gene transcription through AMPK and specificity protein-1 in the hypothalamic GT1-7 neurons. J. Endocrinol. 2012, 214, 177–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taşkesen, D.; Kirel, B.; Us, T. Serum Visfatin Levels, Adiposity and Glucose Metabolism in Obese Adolescents. J. Clin. Res. Pediatr. Endocrinol. 2012, 4, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Davutoglu, M.; Ozkaya, M.; Guler, E.; Garipardic, M.; Gursoy, H.; Karabiber, H.; Kilinc, M. Plasma visfatin concentrations in childhood obesity: Relationships with insulin resistance and anthropometric indices. Swiss Med. Wkly. 2009, 139, 22–27. [Google Scholar] [PubMed]
- Jin, H.; Jiang, B.; Tang, J.; Lu, W.; Wang, W.; Zhou, L.; Shang, W.; Li, F.; Ma, Q.; Yang, Y.; et al. Serum visfatin concentrations in obese adolescents and its correlation with age and high-density lipoprotein cholesterol. Diabetes Res. Clin. Pract. 2008, 79, 412–418. [Google Scholar] [CrossRef]
- Araki, S.; Dobashi, K.; Kubo, K.; Kawagoe, R.; Yamamoto, Y.; Kawada, Y.; Asayama, K.; Shirahata, A. Plasma Visfatin Concentration as a Surrogate Marker for Visceral Fat Accumulation in Obese Children. Obesity 2008, 16, 384–388. [Google Scholar] [CrossRef]
- Haider, D.G.; Holzer, G.; Schaller, G.; Weghuber, D.; Widhalm, K.; Wagner, O.; Kapiotis, S.; Wolzt, M. The Adipokine Visfatin is Markedly Elevated in Obese Children. J. Pediatr. Gastroenterol. Nutr. 2006, 43, 548–549. [Google Scholar] [CrossRef]
- Fernández-Real, J.M.; Moreno, J.M.; Chico, B.; López-Bermejo, A.; Ricart, W. Circulating Visfatin Is Associated With Parameters of Iron Metabolism in Subjects With Altered Glucose Tolerance. Diabetes Care 2007, 30, 616–621. [Google Scholar] [CrossRef] [Green Version]
- Sentinelli, F.; Bertoccini, L.; Incani, M.; Pani, M.G.; David, F.; Bailetti, D.; Boi, A.; Barchetta, I.; Cimini, F.A.; Mannino, A.C.; et al. Association of Apelin Levels in Overweight-obese Children with Pubertal Development, but Not with Insulin Sensitivity: 6.5 Years Follow up Evaluation. Endocr. Res. 2020, 45, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Frisch, R.E.; Revelle, R. Height and weight at menarche and a hypothesis of menarche. Arch. Dis. Child. 1971, 46, 695–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplowitz, P.B. Link between Body Fat and the Timing of Puberty. Pediatrics 2008, 121 (Suppl. 3), S208–S217. [Google Scholar] [CrossRef] [Green Version]
- Rutters, F.; Nieuwenhuizen, A.; Verhoef, S.; Lemmens, S.G.T.; Vogels, N.; Westerterp-Plantenga, M.S. The relationship between leptin, gonadotropic hormones, and body composition during puberty in a Dutch children cohort. Eur. J. Endocrinol. 2009, 160, 973–978. [Google Scholar] [CrossRef] [Green Version]
- Chung, S. Growth and Puberty in Obese Children and Implications of Body Composition. J. Obes. Metab. Syndr. 2017, 26, 243–250. [Google Scholar] [CrossRef]
- Elias, C.F.; Purohit, D. Leptin signaling and circuits in puberty and fertility. Cell. Mol. Life Sci. 2013, 70, 841–862. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Cheng, H.; Zhao, X.; Hou, D.; Yan, Y.; Cianflone, K.; Li, M.; Mi, J. Leptin and Leptin-to-Adiponectin Ratio Predict Adiposity Gain in Nonobese Children over a Six-Year Period. Child. Obes. 2017, 13, 213–221. [Google Scholar] [CrossRef]
- L’Allemand, D.; Schmidt, S.; Rousson, V.; Brabant, G.; Gasser, T.; Grüters, A. Associations between body mass, leptin, IGF-I and circulating adrenal androgens in children with obesity and premature adrenarche. Eur. J. Endocrinol. 2002, 146, 537–543. [Google Scholar] [CrossRef] [Green Version]
- Solorzano, C.M.B.; McCartney, C.R. Obesity and the pubertal transition in girls and boys. Reproducation 2010, 140, 399–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tng, E.L. Kisspeptin signalling and its roles in humans. Singap. Med. J. 2015, 56, 649–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hrabovszky, E.; Ciofi, P.; Vida, B.; Horvath, M.C.; Keller, E.; Caraty, A.; Bloom, S.R.; Ghatei, M.A.; Dhillo, W.; Liposits, Z.; et al. The kisspeptin system of the human hypothalamus: Sexual dimorphism and relationship with gonadotropin-releasing hormone and neurokinin B neurons. Eur. J. Neurosci. 2010, 31, 1984–1998. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, J.; Boon, W.C.; Simpson, E.R.; Herbison, A.E. Postnatal Development of an Estradiol-Kisspeptin Positive Feedback Mechanism Implicated in Puberty Onset. Endocrinology 2009, 150, 3214–3220. [Google Scholar] [CrossRef]
- Hussain, M.A.; Song, W.; Wolfe, A. There is Kisspeptin—And Then There is Kisspeptin. Trends Endocrinol. Metab. 2015, 26, 564–572. [Google Scholar] [CrossRef] [Green Version]
- Kauffman, A.S.; Gottsch, M.L.; Roa, J.; Byquist, A.C.; Crown, A.; Clifton, D.K.; Hoffman, G.E.; Steiner, R.A.; Tena-Sempere, M. Sexual Differentiation of Kiss1 Gene Expression in the Brain of the Rat. Endocrinology 2007, 148, 1774–1783. [Google Scholar] [CrossRef]
- Bianco, S.D.C. A potential mechanism for the sexual dimorphism in the onset of puberty and incidence of idiopathic central precocious puberty in children: Sex-specific kisspeptin as an integrator of puberty signals. Front. Endocrinol. 2012, 3, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skorupskaite, K.; George, J.T.; Anderson, R. The kisspeptin-GnRH pathway in human reproductive health and disease. Hum. Reprod. Updat. 2014, 20, 485–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieuwenhuis, D.; Pujol-Gualdo, N.; Arnoldussen, I.A.; Kiliaan, A.J. Adipokines: A gear shift in puberty. Obes. Rev. 2020, 21, e13005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pita, J.; Barrios, V.; Gavela-Pérez, T.; Martos-Moreno, G.Á.; Muñoz-Calvo, M.T.; Pozo, J.; Rovira, A.; Argente, J.; Soriano-Guillén, L. Circulating kisspeptin levels exhibit sexual dimorphism in adults, are increased in obese prepubertal girls and do not suffer modifications in girls with idiopathic central precocious puberty. Peptides 2011, 32, 1781–1786. [Google Scholar] [CrossRef]
- Wray, S.; Gainer, H. Effect of Neonatal Gonadectomy on the Postnatal Development of LHRH Cell Subtypes in Male and Female Rats. Neuroendocrinology 1987, 45, 413–419. [Google Scholar] [CrossRef]
- Kauffman, A.S.; Park, J.H.; McPhie-Lalmansingh, A.A.; Gottsch, M.L.; Bodo, C.; Hohmann, J.G.; Pavlova, M.N.; Rohde, A.D.; Clifton, D.K.; Steiner, R.A.; et al. The Kisspeptin Receptor GPR54 Is Required for Sexual Differentiation of the Brain and Behavior. J. Neurosci. 2007, 27, 8826–8835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwanzel-Fukuda, M.; Robinson, J.; Silverman, A. The fetal development of the luteinizing hormone-releasing hormone (LHRH) neuronal systems of the guinea pig brain. Brain Res. Bull. 1981, 7, 293–315. [Google Scholar] [CrossRef]
- Quennell, J.H.; Howell, C.S.; Roa, J.; Augustine, R.A.; Grattan, D.; Anderson, G.M. Leptin Deficiency and Diet-Induced Obesity Reduce Hypothalamic Kisspeptin Expression in Mice. Endocrinology 2011, 152, 1541–1550. [Google Scholar] [CrossRef]
- Roa, J.; Vigo, E.; Galiano, D.G.; Castellano, J.M.; Navarro, V.M.; Pineda, R.; Diéguez, C.; Aguilar, E.; Pinilla, L.; Tena-Sempere, M. Desensitization of gonadotropin responses to kisspeptin in the female rat: Analyses of LH and FSH secretion at different developmental and metabolic states. Am. J. Physiol. Endocrinol. Metab. 2008, 294, E1088–E1096. [Google Scholar] [CrossRef]
- Khan, M.; Joseph, F. Adipose Tissue and Adipokines: The Association with and Application of Adipokines in Obesity. Scientifica 2014, 2014, 328592. [Google Scholar] [CrossRef]
- Pruszynska-Oszmalek, E.; Kolodziejski, P.; Sassek, M.; Sliwowska, J.H. Kisspeptin-10 inhibits proliferation and regulates lipolysis and lipogenesis processes in 3T3-L1 cells and isolated rat adipocytes. Endocrine 2017, 56, 54–64. [Google Scholar] [CrossRef]
- Kotani, M.; Detheux, M.; Vandenbogaerde, A.; Communi, D.; Vanderwinden, J.-M.; Le Poul, E.; Brézillon, S.; Tyldesley, R.; Suarez-Huerta, N.; Vandeput, F.; et al. The Metastasis Suppressor Gene KiSS-1 Encodes Kisspeptins, the Natural Ligands of the Orphan G Protein-coupled Receptor GPR54. J. Biol. Chem. 2001, 276, 34631–34636. [Google Scholar] [CrossRef] [Green Version]
- Dudek, M.; Kołodziejski, P.; Pruszyńska-Oszmałek, E.; Sassek, M.; Ziarniak, K.; Nowak, K.; Sliwowska, J. Effects of high-fat diet-induced obesity and diabetes on Kiss1 and GPR54 expression in the hypothalamic–pituitary–gonadal (HPG) axis and peripheral organs (fat, pancreas and liver) in male rats. Neuropeptides 2016, 56, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Tolson, K.P.; Marooki, N.; De Bond, J.P.; Walenta, E.; Stephens, S.B.; Liaw, R.B.; Savur, R.; Wolfe, A.; Oh, D.Y.; Smith, J.T.; et al. Conditional knockout of kisspeptin signaling in brown adipose tissue increases metabolic rate and body temperature and lowers body weight. FASEB J. 2020, 34, 107–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cockwell, H.; Wilkinson, D.A.; Bouzayen, R.; Imran, S.A.; Brown, R.; Wilkinson, M. KISS1 expression in human female adipose tissue. Arch. Gynecol. Obstet. 2013, 287, 143–147. [Google Scholar] [CrossRef]
- Comninos, A.; Jayasena, C.; Dhillo, W.S. The relationship between gut and adipose hormones, and reproduction. Hum. Reprod. Updat. 2014, 20, 153–174. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Choubey, M.; Bora, P.; Krishna, A. Adiponectin and Chemerin: Contrary Adipokines in Regulating Reproduction and Metabolic Disorders. Reprod. Sci. 2018, 25, 1462–1473. [Google Scholar] [CrossRef] [PubMed]
- Tsatsanis, C.; Dermitzaki, E.; Avgoustinaki, P.; Malliaraki, N.; Mytaras, V.; Margioris, A. The impact of adipose tissue-derived factors on the hypothalamic-pituitary-gonadal (HPG) axis. Hormones 2015, 14, 549–562. [Google Scholar] [CrossRef] [Green Version]
- Morash, B.; Willkinson, D.; Ur, E.; Wilkinson, M. Resistin expression and regulation in mouse pituitary. FEBS Lett. 2002, 526, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Iranmanesh, A.; Lizarralde, G.; Veldhuis, J.D. Age and Relative Adiposity Are Specific Negative Determinants of the Frequency and Amplitude of Growth Hormone (GH) Secretory Bursts and the Half-Life of Endogenous GH in Healthy Men. J. Clin. Endocrinol. Metab. 1991, 73, 1081–1088. [Google Scholar] [CrossRef]
- Williams, T.; Berelowitz, M.; Joffe, S.N.; Thorner, M.O.; Rivier, J.; Vale, W.; Frohman, L.A. Impaired Growth Hormone Responses to Growth Hormone–Releasing Factor in Obesity. N. Engl. J. Med. 1984, 311, 1403–1407. [Google Scholar] [CrossRef] [PubMed]
- Vahl, N.; Klausen, I.; Christiansen, J.S.; Jorgensen, J.O.L. Growth hormone (GH) status is an independent determinant of serum levels of cholesterol and triglycerides in healthy adults. Clin. Endocrinol. 1999, 51, 309–316. [Google Scholar] [CrossRef]
- Rasmussen, M.H.; Frystyk, J.; Andersen, T.; Breum, L.; Christiansen, J.S.; Hilsted, J. The impact of obesity, fat distribution, and energy restriction on insulin-like growth factor-1 (IGF-1), IGF-binding protein-3, insulin, and growth hormone. Metabolism 1994, 43, 315–319. [Google Scholar] [CrossRef]
- Miller, K.K.; Biller, B.M.K.; Lipman, J.G.; Bradwin, G.; Rifai, N.; Klibanski, A. Truncal Adiposity, Relative Growth Hormone Deficiency, and Cardiovascular Risk. J. Clin. Endocrinol. Metab. 2005, 90, 768–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berryman, D.E.; Glad, C.A.M.; List, E.O.; Johannsson, G. The GH/IGF-1 axis in obesity: Pathophysiology and therapeutic considerations. Nat. Rev. Endocrinol. 2013, 9, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Kumar, P.A.; Fan, Y.; Sperling, M.A.; Menon, R.K. A Novel Effect of Growth Hormone on Macrophage Modulates Macrophage-Dependent Adipocyte Differentiation. Endocrinoogy 2010, 151, 2189–2199. [Google Scholar] [CrossRef] [PubMed]
- Hattori, N. Expression, regulation and biological actions of growth hormone (GH) and ghrelin in the immune system. Growth Horm. IGF Res. 2009, 19, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Fleenor, D.; Arumugam, R.; Freemark, M. Growth Hormone and Prolactin Receptors in Adipogenesis: STAT-5 Activation, Suppressors of Cytokine Signaling, and Regulation of Insulin-Like Growth Factor I. Horm. Res. Paediatr. 2006, 66, 101–110. [Google Scholar] [CrossRef]
- Lin, L.; Saha, P.K.; Ma, X.; Henshaw, I.O.; Shao, L.; Chang, B.H.J.; Buras, E.D.; Tong, Q.; Chan, L.; McGuinness, O.P.; et al. Ablation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues. Aging Cell 2011, 10, 996–1010. [Google Scholar] [CrossRef] [Green Version]
- Scacchi, M.; Pincelli, A.; Cavagnini, F. Growth hormone in obesity. Int. J. Obes. 1999, 23, 260–271. [Google Scholar] [CrossRef] [Green Version]
- Pinhas-Hamiel, O.; Benary, D.; Mazor-Aronovich, K.; Ben-Ami, M.; Levy-Shraga, Y.; Boyko, V.; Modan-Moses, D.; Lerner-Geva, L. Advanced Bone Age and Hyperinsulinemia in Overweight and Obese Children. Endocr. Pract. 2014, 20, 62–67. [Google Scholar] [CrossRef]
- Aguirre, G.A.; De Ita, J.R.; De La Garza, R.G.; Castillacortazar, I. Insulin-like growth factor-1 deficiency and metabolic syndrome. J. Transl. Med. 2016, 14, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Girolamo, M.; Edén, S.; Enberg, G.; Isaksson, O.; Lönnroth, P.; Hall, K.; Smith, U. Specific binding of human growth hormone but not insulin-like growth factors by human adipocytes. FEBS Lett. 1986, 205, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Succurro, E.; Andreozzi, F.; Marini, M.; Lauro, R.; Hribal, M.; Perticone, F.; Sesti, G. Low plasma insulin-like growth factor-1 levels are associated with reduced insulin sensitivity and increased insulin secretion in nondiabetic subjects. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, M.S.; Heald, A.H.; Gibson, M.; Cruickshank, J.K.; Dunger, P.D.; Wareham, N.J. Circulating concentrations of insulin-like growth factor-I and development of glucose intolerance: A prospective observational study. Lancet 2002, 359, 1740–1745. [Google Scholar] [CrossRef]
- Fusco, A.; Miele, L.; D’Uonnolo, A.; Forgione, A.; Riccardi, L.; Cefalo, C.; Barini, A.; Bianchi, A.; Giampietro, A.; Cimino, V.; et al. Nonalcoholic fatty liver disease is associated with increased GHBP and reduced GH/IGF-I levels. Clin. Endocrinol. 2012, 77, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Efstratiadis, G.; Tsiaousis, G.; Athyros, V.G.; Karagianni, D.; Pavlitou-Tsiontsi, A.; Giannakou-Darda, A.; Manes, C. Total Serum Insulin-like Growth Factor-1 and C-Reactive Protein in Metabolic Syndrome with or without Diabetes. Angiology 2006, 57, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.J. Insulin-Like Growth Factor-I Regulation of Immune Function: A Potential Therapeutic Target in Autoimmune Diseases? Pharmacol. Rev. 2010, 62, 199–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furuta, M.; Funabashi, T.; Kimura, F. Intracerebroventricular Administration of Ghrelin Rapidly Suppresses Pulsatile Luteinizing Hormone Secretion in Ovariectomized Rats. Biochem. Biophys. Res. Commun. 2001, 288, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Barja-Fernández, S.; Lugilde, J.; Castelao, C.; Vázquez-Cobela, R.; Seoane, L.M.; Diéguez, C.; Leis, R.; Tovar, S. Circulating LEAP-2 is associated with puberty in girls. Int. J. Obes. 2021, 45, 502–514. [Google Scholar] [CrossRef] [PubMed]
- Ciresi, A.; Pizzolanti, G.; Leotta, M.; Guarnotta, V.; Teresi, G.; Giordano, C. Resistin, visfatin, leptin and omentin are differently related to hormonal and metabolic parameters in growth hormone-deficient children. J. Endocrinol. Investig. 2016, 39, 1023–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Siguero, J.P.; López-Canti, L.F.; Espino, R.; Caro, E.; Fernández-García, J.M.; Gutiérrez-Macías, A.; Rial, J.M.; Lechuga, J.L.; Macías, F.; Martinez-Aedo, M.J.; et al. Effect of recombinant growth hormone on leptin, adiponectin, resistin, interleukin-6, tumor necrosis factor-α and ghrelin levels in growth hormone-deficient children. J. Endocrinol. Investig. 2011, 34, 300–306. [Google Scholar] [CrossRef]
- Meazza, C.; Elsedfy, H.; Pagani, S.; Bozzola, E.; El Kholy, M.; Bozzola, M. Metabolic Parameters and Adipokine Profile in Growth Hormone Deficient (GHD) Children Before and After 12-Month GH Treatment. Horm. Metab. Res. 2014, 46, 219–223. [Google Scholar] [CrossRef]
- Stawerska, R.; Smyczyńska, J.; Hilczer, M.; Lewiński, A. Relationship between IGF-I Concentration and Metabolic Profile in Children with Growth Hormone Deficiency: The Influence of Children’s Nutritional State as well as the Ghrelin, Leptin, Adiponectin, and Resistin Serum Concentrations. Int. J. Endocrinol. 2017, 2017, 5713249. [Google Scholar] [CrossRef] [Green Version]
- Lanes, R.; Soros, A.; Gunczler, P.; Paoli, M.; Carrillo, E.; Villaroel, O.; Palacios, A. Growth hormone deficiency, low levels of adiponectin, and unfavorable plasma lipid and lipoproteins. J. Pediatr. 2006, 149, 324–329. [Google Scholar] [CrossRef]
- Nozue, H.; Kamoda, T.; Matsui, A. Serum resistin concentrations in growth hormone–deficient children during growth hormone replacement therapy. Metabolism 2007, 56, 1514–1517. [Google Scholar] [CrossRef]
- Allard, J.B.; Duan, C. IGF-Binding Proteins: Why Do They Exist and Why Are There So Many? Front. Endocrinol. 2018, 9, 117. [Google Scholar] [CrossRef] [Green Version]
- Yamanaka, Y.; Wilson, E.M.; Rosenfeld, R.G.; Oh, Y. Inhibition of Insulin Receptor Activation by Insulin-like Growth Factor Binding Proteins. J. Biol. Chem. 1997, 272, 30729–30734. [Google Scholar] [CrossRef] [Green Version]
- Daughaday, W.H.; Rotwein, P. Insulin-Like Growth Factors I and II. Peptide, Messenger Ribonucleic Acid and Gene Structures, Serum, and Tissue Concentrations. Endocr. Rev. 1989, 10, 68–91. [Google Scholar] [CrossRef] [PubMed]
- Maures, T.J.; Duan, C. Structure, Developmental Expression, and Physiological Regulation of Zebrafish IGF Binding Protein-1. Endocrinology 2002, 143, 2722–2731. [Google Scholar] [CrossRef] [PubMed]
- Kajimura, S.; Aida, K.; Duan, C. Understanding Hypoxia-Induced Gene Expression in Early Development: In Vitro and In Vivo Analysis of Hypoxia-Inducible Factor 1-Regulated Zebra Fish Insulin-Like Growth Factor Binding Protein 1 Gene Expression. Mol. Cell. Biol. 2006, 26, 1142–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suwanichkul, A.; Allander, S.V.; Morris, S.L.; Powell, D.R. Glucocorticoids and insulin regulate expression of the human gene for insulin-like growth factor-binding protein-1 through proximal promoter elements. J. Biol. Chem. 1994, 269, 30835–30841. [Google Scholar] [CrossRef]
- O’Brien, R.M.; Noisin, E.L.; Suwanichkul, A.; Yamasaki, T.; Lucas, P.C.; Wang, J.-C.; Powell, D.R.; Granner, D.K. Hepatic nuclear factor 3- and hormone-regulated expression of the phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein 1 genes. Mol. Cell. Biol. 1995, 15, 1747–1758. [Google Scholar] [CrossRef] [Green Version]
- Jebb, S.A. Carbohydrates and obesity: From evidence to policy in the UK. In Proceedings of the Nutrition Society; Cambridge University Press: Cambridge, UK, 2015; Volume 74, pp. 215–220. [Google Scholar] [CrossRef] [Green Version]
- Cummings, S.; Parham, E.S.; Strain, G.W. Position of the American Dietetic: Association Weight Management. J. Am. Diet. Assoc. 2002, 102, 1145–1155. [Google Scholar] [CrossRef]
- Duggirala, M.K.; Mundell, W.C.; Mikkilineni, P. Low-Carbohydrate Diets as Compared with Low-Fat Diets. N. Engl. J. Med. 2003, 349, 1000–1002. [Google Scholar] [CrossRef]
- Miller, J.; Rosenbloom, A.; Silverstein, J. Childhood Obesity. J. Clin. Endocrinol. Metab. 2004, 89, 4211–4218. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Guideline: Sugars Intake for Adults and Children; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Huang, X.; Zhang, J.; Li, J.; Zhao, S.; Xiao, Y.; Huang, Y.; Jing, D.; Chen, L.; Zhang, X.; Su, J.; et al. Daily Intake of Soft Drinks and Moderate-to-Severe Acne Vulgaris in Chinese Adolescents. J. Pediatr. 2019, 204, 256–262.e3. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, M.; Jones, D.P.; Greenamyre, J.T.; Cai, J. Protection against oxidant-induced apoptosis by mitochondrial thioredoxin in SH-SY5Y neuroblastoma cells. Toxicol. Appl. Pharmacol. 2006, 216, 256–262. [Google Scholar] [CrossRef]
- Ekta, M.G.; Kaur, A.; Singh, T.G.; Bedi, O. Pathobiological and molecular connections involved in the high fructose and high fat diet induced diabetes associated nonalcoholic fatty liver disease. Inflamm. Res. 2020, 69, 851–867. [Google Scholar] [CrossRef]
- De Ruyter, J.C.; Olthof, M.R.; Seidell, J.; Katan, M.B. A Trial of Sugar-free or Sugar-Sweetened Beverages and Body Weight in Children. N. Engl. J. Med. 2012, 367, 1397–1406. [Google Scholar] [CrossRef] [Green Version]
- Sylvetsky, A.C.; Jin, Y.; Mathieu, K.; DiPietro, L.; Rother, K.I.; Talegawkar, S.A. Low-Calorie Sweeteners: Disturbing the Energy Balance Equation in Adolescents? Obesity 2017, 25, 2049–2054. [Google Scholar] [CrossRef] [Green Version]
- Gibson, L.J.; Peto, J.; Warren, J.M.; Silva, I.D.S. Lack of evidence on diets for obesity for children: A systematic review. Int. J. Epidemiol. 2006, 35, 1544–1552. [Google Scholar] [CrossRef]
- De Amicis, R.; Leone, A.; Lessa, C.; Foppiani, A.; Ravella, S.; Ravasenghi, S.; Trentani, C.; Ferraris, C.; Veggiotti, P.; De Giorgis, V.; et al. Long-Term Effects of a Classic Ketogenic Diet on Ghrelin and Leptin Concentration: A 12-Month Prospective Study in a Cohort of Italian Children and Adults with GLUT1-Deficiency Syndrome and Drug Resistant Epilepsy. Nutrients 2019, 11, 1716. [Google Scholar] [CrossRef] [Green Version]
- Luley, C.; Blaik, A.; Aronica, S.; Dierkes, J.; Kropf, S.; Westphal, S. Evaluation of Three New Strategies to Fight Obesity in Families. J. Nutr. Metab. 2010, 2010, 751905. [Google Scholar] [CrossRef] [PubMed]
- Clark, J. Does the type of intervention method really matter for combating childhood obesity? A systematic review and meta-analysis. J. Sports Med. Phys. Fit. 2014, 55, 1524–1543. [Google Scholar]
- Landecho, M.F.; Tuero, C.; Valentí, V.; Bilbao, I.; De La Higuera, M.; Frühbeck, G. Relevance of Leptin and Other Adipokines in Obesity-Associated Cardiovascular Risk. Nutrients 2019, 11, 2664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verheggen, R.J.H.M.; Maessen, M.; Green, D.J.; Hermus, A.R.M.M.; Hopman, M.T.E.; Thijssen, D.H.T. A systematic review and meta-analysis on the effects of exercise training versus hypocaloric diet: Distinct effects on body weight and visceral adipose tissue. Obes. Rev. 2016, 17, 664–690. [Google Scholar] [CrossRef] [PubMed]
- Barragán-Vázquez, S.; Ariza, A.C.; Silva, I.R.; Pedraza, L.S.; Dommarco, J.A.R.; Ortiz-Panozo, E.; Zambrano, E.; Castro, L.A.R.; Shivappa, N.; Hébert, J.R.; et al. Pro-Inflammatory Diet Is Associated with Adiposity during Childhood and with Adipokines and Inflammatory Markers at 11 Years in Mexican Children. Nutrients 2020, 12, 3658. [Google Scholar] [CrossRef]
- Ikeda, Y.; Kamagata, M.; Hirao, M.; Yasuda, S.; Iwami, S.; Sasaki, H.; Tsubosaka, M.; Hattori, Y.; Todoh, A.; Tamura, K.; et al. Glucagon and/or IGF-1 Production Regulates Resetting of the Liver Circadian Clock in Response to a Protein or Amino Acid-only Diet. EBioMedicine 2018, 28, 210–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, K.A.; Brown, S.A. Searching for Evidence of an Anti-Inflammatory Diet in Children: A Systematic Review of Randomized Controlled Trials for Pediatric Obesity Interventions With a Focus on Leptin, Ghrelin, and Adiponectin. Biol. Res. Nurs. 2017, 19, 511–530. [Google Scholar] [CrossRef] [PubMed]
- Rosa, J.S.; Oliver, S.R.; Flores, R.L.; Ngo, J.; Milne, G.L.; Zaldivar, F.P.; Galassetti, P.R. Altered inflammatory, oxidative, and metabolic responses to exercise in pediatric obesity and type 1 diabetes. Pediatr. Diabetes 2011, 12, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.V.; Walker, A.C.; Andrews, S.; Turnbull, P.; Wald, J.A.; Magee, M.H. Safety, pharmacokinetics and pharmacological effects of the selective androgen receptor modulator, GSK2881078, in healthy men and postmenopausal women. Br. J. Clin. Pharmacol. 2017, 83, 2179–2194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llorente-Cantarero, F.; Gil-Campos, M.; Sillero, J.D.D.B.; Muñoz-Villanueva, M.; Túnez, I.; Pérez-Navero, J. Prepubertal children with suitable fitness and physical activity present reduced risk of oxidative stress. Free Radic. Biol. Med. 2012, 53, 415–420. [Google Scholar] [CrossRef]
- Gunter, K.B.; Almstedt, H.C.; Janz, K.F. Physical Activity in Childhood May Be the Key to Optimizing Lifespan Skeletal Health. Exerc. Sport Sci. Rev. 2012, 40, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Murugesan, S.; Nirmalkar, K.; Hoyo-Vadillo, C.; García-Espitia, M.; Ramírez-Sánchez, D.; García-Mena, J. Gut microbiome production of short-chain fatty acids and obesity in children. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 621–625. [Google Scholar] [CrossRef]
- Turnbaugh, P.; Ridaura, V.K.; Faith, J.J.; Rey, F.E.; Knight, R.; Gordon, J.I. The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice. Sci. Transl. Med. 2009, 1, 6ra14. [Google Scholar] [CrossRef] [Green Version]
- Vrieze, A.; Van Nood, E.; Holleman, F.; Salojärvi, J.; Kootte, R.S.; Bartelsman, J.F.; Dallinga-Thie, G.M.; Ackermans, M.T.; Serlie, M.J.; Oozeer, R.; et al. Transfer of Intestinal Microbiota From Lean Donors Increases Insulin Sensitivity in Individuals With Metabolic Syndrome. Gastroenterology 2012, 143, 913–916.e7. [Google Scholar] [CrossRef]
- Li, F.; Jiang, C.; Krausz, K.W.; Li, Y.; Albert, I.; Hao, H.; Fabre, K.M.; Mitchell, J.B.; Patterson, A.; Gonzalez, F.J. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat. Commun. 2013, 4, 3384. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Xie, C.; Wang, G.; Wu, Y.; Wu, Q.; Wang, X.; Liu, J.; Deng, Y.; Xia, J.; Chen, B.; et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med. 2018, 24, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Hang, X.; Zhang, M.; Liu, X.; Li, D.; Yang, H. Diversity of bile salt hydrolase activities in different lactobacilli toward human bile salts. Ann. Microbiol. 2009, 60, 81–88. [Google Scholar] [CrossRef]
- Huffman, K.M.; Shah, S.H.; Stevens, R.D.; Bain, J.R.; Muehlbauer, M.; Slentz, C.A.; Tanner, C.J.; Kuchibhatla, M.; Houmard, J.A.; Newgard, C.B.; et al. Relationships between Circulating Metabolic Intermediates and Insulin Action in Overweight to Obese, Inactive Men and Women. Diabetes Care 2009, 32, 1678–1683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al. A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metab. 2009, 9, 311–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, P.J.; Lapworth, A.L.; An, J.; Wang, L.; McGarrah, R.W.; Stevens, R.D.; Ilkayeva, O.; George, T.; Muehlbauer, M.J.; Bain, J.R.; et al. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Mol. Metab. 2016, 5, 538–551. [Google Scholar] [CrossRef] [PubMed]
- McGarrah, R.W.; Zhang, G.-F.; Christopher, B.A.; Deleye, Y.; Walejko, J.M.; Page, S.; Ilkayeva, O.; White, P.J.; Newgard, C.B. Dietary branched-chain amino acid restriction alters fuel selection and reduces triglyceride stores in hearts of Zucker fatty rats. Am. J. Physiol. Endocrinol. Metab. 2020, 318, E216–E223. [Google Scholar] [CrossRef]
- White, P.J.; McGarrah, R.W.; Grimsrud, P.A.; Tso, S.-C.; Yang, W.-H.; Haldeman, J.; Grenier-Larouche, T.; An, J.; Lapworth, A.L.; Astapova, I.; et al. The BCKDH Kinase and Phosphatase Integrate BCAA and Lipid Metabolism via Regulation of ATP-Citrate Lyase. Cell Metab. 2018, 27, 1281–1293.e7. [Google Scholar] [CrossRef] [Green Version]
- White, P.J.; Newgard, C.B. Branched-chain amino acids in disease. Science 2019, 363, 582–583. [Google Scholar] [CrossRef]
- Pedersen, H.K.; Gudmundsdottir, V.; Nielsen, H.B.; Hyotylainen, T.; Nielsen, T.; Jensen, B.A.H.; Forslund, K.; Hildebrand, F.; Prifti, E.; Falony, G.; et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016, 535, 376–381. [Google Scholar] [CrossRef]
- Fedewa, M.V.; Spencer, S.O.; Williams, T.D.; Becker, Z.E.; Fuqua, C.A. Effect of branched-Chain Amino Acid Supplementation on Muscle Soreness following Exercise: A Meta-Analysis. Int. J. Vitam. Nutr. Res. 2019, 89, 348–356. [Google Scholar] [CrossRef] [PubMed]
- HoleČek, M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr. Metab. 2018, 15, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, E.A.; Young, J.A.; Mathes, S.C.; List, E.O.; Carroll, R.K.; Kuhn, J.; Onusko, M.; Kopchick, J.J.; Murphy, E.R.; Berryman, D.E. Crosstalk between the growth hormone/insulin-like growth factor-1 axis and the gut microbiome: A new frontier for microbial endocrinology. Growth Horm. IGF Res. 2020, 53–54, 101333. [Google Scholar] [CrossRef]
- Schwarzer, M.; Makki, K.; Storelli, G.; Machuca-Gayet, I.; Srutkova, D.; Hermanova, P.; Martino, M.E.; Balmand, S.; Hudcovic, T.; Heddi, A.; et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 2016, 351, 854–857. [Google Scholar] [CrossRef] [PubMed]
Adipokines | Site of Production | Link with Insulin-Resistance |
---|---|---|
Leptin | adipose tissue |
|
Resistin | monocyte/macrophages in adipose tissue |
|
Lipocalin-2 | adipose tissue; neutrophils; macrophages; epithelial cells |
|
Omentin-1 | adipose tissue |
|
Chemerin | liver and adipose tissue |
|
Adiponectin | adipose tissue |
|
Visfatin Other names: Nicotinamide-phosphorybosiltransferase (NAMPT) or pre-B-cell colony-enhancing factor (PBEF) | visceral adipose tissue |
|
Apelin | stomach, brain, heart, skeletal muscle, and white adipose tissue |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruno, C.; Vergani, E.; Giusti, M.; Oliva, A.; Cipolla, C.; Pitocco, D.; Mancini, A. The “Adipo-Cerebral” Dialogue in Childhood Obesity: Focus on Growth and Puberty. Physiopathological and Nutritional Aspects. Nutrients 2021, 13, 3434. https://doi.org/10.3390/nu13103434
Bruno C, Vergani E, Giusti M, Oliva A, Cipolla C, Pitocco D, Mancini A. The “Adipo-Cerebral” Dialogue in Childhood Obesity: Focus on Growth and Puberty. Physiopathological and Nutritional Aspects. Nutrients. 2021; 13(10):3434. https://doi.org/10.3390/nu13103434
Chicago/Turabian StyleBruno, Carmine, Edoardo Vergani, Michele Giusti, Alessandro Oliva, Clelia Cipolla, Dario Pitocco, and Antonio Mancini. 2021. "The “Adipo-Cerebral” Dialogue in Childhood Obesity: Focus on Growth and Puberty. Physiopathological and Nutritional Aspects" Nutrients 13, no. 10: 3434. https://doi.org/10.3390/nu13103434
APA StyleBruno, C., Vergani, E., Giusti, M., Oliva, A., Cipolla, C., Pitocco, D., & Mancini, A. (2021). The “Adipo-Cerebral” Dialogue in Childhood Obesity: Focus on Growth and Puberty. Physiopathological and Nutritional Aspects. Nutrients, 13(10), 3434. https://doi.org/10.3390/nu13103434