Is the Phenylalanine-Restricted Diet a Risk Factor for Overweight or Obesity in Patients with Phenylketonuria (PKU)? A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Selection Criteria
2.3. Search Strategy
2.4. Study Selection
2.5. Data Extraction
2.6. Assessment of Risk of Bias in Individual Studies
2.7. Quantitative Synthesis
2.8. Grading the Evidence
3. Results
3.1. Study Selection
3.2. Study Characteristics
Reference | Exposure Assessment Method | Natural Protein (g/kg/day) | PE from PS Supplements (g/kg/day) | Carbohydrate (%) | Lipids (%) | Energy (kcal) | BH4 Treatment | Additional Information |
---|---|---|---|---|---|---|---|---|
Allen et al., 1995 [39] | NA | NA | NA | NA | NA | NA | No | - |
Allen et al., 1996 [41] | 4 day dietary records | 2.1 | NA | NA | 1.6xBMR | No | ||
Fisberg et al., 1999 [40] | 3 day dietary records | <7 y: 105.0% RDA 1 ≥7 y: 109.4% RDA 1 | NA | NA | <7 y: 62.6% RDA ≥7 y: 60.5% RDA | No | - | |
Schulpis et al., 2000 [32] | 1 week dietary record + 24 h dietary recall | strict diet: 7.5 ± 5.6 g/day; ‘loose’ diet: 15.8 ± 5.5 g/day | strict diet: 60.6 ± 7 g/day; ‘loose’ diet: 55.1 ± 14 g/day | strict diet: 49 ‘relaxed’ diet: 43 | strict diet: 21 ‘loose’ diet: 38 | strict diet: 2114 ± 463 ‘loose’ diet: 2080 ± 487 | No | - |
Huemer et al., 2007 [26] | 3 day dietary records | 0.3 | 0.9 | NA | NA | NA | No | - |
Albersen et al., 2010 [7] | NA | 1.3–1.5 times above RDA 1 | NA | NA | - | No | - | |
Rocha et al., 2012 [34] | Food history from the nutrition appointment | HPA: 1.16 ± 0.53 MPKU: 0.59 ± 0.33 CPKU: 0.59 ± 0.36 | HPA: 1.13 ± 0.41 MPKU: 1.38 ± 0.43 CPKU: 1.25 ± 0.53 | HPA: 58 ± 5 MPKU: 60 ± 4 CPKU: 58 ± 6 | HPA: 30 ± 5 MPKU: 25 ± 4 CPKU: 26 ± 4 | HPA: 2260 ± 332 MPKU: 2351 ± 391 CPKU: 2451 ± 316 | No | - |
Doulgeraki et al., 2014 [35] | NA | NA | NA | NA | NA | No | No | HPA on free diet |
Mazzola et al., 2016 [38] | NA | NA | NA | NA | NA | NA | No | - |
Evans et al., 2017 [25] | Food diary | 0.50 ± 0.18 | 1.54 ± 0.50 | NA | NA | 1665 ± 546 | Yes (5 patients) | - |
Hermida-Ameijeiras et al., 2017 [37] | NA | NA | NA | NA | NA | NA | Yes (7 patients) | - |
Couce et al., 2018 [30] | 3 day dietary records | 1.3–1.5 times above RDA 1 | CPKU: 57.0 ± 8.6 MPKU: 53.5 ± 9.8 | NA | NA | Yes (10 patients) | HPA on free diet | |
Evans et al., 2019 [31] | 1 day dietary record | 0.43 ± 0.26 | 2.75 ± 0.39 2 | 60 2 | 25 2 | 1320 2 | No | - |
Azabdaftari et al., 2019 [36] | 3 day dietary records | 0.19 ± 0.13 | 0.73 ± 0.21 | NA | NA | NA | No | - |
Sailer et al., 2020 [18] | 24 h dietary recall | 0.39 ± 0.31 | 1.10 ± 0.72 | 67 ± 9 | 24 ± 8 | 2356 ± 620 | Yes (4 patients) | - |
3.3. NutriGrade Assessment
3.4. Risk of Bias Assessment
3.5. Synthesis of Results
3.5.1. Patients with PKU vs. Healthy Controls
3.5.2. Moderate vs. Poor Risk of Bias Studies
3.5.3. Time of Diagnosis
3.5.4. Age
3.5.5. Sapropterin (BH4) Treatment
3.5.6. Phenotype
3.5.7. Patients with Classical PKU vs. Healthy Controls
3.5.8. Sex
3.5.9. Metabolic Control
3.5.10. Body Fat Percentage
4. Discussion
4.1. Summary of Evidence
4.2. Strengths and Limitations of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Burrage, L.C.; McConnell, J.; Haesler, R.; O’Riordan, M.A.; Sutton, V.R.; Kerr, D.S.; McCandless, S.E. High prevalence of overweight and obesity in females with phenylketonuria. Mol. Genet. Metab. 2012, 107, 43–48. [Google Scholar] [CrossRef]
- Burton, B.K.; Jones, K.B.; Cederbaum, S.; Rohr, F.; Waisbren, S.; Irwin, D.E.; Kim, G.; Lilienstein, J.; Alvarez, I.; Jurecki, E.; et al. Prevalence of comorbid conditions among adult patients diagnosed with phenylketonuria. Mol. Genet. Metab. 2018, 125, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, Y.; Gencpinar, P.; Erdur, B.; Tokgöz, Y.; Isik, I.; Akin, S.B. Overweight and obesity in children under phenylalanine restricted diet. Hong Kong J. Paediatr. 2018, 23, 169–172. [Google Scholar]
- Trefz, K.F.; Muntau, A.C.; Kohlscheen, K.M.; Altevers, J.; Jacob, C.; Braun, S.; Greiner, W.; Jha, A.; Jain, M.; Alvarez, I.; et al. Clinical burden of illness in patients with phenylketonuria (PKU) and associated comorbidities—a retrospective study of German health insurance claims data. Orphanet J. Rare Dis. 2019, 14, 181. [Google Scholar] [CrossRef] [PubMed]
- Gokmen Ozel, H.; Ahring, K.; Bélanger-Quintana, A.; Dokoupil, K.; Lammardo, A.M.; Robert, M.; Rocha, J.C.; Almeida, M.F.; van Rijn, M.; MacDonald, A. Overweight and obesity in PKU: The results from 8 centres in Europe and Turkey. Mol. Genet. Metab. Rep. 2014, 1, 483–486. [Google Scholar] [CrossRef] [PubMed]
- McBurnie, M.A.; Kronmal, R.A.; Schuett, V.E.; Koch, R.; Azeng, C.G. Physical growth of children treated for phenylketonuria. Ann. Hum. Biol. 1991, 18, 357–368. [Google Scholar] [CrossRef]
- Albersen, M.; Bonthuis, M.; de Roos, N.M.; van den Hurk, D.A.; Carbasius Weber, E.; Hendriks, M.M.; de Sain-van der Velden, M.G.; de Koning, T.J.; Visser, G. Whole body composition analysis by the BodPod air-displacement plethysmography method in children with phenylketonuria shows a higher body fat percentage. J. Inherit. Metab. Dis. 2010, 33 (Suppl. 3), S283–S288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stroup, B.M.; Hansen, K.E.; Krueger, D.; Binkley, N.; Ney, D.M. Sex differences in body composition and bone mineral density in phenylketonuria: A cross-sectional study. Mol. Genet. Metab. Rep. 2018, 15, 30–35. [Google Scholar] [CrossRef]
- Walkowiak, D.; Kaluzny, L.; Bukowska-Posadzy, A.; Oltarzewski, M.; Staszewski, R.; Moczko, J.A.; Musielak, M.; Walkowiak, J. Overweight in classical phenylketonuria children: A retrospective cohort study. Adv. Med. Sci. 2019, 64, 409–414. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 4 January 2021).
- Hruby, A.; Hu, F.B. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics 2015, 33, 673–689. [Google Scholar] [CrossRef]
- WHO Consultation on Obesity & World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; 0512-3054; World Health Organization: Geneva, Switzerland, 2000; pp. i–xii, 1–253. [Google Scholar]
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef]
- Hruby, A.; Manson, J.E.; Qi, L.; Malik, V.S.; Rimm, E.B.; Sun, Q.; Willett, W.C.; Hu, F.B. Determinants and Consequences of Obesity. Am. J. Public Health 2016, 106, 1656–1662. [Google Scholar] [CrossRef]
- Van Wegberg, A.M.J.; MacDonald, A.; Ahring, K.; Bélanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. The complete European guidelines on phenylketonuria: Diagnosis and treatment. Orphanet J. Rare Dis. 2017, 12, 162. [Google Scholar] [CrossRef] [Green Version]
- Pena, M.J.; Almeida, M.F.; van Dam, E.; Ahring, K.; Bélanger-Quintana, A.; Dokoupil, K.; Gokmen-Ozel, H.; Lammardo, A.M.; MacDonald, A.; Robert, M.; et al. Special low protein foods for phenylketonuria: Availability in Europe and an examination of their nutritional profile. Orphanet J. Rare Dis. 2015, 10, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, G.; Evans, S.; Pointon-Bell, K.; Rocha, J.C.; MacDonald, A. Special Low Protein Foods in the UK: An Examination of Their Macronutrient Composition in Comparison to Regular Foods. Nutrients 2020, 12, 1893. [Google Scholar] [CrossRef]
- Sailer, M.; Elizondo, G.; Martin, J.; Harding, C.O.; Gillingham, M.B. Nutrient intake, body composition, and blood phenylalanine control in children with phenylketonuria compared to healthy controls. Mol. Genet. Metab. Rep. 2020, 23, 100599. [Google Scholar] [CrossRef] [PubMed]
- Rocha, J.C.; MacDonald, A. Dietary intervention in the management of phenylketonuria: Current perspectives. Pediatr. Health Med. Ther. 2016, 7, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Moretti, F.; Pellegrini, N.; Salvatici, E.; Rovelli, V.; Banderali, G.; Radaelli, G.; Scazzina, F.; Giovannini, M.; Verduci, E. Dietary glycemic index, glycemic load and metabolic profile in children with phenylketonuria. Nutr. Metab. Cardiovasc. Dis. NMCD 2017, 27, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.; Evans, S.; Pinto, A.; Ashmore, C.; MacDonald, A. Protein Substitutes in PKU; Their Historical Evolution. Nutrients 2021, 13, 484. [Google Scholar] [CrossRef]
- Rocha, J.C.; van Spronsen, F.J.; Almeida, M.F.; Ramos, E.; Guimarães, J.T.; Borges, N. Early dietary treated patients with phenylketonuria can achieve normal growth and body composition. Mol. Genet. Metab. 2013, 110, S40–S43. [Google Scholar] [CrossRef]
- Camatta, G.C.; Kanufre, V.C.; Alves, M.R.A.; Soares, R.D.L.; Norton, R.C.; de Aguiar, M.J.B.; Starling, A.L.P. Body fat percentage in adolescents with phenylketonuria and associated factors. Mol. Genet. Metab. Rep. 2020, 23, 100595. [Google Scholar] [CrossRef]
- Dobbelaere, D.; Michaud, L.; Debrabander, A.; Vanderbecken, S.; Gottrand, F.; Turck, D.; Farriaux, J.P. Evaluation of nutritional status and pathophysiology of growth retardation in patients with phenylketonuria. J. Inherit. Metab. Dis. 2003, 26, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.; Truby, H.; Boneh, A. The relationship between dietary intake, growth and body composition in Phenylketonuria. Mol. Genet. Metab. 2017, 122, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Huemer, M.; Huemer, C.; Möslinger, D.; Huter, D.; Stöckler-Ipsiroglu, S. Growth and body composition in children with classical phenylketonuria: Results in 34 patients and review of the literature. J. Inherit. Metab. Dis. 2007, 30, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.; Welch, V. Cochrane Handbook for Systematic Reviews of Interventions; Version 6.2 (Updated February 2021); Cochrane: London, UK, 2021; Available online: www.training.cochrane.org/handbook (accessed on 1 September 2020).
- National Institutes of Health. Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 14 September 2020).
- Couce, M.L.; Sánchez-Pintos, P.; Vitoria, I.; De Castro, M.J.; Aldámiz-Echevarría, L.; Correcher, P.; Fernández-Marmiesse, A.; Roca, I.; Hermida, A.; Martínez-Olmos, M.; et al. Carbohydrate status in patients with phenylketonuria. Orphanet J. Rare Dis. 2018, 13, 103. [Google Scholar] [CrossRef] [Green Version]
- Evans, S.; Daly, A.; Wildgoose, J.; Cochrane, B.; Chahal, S.; Ashmore, C.; Loveridge, N.; MacDonald, A. Growth, Protein and Energy Intake in Children with PKU Taking a Weaning Protein Substitute in the First Two Years of Life: A Case-Control Study. Nutrients 2019, 11, 552. [Google Scholar] [CrossRef] [Green Version]
- Schulpis, K.H.; Papakonstantinou, E.D.; Tzamouranis, J. Plasma leptin concentrations in phenylketonuric patients. Horm. Res. 2000, 53, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Knüppel, S.; Schwedhelm, C.; Hoffmann, G.; Missbach, B.; Stelmach-Mardas, M.; Dietrich, S.; Eichelmann, F.; Kontopantelis, E.; Iqbal, K.; et al. Perspective: NutriGrade: A Scoring System to Assess and Judge the Meta-Evidence of Randomized Controlled Trials and Cohort Studies in Nutrition Research. Adv. Nutr. 2016, 7, 994–1004. [Google Scholar] [CrossRef]
- Rocha, J.C.; van Spronsen, F.J.; Almeida, M.F.; Soares, G.; Quelhas, D.; Ramos, E.; Guimarães, J.T.; Borges, N. Dietary treatment in phenylketonuria does not lead to increased risk of obesity or metabolic syndrome. Mol. Genet. Metab. 2012, 107, 659–663. [Google Scholar] [CrossRef] [Green Version]
- Doulgeraki, A.; Skarpalezou, A.; Theodosiadou, A.; Monopolis, I.; Schulpis, K. Body composition profile of young patients with phenylketonuria and mild hyperphenylalaninemia. Int. J. Endocrinol. Metab. 2014, 12, e16061. [Google Scholar] [CrossRef] [Green Version]
- Azabdaftari, A.; van der Giet, M.; Schuchardt, M.; Hennermann, J.B.; Plöckinger, U.; Querfeld, U. The cardiovascular phenotype of adult patients with phenylketonuria. Orphanet J. Rare Dis. 2019, 14, 213. [Google Scholar] [CrossRef] [Green Version]
- Hermida-Ameijeiras, A.; Crujeiras, V.; Roca, I.; Calvo, C.; Leis, R.; Couce, M.L. Arterial stiffness assessment in patients with phenylketonuria. Medicine 2017, 96, e9322. [Google Scholar] [CrossRef]
- Mazzola, P.N.; Nalin, T.; Castro, K.; van Rijn, M.; Derks, T.G.; Perry, I.D.; Mainieri, A.S.; Schwartz, I.V. Analysis of body composition and nutritional status in Brazilian phenylketonuria patients. Mol. Genet. Metab. Rep. 2016, 6, 16–20. [Google Scholar] [CrossRef]
- Allen, J.R.; McCauley, J.C.; Waters, D.L.; O’Connor, J.; Roberts, D.C.; Gaskin, K.J. Resting energy expenditure in children with phenylketonuria. Am. J. Clin. Nutr. 1995, 62, 797–801. [Google Scholar] [CrossRef]
- Fisberg, R.M.; da Silva-Fernandes, M.E.; Schmidt, B.J.; Fisberg, M. Nutritional evaluation of children with phenylketonuria. Sao Paulo Med. J. 1999, 117, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Allen, J.R.; Baur, L.A.; Waters, D.L.; Humphries, I.R.; Allen, B.J.; Roberts, D.C.; Gaskin, K.J. Body protein in prepubertal children with phenylketonuria. Eur. J. Clin. Nutr. 1996, 50, 178–186. [Google Scholar]
- Pena, M.J.; de Almeida, M.F.; van Dam, E.; Ahring, K.; Bélanger-Quintana, A.; Dokoupil, K.; Gokmen-Ozel, H.; Lammardo, A.M.; MacDonald, A.; Robert, M.; et al. Protein substitutes for phenylketonuria in Europe: Access and nutritional composition. Eur. J. Clin. Nutr. 2016, 70, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.H.; Singh, R.H. Protein substitute for children and adults with phenylketonuria. Cochrane Database Syst. Rev. 2015, 2015, Cd004731. [Google Scholar] [CrossRef] [PubMed]
- Ilgaz, F.; Marsaux, C.; Pinto, A.; Singh, R.; Rohde, C.; Karabulut, E.; Gökmen-Özel, H.; Kuhn, M.; MacDonald, A. Protein Substitute Requirements of Patients with Phenylketonuria on BH4 Treatment: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 1040. [Google Scholar] [CrossRef] [PubMed]
- Aldámiz-Echevarría, L.; Bueno, M.A.; Couce, M.L.; Lage, S.; Dalmau, J.; Vitoria, I.; Andrade, F.; Llarena, M.; Blasco, J.; Alcalde, C.; et al. Tetrahydrobiopterin therapy vs phenylalanine-restricted diet: Impact on growth in PKU. Mol. Genet. Metab. 2013, 109, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.; Charmchi, P.; Dworetzky, B. State Statutes & Regulations on Dietary Treatment of Disorders Identified Through Newborn Screening; The Catalyst Center: Denver, CO, USA; Boston University School of Public Health: Boston, MA, USA; Ed. Catalyst Center: New Orleans, LA, USA, 2016; Available online: https://www.ciswh.org/wp-content/uploads/2016/11/State-Statues-and-Leg-re-Dietary-Treatment_Updated-7.24.17.pdf (accessed on 1 February 2021).
- Belanger-Quintana, A.; Dokoupil, K.; Gokmen-Ozel, H.; Lammardo, A.M.; MacDonald, A.; Motzfeldt, K.; Nowacka, M.; Robert, M.; van Rijn, M.; Ahring, K. Diet in phenylketonuria: A snapshot of special dietary costs and reimbursement systems in 10 international centers. Mol. Genet. Metab. 2012, 105, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Robertson, L.V.; McStravick, N.; Ripley, S.; Weetch, E.; Donald, S.; Adam, S.; Micciche, A.; Boocock, S.; MacDonald, A. Body mass index in adult patients with diet-treated phenylketonuria. J. Hum. Nutr. Diet. 2013, 26 (Suppl. 1), 1–6. [Google Scholar] [CrossRef]
- Couce, M.L.; Vitoria, I.; Aldámiz-Echevarría, L.; Fernández-Marmiesse, A.; Roca, I.; Llarena, M.; Sánchez-Pintos, P.; Leis, R.; Hermida, A. Lipid profile status and other related factors in patients with Hyperphenylalaninaemia. Orphanet J. Rare Dis. 2016, 11, 123. [Google Scholar] [CrossRef] [Green Version]
- Giżewska, M.; MacDonald, A.; Bélanger-Quintana, A.; Burlina, A.; Cleary, M.; Coşkun, T.; Feillet, F.; Muntau, A.C.; Trefz, F.K.; van Spronsen, F.J.; et al. Diagnostic and management practices for phenylketonuria in 19 countries of the South and Eastern European Region: Survey results. Eur. J. Pediatr. 2016, 175, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Rocha, J.C.; van Rijn, M.; van Dam, E.; Ahring, K.; Bélanger-Quintana, A.; Dokoupil, K.; Gokmen Ozel, H.; Lammardo, A.M.; Robert, M.; Heidenborg, C.; et al. Weight Management in Phenylketonuria: What Should Be Monitored. Ann. Nutr. Metab. 2016, 68, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Dekkers, O.M.; Vandenbroucke, J.P.; Cevallos, M.; Renehan, A.G.; Altman, D.G.; Egger, M. COSMOS-E: Guidance on conducting systematic reviews and meta-analyses of observational studies of etiology. PLoS Med. 2019, 16, e1002742. [Google Scholar] [CrossRef] [PubMed]
Reference | Country | Study Design (Duration of Follow-Up) | Sample Size (Phenotype) | Early and Continous Treatment | Age Range (Years) | Gender (F:M) | Annual Phe Levels (μmol/L) | Controls (Type) | Outcomes (Units) | Key Findings | Risk of Bias 1 |
---|---|---|---|---|---|---|---|---|---|---|---|
Allen et al., 1995 [39] | Australia | Cross-sectional | 30 (NA) | NA | 4.6–17.0 | 15:15 | NA | 76 family relatives, (age range: 4.3–18.4 y) | Body fat (%) Weight z-score | No significant differences between males with PKU and control subjects for weight scores, body fat, or fat free mass. Females with PKU had lower fat free mass and there was no difference in weight scores and body fat. | High |
Allen et al., 1996 [41] | Australia | Cross-sectional with longitudinal cohort (1.1 y) | 37 (37 classical) | Yes (NBS) | 3.9–11.0 2 | 16:21 | median at the time of the study: 652 | 27 unaffected siblings (PKU or cystic fibrosis), (age range: 4.0–11.5 y) | Body fat (%) Weight z-score | No significant differences between children with PKU and controls for body fat, lean body mass, or weight. Children with PKU were significantly shorter than controls. | High |
Fisberg et al., 1999 [40] | Brazil | Cross-sectional | 42 (NA) | NA | 1.0–12.0 | NA (both genders) | NA | 31 with similar characteristics (age range: 1.0–12.0 y) | Weight for height z-score Weight z-score | No significant differences between patients with PKU and controls for weight for height and weight for age z-scores. | High |
Schulpis et al., 2000 [32] | Greece | Cross-sectional | 49 (49 classical–21 strict diet + 28 ‘relaxed’ diet) | NA | strict diet: 5.2 ± 1.4 ‘relaxed’ diet: 6.0 ± 1.5 (mean + SD) | 23:26 | mean ± SD: strict diet: 150 ± 40 ‘loose’ diet: 800 ± 40 | 30 with similar age (mean age + SD: 7.9 ± 1.2 y) | BMI (kg/m2) | No significant difference for BMI between patients with PKU adhering to their diet or on a ‘relaxed diet’ and controls. Patients with PKU on a ‘relaxed diet’ had significantly higher leptin concentrations compared to patients with PKU adhering to their diet and controls. | High |
Huemer et al., 2007 [26] | Austria | Cross-sectional with longitudi- nal cohort (1 y) | 34 (34 classical) | Yes (NBS) | 0.2–15.0 2 | 12:22 | mean ± SD at the time of the study: <10 y: 456 ± 432 10–15 y: 534 ± 324 >15 y: 444 ± 228 | 34 matched for age and gender (mean age difference: 0.5 y) | BMI (kg/m2) BMI z-scores Weight z-score | No significant differences for BMI and body fat mass between patients with PKU and controls. | Moderate |
Albersen et al., 2010 [7] | The Netherlands | Cross-sectional | 20 (20 classical) | Yes (NBS) | 6.0–16.0 | 13:7 | mean ± SD: 375 ± 253?(F: 420 ± 303; M: 291 ± 77) | 20 matched for age and gender (mean age difference: 0.5 y) | BMI (kg/m2) Body fat (%) | No significant differences between children with PKU and controls for body weight and BMI. Body fat % was significantly higher in patients with PKU, especially in girls aged > 11 years. | High |
Rocha et al., 2012 [34] | Portugal | Cross-sectional | 89 (29 classical, 42 mild 18 HPA) | Yes (NBS) | 3.0–30.0 | 41:48 | mean ± SD: 393 ± 245 | 79 siblings, family or friends (mean age difference: 1.9 y) | BMI (kg/m2) Body fat (%) Overweight prevalence (%) | No significant differences between patients with PKU and controls for overweight and obesity prevalence, BMI, waist circumference, and % body fat. Overweight prevalence was higher in patients with poor metabolic control and patients aged 10–16 years. | Moderate |
Doulgeraki et al., 2014 [35] | Greece | Cross-sectional | 80 (48 classical, 32 HPA) | Yes (NBS) | 5.0–18.0 | 37:43 | mean ± SD: PKU: 344 ± 178 HPA: 222 ± 51.6 | 57 matched for age and gender (mean age difference: 0.6 y) | BMI z-score Body fat (%) Weight z-score | Children with PKU had significantly higher BMI and weight when compared to healthy children. Fat mass increased significantly during puberty in PKU patients, especially in those with poor dietary adherence, and HPA. | High |
Mazzola et al., 2016 [38] | Brazil | Cross-sectional | 27 (13 classical, 14 mild) | Yes (11 early and 16 late diagnosed) | 6.0–25.0 | 13:14 | range at the time of the study: 102–1660 | 27 matched for age and gender (age NA) | BMI (kg/m2) Body fat (%) Overweight prevalence (%) | No significant differences for anthropometric measures between patients with PKU and controls. PKU severity, time of diagnosis, or metabolic control had no effect on any body composition outcome measures. | High |
Evans et al., 2017 [25] | Australia | Longitudinal prospective (2 y) | 37 (NA) | Yes (NBS) | 0.6–18.0 2 | 24:13 | NA | 21 matched for age and gender (mean age difference: 0.0 y) | BMI z-score Body fat (%) Weight z-score | No significant differences for BMI z-score and % body fat mass between patients treated with phe-restricted diet only, patients treated with BH4 + diet (n = 5), and controls. | High |
Hermida-Ameijeiras et al., 2017 [37] | Spain | Cross-sectional | 41 (22 classical,19 mild–moderate) | Yes (early and late diagnosed) | 6.0–50.0 | 30:11 | NA | 41 matched for age and gender (mean age difference: -2.9 y) | BMI (kg/m2) Overweight prevalence (%) | No significant differences for BMI between patients with PKU and controls. Patients on BH4 therapy had lower BMI than those without BH4 therapy. Patients with lower Phe tolerance had higher body weight. | High |
Couce et al., 2018 [30] | Spain | Cross-sectional | 83 (37 classical, 20 mild-moderate 26 HPA) | Yes (70 early and 13 late diagnosed) | 4.0–52.0 | 49:34 | median: classical: 484 mild-moderate: 242 HPA: 296 | 68 matched for age and gender (age: NA) | Overweight prevalence (%) | Significantly higher % of overweight in patients with PKU than in patients with HPA and healthy controls, especially in those with good metabolic control. | Moderate |
Evans et al., 2019 [31] | UK | Longitudinal Prospective (1.4–1.7 y; until 2 y of age) | 20 (14 classical, 3 mild 3 moderate) | Yes (NBS) | 0.2–0.6 2 | 6:14 | mean ± SD: 249 ± 81 | 20 (18 matched for birth order and mother’s educational level) (mean age difference: 0.0 y) | BMI z-score Overweight prevalence (%) Weight z-score | No significant differences between patients with PKU and controls for weight, head circumference, or BMI. Boys had lower mean BMI z-scores across both groups (PKU and controls). | Moderate |
Azabdaftari et al., 2019 [36] | Germany | Cross-sectional | 23 3 (19 classical, 4 mild) | Yes (NBS) | 18.0–47.0 | 10:13 | mean ± SD: 1132 ± 321 (F: 1209 ± 316; M: 1068 ± 325) | 28 healthy with similar age (mean age difference: -0.7 y) | BMI (kg/m2) | Patients with PKU had significantly higher BMI than controls. Patients with poor metabolic control also had significantly higher BMI. | High |
Sailer et al., 2020 [18] | USA | Cross-sectional | 30 (30 classical) | Yes (NBS) | 5.0–16.0 | 12:18 | mean ± SD: 392 ± 184 | 30 matched for age and gender (mean age difference: -0.1 y) | BMI (kg/m2) Body fat (%) Overweight prevalence (%) | No significant differences for BMI between patients with PKU and controls. Male subjects with PKU had significantly higher fat mass % and lower lean body mass % compared to male controls. | High |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, C.; Pinto, A.; Faria, A.; Teixeira, D.; van Wegberg, A.M.J.; Ahring, K.; Feillet, F.; Calhau, C.; MacDonald, A.; Moreira-Rosário, A.; et al. Is the Phenylalanine-Restricted Diet a Risk Factor for Overweight or Obesity in Patients with Phenylketonuria (PKU)? A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 3443. https://doi.org/10.3390/nu13103443
Rodrigues C, Pinto A, Faria A, Teixeira D, van Wegberg AMJ, Ahring K, Feillet F, Calhau C, MacDonald A, Moreira-Rosário A, et al. Is the Phenylalanine-Restricted Diet a Risk Factor for Overweight or Obesity in Patients with Phenylketonuria (PKU)? A Systematic Review and Meta-Analysis. Nutrients. 2021; 13(10):3443. https://doi.org/10.3390/nu13103443
Chicago/Turabian StyleRodrigues, Catarina, Alex Pinto, Ana Faria, Diana Teixeira, Annemiek M. J. van Wegberg, Kirsten Ahring, François Feillet, Conceição Calhau, Anita MacDonald, André Moreira-Rosário, and et al. 2021. "Is the Phenylalanine-Restricted Diet a Risk Factor for Overweight or Obesity in Patients with Phenylketonuria (PKU)? A Systematic Review and Meta-Analysis" Nutrients 13, no. 10: 3443. https://doi.org/10.3390/nu13103443
APA StyleRodrigues, C., Pinto, A., Faria, A., Teixeira, D., van Wegberg, A. M. J., Ahring, K., Feillet, F., Calhau, C., MacDonald, A., Moreira-Rosário, A., & Rocha, J. C. (2021). Is the Phenylalanine-Restricted Diet a Risk Factor for Overweight or Obesity in Patients with Phenylketonuria (PKU)? A Systematic Review and Meta-Analysis. Nutrients, 13(10), 3443. https://doi.org/10.3390/nu13103443