Intermittent Fasting and Sleep: A Review of Human Trials
Abstract
:1. Introduction
2. Methods—Human Trial Selection
3. Effect of Intermittent Fasting on Body Weight
4. Effects of Intermittent Fasting on Sleep Parameters
4.1. Sleep Quality
4.2. Sleep Duration
4.3. Sleep Latency & Sleep Efficiency
4.4. Insomnia Severity
4.5. Risk of Obstructive Sleep Apnea
5. Summary of Findings
6. Directions for Future Research
7. Limitations to the Current Body of Evidence
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Beydoun, M.A.; Min, J.; Xue, H.; Kaminsky, L.A.; Cheskin, L.J. Has the prevalence of overweight, obesity and central obesity levelled off in the United States? Trends, patterns, disparities, and future projections for the obesity epidemic. Int. J. Epidemiol. 2020, 49, 810–823. [Google Scholar] [CrossRef]
- Zimberg, I.Z.; Damaso, A.; del Re, M.; Carneiro, A.M.; de Sa Souza, H.; de Lira, F.S.; Tufik, S.; de Mello, M.T. Short sleep duration and obesity: Mechanisms and future perspectives. Cell Biochem. Funct. 2012, 30, 524–529. [Google Scholar] [CrossRef]
- Sabanayagam, C.S. Anoop Sleep Duration and Cardiovascular Disease: Results from the National Health Interview Survey. Sleep 2010, 33, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Yannakoulia, M.; Anastasiou, C.A.; Karfopoulou, E.; Pehlivanidis, A.; Panagiotakos, D.B.; Vgontzas, A. Sleep quality is associated with weight loss maintenance status: The MedWeight study. Sleep Med. 2017, 34, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Vgontzas, A.N.; Bixler, E.O.; Tan, T.L.; Kanter, D.; Martin, L.; Kales, A. Obesity Without Sleep Apnea is Associated with Daytime Sleepiness. Arch. Intern. Med. 1998, 158, 1333–1337. [Google Scholar] [CrossRef] [Green Version]
- Hoddy, K.K.; Potts, K.S.; Bazzano, L.A.; Kirwan, J.P. Sleep Extension: A Potential Target for Obesity Treatment. Curr. Diab. Rep. 2020, 20, 81. [Google Scholar] [CrossRef] [PubMed]
- Sawamoto, R.; Nozaki, T.; Furukawa, T.; Tanahashi, T.; Morita, C.; Hata, T.; Komaki, G.; Sudo, N. Higher sleep fragmentation predicts a lower magnitude of weight loss in overweight and obese women participating in a weight-loss intervention. Nutr. Diabetes 2014, 4, e144. [Google Scholar] [CrossRef] [Green Version]
- Verhoef, S.P.; Camps, S.G.; Gonnissen, H.K.; Westerterp, K.R.; Westerterp-Plantenga, M.S. Concomitant changes in sleep duration and body weight and body composition during weight loss and 3-mo weight maintenance. Am. J. Clin. Nutr. 2013, 98, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Chow, L.S.; Manoogian, E.N.C.; Alvear, A.; Fleischer, J.G.; Thor, H.; Dietsche, K.; Wang, Q.; Hodges, J.S.; Esch, N.; Malaeb, S.; et al. Time-Restricted Eating Effects on Body Composition and Metabolic Measures in Humans who are Overweight: A Feasibility Study. Obesity 2020, 28, 860–869. [Google Scholar] [CrossRef]
- Cienfuegos, S.; Gabel, K.; Kalam, F.; Ezpeleta, M.; Wiseman, E.; Pavlou, V.; Lin, S.; Oliveira, M.L.; Varady, K.A. Effects of 4- and 6-h Time-Restricted Feeding on Weight and Cardiometabolic Health: A Randomized Controlled Trial in Adults with Obesity. Cell Metab. 2020, 32, 366–378. [Google Scholar] [CrossRef]
- Gabel, K.; Cienfuegos, S.; Kalam, F.; Ezpeleta, M.; Varady, K.A. Time-Restricted Eating to Improve Cardiovascular Health. Curr. Atheroscler. Rep. 2021, 23, 22. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P.; Longo, V.D.; Harvie, M. Impact of intermittent fasting on health and disease processes. Ageing Res. Rev. 2017, 39, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Trepanowski, J.F.; Kroeger, C.M.; Barnosky, A.; Klempel, M.C.; Bhutani, S.; Hoddy, K.K.; Gabel, K.; Freels, S.; Rigdon, J.; Rood, J.; et al. Effect of Alternate-Day Fasting on Weight Loss, Weight Maintenance, and Cardioprotection Among Metabolically Healthy Obese Adults: A Randomized Clinical Trial. JAMA Intern. Med. 2017, 177, 930–938. [Google Scholar] [CrossRef] [PubMed]
- De Cabo, R.; Mattson, M.P. Effects of Intermittent Fasting on Health, Aging, and Disease. N. Engl. J. Med. 2019, 381, 2541–2551. [Google Scholar] [CrossRef]
- Patterson, R.E.; Sears, D.D. Metabolic Effects of Intermittent Fasting. Annu. Rev. Nutr. 2017, 37, 371–393. [Google Scholar] [CrossRef] [Green Version]
- Sunderram, J.; Sofou, S.; Kamisoglu, K.; Karantza, V.; Androulakis, I. Time-restricted feeding and the realignment of biological rhythms: Translational opportunities and challenges. J. Transl. Med. 2014, 12, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.K.; Bhapkar, M.; Pittas, A.G.; Pieper, C.F.; Das, S.K.; Williamson, D.A.; Scott, T.; Redman, L.M.; Stein, R.; Gilhooly, C.H.; et al. Effect of Calorie Restriction on Mood, Quality of Life, Sleep, and Sexual Function in Healthy Nonobese Adults: The CALERIE 2 Randomized Clinical Trial. JAMA Intern. Med. 2016, 176, 743–752. [Google Scholar] [CrossRef] [Green Version]
- Alfaris, N.; Wadden, T.A.; Sarwer, D.B.; Diwald, L.; Volger, S.; Hong, P.; Baxely, A.; Minnick, A.M.; Vetter, M.L.; Berkowitz, R.I.; et al. Effects of a 2-year behavioral weight loss intervention on sleep and mood in obese individuals treated in primary care practice. Obesity 2015, 23, 558–564. [Google Scholar] [CrossRef]
- Chaput, J.P.; Drapeau, V.; Hetherington, M.; Lemieux, S.; Provencher, V.; Tremblay, A. Psychobiological impact of a progressive weight loss program in obese men. Physiol. Behav. 2005, 86, 224–232. [Google Scholar] [CrossRef]
- St-Onge, M.P.; Shechter, A. Sleep disturbances, body fat distribution, food intake and/or energy expenditure: Pathophysiological aspects. Horm. Mol. Biol. Clin. Investig. 2014, 17, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Hutchison, A.T.; Regmi, P.; Manoogian, E.N.C.; Fleischer, J.G.; Wittert, G.A.; Panda, S.; Heilbronn, L.K. Time-Restricted Feeding Improves Glucose Tolerance in Men at Risk for Type 2 Diabetes: A Randomized Crossover Trial. Obesity 2019, 27, 724–732. [Google Scholar] [CrossRef]
- Parr, E.B.; Devlin, B.L.; Lim, K.H.C.; Moresi, L.N.Z.; Geils, C.; Brennan, L.; Hawley, J.A. Time-Restricted Eating as a Nutrition Strategy for Individuals with Type 2 Diabetes: A Feasibility Study. Nutrients 2020, 12, 3228. [Google Scholar] [CrossRef]
- Cienfuegos, S.; Gabel, K.; Kalam, F.; Ezpeleta, M.; Pavlou, V.; Lin, S.; Wiseman, E.; Varady, K.A. The effect of 4-h versus 6-h time restricted feeding on sleep quality, duration, insomnia severity and obstructive sleep apnea in adults with obesity. Nutr. Health 2021, 1–7. [Google Scholar] [CrossRef]
- Gabel, K.; Hoddy, K.K.; Burgess, H.J.; Varady, K.A. Effect of 8-h time-restricted feeding on sleep quality and duration in adults with obesity. Appl. Physiol. Nutr. Metab. 2019, 44, 903–906. [Google Scholar] [CrossRef] [PubMed]
- Kesztyus, D.; Fuchs, M.; Cermak, P.; Kesztyus, T. Associations of time-restricted eating with health-related quality of life and sleep in adults: A secondary analysis of two pre-post pilot studies. BMC Nutr. 2020, 6, 76. [Google Scholar] [CrossRef] [PubMed]
- Lowe, D.A.; Wu, N.; Rohdin-Bibby, L.; Moore, A.H.; Kelly, N.; Liu, Y.E.; Philip, E.; Vittinghoff, E.; Heymsfield, S.B.; Olgin, J.E.; et al. Effects of Time-Restricted Eating on Weight Loss and Other Metabolic Parameters in Women and Men with Overweight and Obesity: The TREAT Randomized Clinical Trial. JAMA Intern. Med. 2020, 180, 1491–1499. [Google Scholar] [CrossRef]
- Wilkinson, M.J.; Manoogian, E.N.C.; Zadourian, A.; Lo, H.; Fakhouri, S.; Shoghi, A.; Wang, X.; Fleischer, J.G.; Navlakha, S.; Panda, S.; et al. Ten-Hour Time-Restricted Eating Reduces Weight, Blood Pressure, and Atherogenic Lipids in Patients with Metabolic Syndrome. Cell Metab. 2020, 31, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.; Panda, S. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits. Cell Metab. 2015, 22, 789–798. [Google Scholar] [CrossRef] [Green Version]
- Kalam, F.; Gabel, K.; Cienfuegos, S.; Ezpeleta, M.; Wiseman, E.; Varady, K.A. Alternate Day Fasting Combined with a Low Carbohydrate Diet: Effect on Sleep Quality, Duration, Insomnia Severity and Risk of Obstructive Sleep Apnea in Adults with Obesity. Nutrients 2021, 13, 211. [Google Scholar] [CrossRef]
- Ross, K.M.; Graham Thomas, J.; Wing, R.R. Successful weight loss maintenance associated with morning chronotype and better sleep quality. J. Behav. Med. 2016, 39, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Ashrafian, H.; Toma, T.; Rowland, S.P.; Harling, L.; Tan, A.; Efthimiou, E.; Darzi, A.; Athanasiou, T. Bariatric Surgery or Non-Surgical Weight Loss for Obstructive Sleep Apnoea? A Systematic Review and Comparison of Meta-analyses. Obes. Surg. 2015, 25, 1239–1250. [Google Scholar] [CrossRef] [PubMed]
- Tuomilehto, H.; Seppa, J.; Uusitupa, M. Obesity and obstructive sleep apnea—Clinical significance of weight loss. Sleep Med. Rev. 2013, 17, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Wing, R.R.; Lang, W.; Wadden, T.A.; Safford, M.; Knowler, W.C.; Bertoni, A.G.; Hill, J.O.; Brancati, F.L.; Peters, A.; Wagenknecht, L.; et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care 2011, 34, 1481–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peppard, P.E.; Young, T.; Palta, M.; Dempsey, J.; Skatrud, J. Longitudinal Study of Moderate Weight Change and Sleep-Disordered Breathing. JAMA 2000, 284, 3015–3021. [Google Scholar] [CrossRef] [Green Version]
- Buysse, D.J.; Reynolds, C.F.I.; Monk, T.H.; Berman, S.R.; Kupfe, D.J. The Pittsburgh Sleep Quality Index: A New Instrument for Psychiatric Practice and Research. Psychiatry Res. 1988, 28, 193–213. [Google Scholar] [CrossRef]
- Zhou, J.; Kim, J.E.; Armstrong, C.L.; Chen, N.; Campbell, W.W. Higher-protein diets improve indexes of sleep in energy-restricted overweight and obese adults: Results from 2 randomized controlled trials. Am. J. Clin. Nutr. 2016, 103, 766–774. [Google Scholar] [CrossRef] [Green Version]
- Lindseth, G.; Lindseth, P.; Thompson, M. Nutritional effects on sleep. West. J. Nurs. Res. 2013, 35, 497–513. [Google Scholar] [CrossRef] [Green Version]
- Hudson, J.L.; Zhou, J.; Campbell, W.W. Adults Who Are Overweight or Obese and Consuming an Energy-Restricted Healthy US-Style Eating Pattern at Either the Recommended or a Higher Protein Quantity Perceive a Shift from “Poor” to “Good” Sleep: A Randomized Controlled Trial. J. Nutr. 2020, 150, 3216–3223. [Google Scholar] [CrossRef]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L.; et al. National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health 2015, 1, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wheaton, A.G.; Chapman, D.P.; Cunningham, T.J.; Lu, H.; Croft, J.B. Prevalence of Healthy Sleep Duration among Adults—United States, 2014. Morb. Mortal. Wkly. Rep. 2016, 65, 137–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moshe, I.; Terhorst, Y.; Opoku Asare, K.; Sander, L.B.; Ferreira, D.; Baumeister, H.; Mohr, D.C.; Pulkki-Raback, L. Predicting Symptoms of Depression and Anxiety Using Smartphone and Wearable Data. Front. Psychiatry 2021, 12, 625247. [Google Scholar] [CrossRef]
- Chaudhry, F.F.; Danieletto, M.; Golden, E.; Scelza, J.; Botwin, G.; Shervey, M.; de Freitas, J.K.; Paranjpe, I.; Nadkarni, G.N.; Miotto, R.; et al. Sleep in the Natural Environment: A Pilot Study. Sensors 2020, 20, 1378. [Google Scholar] [CrossRef] [Green Version]
- Kredlow, M.A.; Capozzoli, M.C.; Hearon, B.A.; Calkins, A.W.; Otto, M.W. The effects of physical activity on sleep: A meta-analytic review. J. Behav. Med. 2015, 38, 427–449. [Google Scholar] [CrossRef]
- Hori, H.; Ikenouchi-Sugita, A.; Yoshimura, R.; Nakamura, J. Does subjective sleep quality improve by a walking intervention? A real-world study in a Japanese workplace. BMJ Open 2016, 6, e011055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, C.; Lim, L.L.; Xu, L.; Kong, A.P.S. Sleep and Obesity. J. Obes. Metab. Syndr. 2018, 27, 4–24. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.G.; Morgenthaler, T.I.; Katzka, D.A. Sleep and Nocturnal Gastroesophageal Reflux: An Update. Chest 2018, 154, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Surdea-Blaga, T.; Negrutiu, D.E.; Palage, M.; Dumitrascu, D.L. Food and Gastroesophageal Reflux Disease. Curr. Med. Chem. 2019, 26, 3497–3511. [Google Scholar] [CrossRef] [PubMed]
- Bastien, C.H.; Vallieres, A.; Morin, C.M. Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep Med. 2001, 2, 297–307. [Google Scholar] [CrossRef]
- Surani, S.R. Diabetes, sleep apnea, obesity and cardiovascular disease: Why not address them together? World J. Diabetes 2014, 5, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Chung, F.; Yegneswaran, B.; Liao, P.; Chung, S.A.; Vairavanathan, S.; Islam, S.; Khajedehi, A.; Shapiro, C.M. Validation of the Berlin Questionnaire and American Society of Anesthesiologists Checklist as Screening Tools for Obstructive Sleep Apnea in Surgical Patients. Anesthesiology 2008, 108, 822–830. [Google Scholar] [CrossRef] [Green Version]
- Quante, M.; Kaplan, E.R.; Cailler, M.; Rueschman, M.; Wang, R.; Weng, J.; Taveras, E.M.; Redline, S. Actigraphy-based sleep estimation in adolescents and adults: A comparison with polysomnography using two scoring algorithms. Nat. Sci. Sleep 2018, 10, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Cheung, J.; Leary, E.B.; Lu, H.; Zeitzer, J.M.; Mignot, E. PSG Validation of minute-to-minute scoring for sleep and wake periods in a consumer wearable device. PLoS ONE 2020, 15, e0238464. [Google Scholar] [CrossRef] [PubMed]
- Jamshed, H.; Beyl, R.A.; Della Manna, D.L.; Yang, E.S.; Ravussin, E.; Peterson, C.M. Early Time-Restricted Feeding Improves 24-Hour Glucose Levels and Affects Markers of the Circadian Clock, Aging, and Autophagy in Humans. Nutrients 2019, 11, 1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlot, A.; Hutt, F.; Sabatier, E.; Zoll, J. Beneficial Effects of Early Time-Restricted Feeding on Metabolic Diseases: Importance of Aligning Food Habits with the Circadian Clock. Nutrients 2021, 13, 1405. [Google Scholar] [CrossRef] [PubMed]
- Farhud, D.; Aryan, Z. Circadian Rhythm, Lifestyle and Health: A Narrative Review. Iran. J. Public Health 2018, 47, 1068–1076. [Google Scholar] [PubMed]
- Horne, J.; Ostberg, O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int. J. Chronobiol. 1976, 4, 97–110. [Google Scholar]
- Lucassen, E.A.; Zhao, X.; Rother, K.I.; Mattingly, M.S.; Courville, A.B.; de Jonge, L.; Csako, G.; Cizza, G.; Sleep Extension Study Group. Evening chronotype is associated with changes in eating behavior, more sleep apnea, and increased stress hormones in short sleeping obese individuals. PLoS ONE 2013, 8, e56519. [Google Scholar] [CrossRef] [Green Version]
Reference | Subjects | Diet Length | Design and Intervention Groups | Weight Loss (% Change) | Dietary Intake (Change) | Sleep Quality (Change) | Sleep Duration (Change) | Sleep Latency (Change) | Sleep Efficiency (Change) | Insomnia Severity (Change) | Sleep Apnea Risk (Change) |
---|---|---|---|---|---|---|---|---|---|---|---|
Time restricted eating | |||||||||||
Hutchison et al., 2019 [21] | n = 15, M Overweight Obese Prediabetic | 1 week | RT: Crossover 1. 9-h TRE (8 a.m.–5 p.m.) 2. 9-h TRE (12–9 p.m.) | 1. ↓ 1% * 2. ↓ 1% * | - | - | 1. ∅ (Accelerometer) 2. ∅ (Accelerometer) | - | - | - | - |
Parr et al., 2020 [22] | n = 19, MF Overweight Obese Type 2 Diabetes | 4 weeks | Single-arm 1. 9-h TRE (10 a.m.–7 p.m.) | 1. ∅ | 1. ∅ kcal %P: ∅, %F: ∅, %C: ∅ | 1. ∅ (PSQI) | 1. ∅ (PSQI) | 1. ∅ (PSQI) | 1. ∅ (PSQI) | - | - |
Cienfuegos et al., 2021 [23] | n = 58, MF Obese No Diabetes | 8 weeks | RCT: Parallel-arm 1. 4-h TRE (3–7 p.m.) 2. 6-h TRE (1–7 p.m.) 3. Control (no meal timing restrictions) | 1. ↓ 3% *,† 2. ↓ 3% *,† 3. ∅ | 1. ↓ 530 kcal *,† %P: ∅, %F: ∅, %C: ∅ 2. ↓ 570 kcal *,† %P: ∅, %F: ∅, %C: ∅ 3. ∅ kcal %P: ∅, %F: ∅, %C: ∅ | 1. ∅ (PSQI) 2. ∅ (PSQI) 3. ∅ (PSQI) | 1. ∅ (PSQI) 2. ∅ (PSQI) 3. ∅ (PSQI) | 1. ∅ (PSQI) 2. ∅ (PSQI) 3. ∅ (PSQI) | - | 1. ∅ (ISI) 2. ∅ (ISI) 3. ∅ (ISI) | 1. ∅ (Berlin) 2. ∅ (Berlin) 3. ∅ (Berlin) |
Gabel et al., 2019 [24] | n = 23, MF Obese No Diabetes | 12 weeks | Single-arm 1. 8-h TRE (10 a.m.–6 p.m.) | 1. ↓ 3% † | 1. ↓ 341 kcal * %P: ∅, %F: ∅, %C: ∅ | 1. ∅ (PSQI) | 1. ∅ (PSQI) | - | - | 1. ∅ (ISI) | - |
Kesztyus et al., 2020 [25] | n = 99, MF Overweight Obese No Diabetes | 12 weeks | Single-arm 1. 8–9-h TRE (self-selected) | 1. ↓ 2% * | - | 1. ↑ 10 pts * (VAS survey) | 1. ∅ (Self-report diary) | - | - | - | - |
Lowe et al., 2020 [26] | n = 116, MF Overweight Obese No diabetes | 12 weeks | RCT: Parallel-arm 1. 8-h TRE (12–8 p.m.) 2. Control (3 meals + snacks each day) | 1. ↓ 2% * 2. ∅ | - | 1. ∅ (PSQI) 2. ∅ (PSQI) | 1. ∅ (Oura ring) 2. ∅ (Oura ring) | 1. ↓ 2.9 pts *,† (Oura ring) 2. ∅ (Oura ring) | 1. ↓ 5.2 pts *,† (Oura ring) 2. ∅ (Oura ring) | - | |
Wilkinson et al., 2020 [27] | n = 19, MF Overweight Obese Prediabetes | 12 weeks | Single-arm 1. 10-h TRE (self-selected) | 1. ↓ 3% * | 1. ↓ 198 kcal * %P: -, %F: -, %C: - | 1. ∅ (PSQI) ↑ 23% * (mCC phone app) | 1. ∅ (Actigraphy) | - | 1. ∅ (Actigraphy) | - | - |
Gill & Panda, 2015 [28] | n = 8, MF Overweight Obesity No Diabetes | 16 weeks | Single-arm 1. 10-h TRE (self-selected) | 1. ↓ 4% * | - | - | 1. ↑ 1.5 pts * (Self-assessment survey) | - | - | - | - |
Alternate day fasting | |||||||||||
Kalam et al., 2021 [29] | n = 31, MF Obese No diabetes | 24 weeks | Single-arm 1. ADF Fast day (600 kcal), Feast day (ad libitum) + low-carb/high protein diet | 1. ↓ 6% * | 1. ↓ 680 kcal * %P: ↑ 15% *, %F: ∅, %C: ↓ 14% * | 1. ∅ (PSQI) | 1. ∅ (PSQI) | - | - | 1. ∅ (ISI) | 1. ∅ (Berlin) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McStay, M.; Gabel, K.; Cienfuegos, S.; Ezpeleta, M.; Lin, S.; Varady, K.A. Intermittent Fasting and Sleep: A Review of Human Trials. Nutrients 2021, 13, 3489. https://doi.org/10.3390/nu13103489
McStay M, Gabel K, Cienfuegos S, Ezpeleta M, Lin S, Varady KA. Intermittent Fasting and Sleep: A Review of Human Trials. Nutrients. 2021; 13(10):3489. https://doi.org/10.3390/nu13103489
Chicago/Turabian StyleMcStay, Mara, Kelsey Gabel, Sofia Cienfuegos, Mark Ezpeleta, Shuhao Lin, and Krista A. Varady. 2021. "Intermittent Fasting and Sleep: A Review of Human Trials" Nutrients 13, no. 10: 3489. https://doi.org/10.3390/nu13103489
APA StyleMcStay, M., Gabel, K., Cienfuegos, S., Ezpeleta, M., Lin, S., & Varady, K. A. (2021). Intermittent Fasting and Sleep: A Review of Human Trials. Nutrients, 13(10), 3489. https://doi.org/10.3390/nu13103489