Augmented Renal Clearance, Muscle Catabolism and Urinary Nitrogen Loss: Implications for Nutritional Support in Critically Ill Trauma Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Singer, P. Protein metabolism and requirements in the ICU. Clin. Nutr. 2020, 38, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Weijs, P.J.; Stapel, S.N.; de Groot, S.D.; Driessen, R.H.; de Jong, E.; Girbes, A.R.; van Schijndel, R.J.S.; Beishuizen, A. Optimal protein and energy nutrition decreases mortality in mechanically ventilated, critically ill patients: A prospective observational cohort study. J. Parenter. Enter. Nutr. 2012, 36, 60–68. [Google Scholar] [CrossRef]
- Gautier, J.B.O.; Martindale, R.G.; Rugeles, S.J.; Hurt, R.T.; Taylor, B.; Heyland, D.K.; McClave, S.A. How Much and What Type of Protein Should a Critically Ill Patient Receive? Nutr. Clin. Pract. 2017, 32, 6S–14S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.J.; Park, S.H.; Jeong, H.B.; Ha, E.J.; Cho, W.S.; Kang, H.S.; Kim, J.E.; Ko, S.B. Optimizing Nitrogen Balance Is Associated with Better Outcomes in Neurocritically Ill Patients. Nutrients 2020, 12, 3137. [Google Scholar] [CrossRef]
- Dickerson, R.N.; Crawford, C.N.; Tsiu, M.K.; Bujanowski, C.E.; Van Matre, E.T.; Swanson, J.M.; Filiberto, D.M.; Minard, G. Augmented Renal Clearance Following Traumatic Injury in Critically Ill Patients Requiring Nutrition Therapy. Nutrients 2021, 13, 1681. [Google Scholar] [CrossRef]
- Cook, A.M.; Hatton-Kolpek, J. Augmented Renal Clearance. Pharmacotherapy 2019, 39, 346–354. [Google Scholar] [CrossRef]
- Udy, A.A.; Jarrett, P.; Stuart, J.; Lassig-Smith, M.; Starr, T.; Dunlop, R.; Wallis, S.C.; Roberts, J.A.; Lipman, J. Determining the mechanisms underlying augmented renal drug clearance in the critically ill: Use of exogenous marker compounds. Crit. Care 2014, 18, 657. [Google Scholar] [CrossRef] [Green Version]
- Carrie, C.; Lannou, A.; Rubin, S.; De Courson, H.; Petit, L.; Biais, M. Augmented renal clearance in critically ill trauma patients: A pathophysiologic approach using renal vascular index. Anaesth. Crit. Care Pain Med. 2019, 38, 371–375. [Google Scholar] [CrossRef]
- Helal, I.; Fick-Brosnahan, G.M.; Reed-Gitomer, B.; Schrier, R.W. Glomerular hyperfiltration: Definitions, mechanisms and clinical implications. Nat. Rev. Nephrol. 2012, 8, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Tonneijck, L.; Muskiet, M.; Smits, M.; van Bommel, E.; Heerpink, H.; van Raalte, D.; Joles, J. Glomerular hyperfiltration in diabetes: Mechanisms, clinical significance, and treatment. J. Am. Soc. Nephrol. 2017, 28, 1023–1039. [Google Scholar] [CrossRef] [Green Version]
- Han, E.; Lee, Y.H.; Lee, B.W.; Kang, E.S.; Cha, B.S. Pre-sarcopenia is associated with renal hyperfiltration independent of obesity or insulin resistance: Nationwide Surveys (KNHANES 2008-2011). Medicine 2017, 96, e7165. [Google Scholar] [CrossRef] [PubMed]
- Hyun, Y.Y.; Lee, K.B.; Rhee, E.J.; Park, C.Y.; Chang, Y.; Ryu, S. Chronic kidney disease and high eGFR according to body composition phenotype in adults with normal BMI. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef] [Green Version]
- Lannou, A.; Carrie, C.; Rubin, S.; Cane, G.; Cottenceau, V.; Petit, L.; Biais, M. Salt wasting syndrome in brain trauma patients: A pathophysiologic approach using sodium balance and urinary biochemical analysis. BMC Neurol. 2020, 20, 190. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, R.N.; Tidwell, A.C.; Minard, G.; Croce, M.A.; Brown, R.O. Predicting total urinary nitrogen excretion from urinary urea nitrogen excretion in multiple-trauma patients receiving specialized nutritional support. Nutrition 2005, 21, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Nitenberg, G. Nutritional supply in the critically ill. Reanimation 2003, 12, 340–349. [Google Scholar] [CrossRef]
- Haines, R.W.; Zolfaghari, P.; Wan, Y.; Pearse, R.M.; Puthucheary, Z.; Prowle, J.R. Elevated urea-to-creatinine ratio provides a biochemical signature of muscle catabolism and persistent critical illness after major trauma. Intensive Care Med. 2019, 45, 1718–1731. [Google Scholar] [CrossRef]
- Yeh, D.D.; Ortiz-Reyes, L.A.; Quraishi, S.A.; Chokengarmwong, N.; Avery, L.; Kaafarani, H.M.A.; Lee, J.; Fagenholz, P.; Chang, Y.; DeMoya, M.; et al. Early nutritional inadequacy is associated with psoas muscle deterioration and worse clinical outcome in critically ill surgical patients. J. Crit. Care 2018, 45, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Lannou, A.; Carrié, C.; Rubin, S.; de Courson, H.; Biais, M. Renal response after traumatic brain injury: A potential relationship between augmented renal clearance and salt wasting syndrome? Anaesth. Crit. Care Pain Med. 2020, 39, 239–241. [Google Scholar] [CrossRef]
- Liebau, F.; Norberg, A.; Rooyackers, O. Does feeding induce maximal stimulation of protein balance? Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 120–124. [Google Scholar] [CrossRef]
- Chapple, L.S.; Summers, M.J.; Bellomo, R.; Chapman, M.J.; Davies, A.R.; Ferrie, S.; Finnis, M.E.; Hurford, S.; Lange, K.; Little, L.; et al. Use of a high-protein enteral nutrition formula to Increase protein delivery to critically ill patients: A randomized, blinded, parallel-group, feasibility trial. J. Parenter. Enter. Nutr. 2021, 45, 699–709. [Google Scholar] [CrossRef]
- van Zanten, A.R.H.; Petit, L.; de Waele, J.; Kieft, H.; de Wilde, J.; van Horssen, P.; Klebach, M.; Hofman, Z. Very high intact-protein formula successfully provides protein intake according to nutritional recommendations in overweight critically ill patients: A double-blind randomized trial. Crit. Care 2018, 22, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosch, J.P.; Lew, S.; Glabman, S.; Lauer, A. Renal hemodynamic changes in humans. Response to protein loading in normal and diseased kidneys. Am. J. Med. 1986, 81, 809–815. [Google Scholar] [CrossRef]
- Ronco, C.; Bellomo, R.; Kellum, J. Understanding renal functional reserve. Intensive Care Med. 2017, 43, 917–920. [Google Scholar] [CrossRef] [PubMed]
- Doig, G.S.; Simpson, F.; Bellomo, R.; Heighes, P.T.; Sweetman, E.A.; Chesher, D.; Pollock, C.; Davies, A.; Botha, J.; Harrigan, P.; et al. Intravenous amino acid therapy for kidney function in critically ill patients: A randomized controlled trial. Intensive Care Med. 2015, 41, 1197–1208. [Google Scholar] [CrossRef] [PubMed]
- Kitada, M.; Ogura, Y.; Monno, I.; Koya, D. A low-protein diet for diabetic kidney disease: Its effect and molecular mechanism, an approach from animal studies. Nutrients 2018, 10, 544. [Google Scholar] [CrossRef] [Green Version]
- Greig, P.D.; Elwyn, D.H.; Askanazi, J.; Kinney, J.M. Parenteral nutrition in septic patients: Effect of increasing nitrogen intake. Am. J. Clin. Nutr. 1987, 46, 1040–1047. [Google Scholar] [CrossRef]
- Dresen, E.; Weiβbrich, C.; Fimmers, R.; Putensen, C.; Stehle, P. Medical high-protein nutrition therapy and loss of muscle mass in adult ICU patients: A randomized controlled trial. Clin. Nutr. 2021, 40, 1562–1570. [Google Scholar] [CrossRef]
- Kim, K.E.; Onesti, G.; Swartz, C. Creatinine clearance and glomerular filtration rate. Br. Med. J. 1972, 1, 379–380. [Google Scholar] [CrossRef] [Green Version]
- Delanaye, P.; Lambermont, B.; Chapelle, J.P.; Gielen, J.; Gerard, P.; Rorive, G. Plasmatic cystatin C for the estimation of glomerular filtration rate in intensive care units. Intensive Care Med. 2004, 30, 980–983. [Google Scholar] [CrossRef] [Green Version]
- Baczek, J.; Silkiewicz, M.; Wojszel, Z.B. Myostatin as a Biomarker of Muscle Wasting and other Pathologies-State of the Art and Knowledge Gaps. Nutrients 2020, 12, 2401. [Google Scholar] [CrossRef] [PubMed]
Urinary Nitrogen Loss (g/day) | Urinary Urea [mmol/L] × 0.056/2.14 + 2 g/day (assumption of non-urea nitrogen) |
Total Nitrogen Loss (g/day) | Urinary Nitrogen Loss + 2 g/day (assumption of extra-urinary Nitrogen Loss) |
Nitrogen Intake (g/day) | Protein Intake [g/day]/6.25 |
Nitrogen Balance (g/day) | Nitrogen Intake—Total Nitrogen Loss |
ARC Population N = 75 (46) | Non-ARC Population N = 87 (54) | p | |
---|---|---|---|
Demographic and Medical History | |||
Age (years) | 34 [26; 50] | 54 [35; 69] | <0.001 |
Male sex | 64 (85) | 63 (72) | 0.046 |
TBW at ICU admission (kg) | 74 [64; 84] | 77 [69; 85] | 0.105 |
BMI (kg/m2) | 23 [21; 26] | 26 [23; 29] | 0.002 |
Charlson comorbidity index | 0 [0; 1] | 1 [0; 3] | <0.001 |
Poor nutritional status before admission * | 7 (8) | 6 (8) | 0.991 |
Severity Scores | |||
Initial GCS | 7 [4; 14] | 11 [7; 15] | 0.016 |
ISS | 38 [25; 50] | 43 [33; 51] | 0.091 |
SAPS 2 at ICU admission | 44 [35; 53] | 44 [39; 58] | 0.467 |
Traumatic Injuries (AIS > 3) | |||
Craniofacial trauma | 56 (75) | 63 (72) | 0.746 |
Chest trauma | 29 (39) | 42 (48) | 0.219 |
Abdominal trauma | 20 (27) | 29 (33) | 0.357 |
Spine fracture | 24 (32) | 23 (26) | 0.437 |
Patient Management and Complications | |||
Time under vasopressors | 3 [1; 6] | 4 [2; 6] | 0.325 |
Time under sedation | 2 [1; 6] | 3 [1; 7] | 0.184 |
Time under mechanical ventilation | 14 [7; 19] | 12 [7; 17] | 0.509 |
Intracranial hypertension | 26 (35) | 23 (26) | 0.284 |
ARDS | 21 (28) | 33 (38) | 0.233 |
Need for antibiotics | 66 (88) | 75 (86) | 0.886 |
Need for multiple surgeries | 23 (31) | 24 (28) | 0.807 |
Need for multiple transfusion | 22 (29) | 36 (42) | 0.114 |
Patient Outcome | |||
ICU mortality | 1 (1) | 9 (10) | 0.017 |
ICU length of stay | 22 [15; 33] | 19 [13; 28] | 0.173 |
TBW at ICU discharge | 66 [56; 78] | 67 [50; 80] | 0.286 |
Weight Loss at ICU discharge, kg (%) | 11 [4; 17] | 10 [0; 22] | 0.944 |
ARC Population N = 75 (46) | Non-ARC Population N = 87 (54) | p | |
---|---|---|---|
Use of enteral nutrition | 74 (99) | 84 (97) | 0.387 |
Use of parenteral nutrition | 27 (36) | 49 (56) | 0.010 |
Caloric Intake *, Kcals/kg/day (%) | 20 [18; 24] | 19 [17; 22] | 0.019 |
Energy Target Achievement at Day 10 † (%) | 81 [71; 96] | 76 [66; 87] | 0.019 |
Protein Intake *, g/kg/day | 0.7 [0.6; 0.8] | 0.7 [0.5; 0.8] | 0.010 |
Protein Target Achievement at Day 10 † (%) | 60 [53; 71] | 55 [46; 64] | 0.010 |
ARC Population N = 75 (46) | Non-ARC Population N = 87 (54) | p | |
---|---|---|---|
Plasma Biological Analyses * | |||
Plasma Urea, mmol/L | 5 [4; 6] | 7 [5; 8] | <0.001 |
Plasma Creatinine, µmol/L | 54 [47; 61] | 63 [55; 74] | <0.001 |
Urea/Creatinine Ratio | 97 [86; 117] | 103 [84; 126] | 0.485 |
Neutrophil-to-lymphocyte ratio | 9 [6; 10] | 7 [5; 9] | 0.250 |
Urinary Biochemical Analyses * | |||
Urine Volume, L/day | 2.5 [2.1; 3.0] | 2.2 [1.8; 2.9] | 0.036 |
Urinary Creatinine Excretion, mmol/L | 7 [5; 8] | 5 [4; 7] | 0.027 |
Creatinine Clearance, mL/min/1.73 m2 | 158 [144; 170] | 110 [87; 120] | <0.001 |
Urinary Urea Excretion, mmol/L | 256 [177; 325] | 228 [166; 281] | 0.110 |
Urinary Nitrogen Loss, g/day | 17 [14; 21] | 14 [11; 17] | <0.001 |
Nitrogen Balance * | |||
Nitrogen Balance, g/day | −6 [−9; −3] | −4 [−6; −1] | <0.001 |
Cumulated Nitrogen Balance at Day 10, g | −56 [−92; −30] | −35 [−62; −13] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dreydemy, G.; Coussy, A.; Lannou, A.; Petit, L.; Biais, M.; Carrié, C. Augmented Renal Clearance, Muscle Catabolism and Urinary Nitrogen Loss: Implications for Nutritional Support in Critically Ill Trauma Patients. Nutrients 2021, 13, 3554. https://doi.org/10.3390/nu13103554
Dreydemy G, Coussy A, Lannou A, Petit L, Biais M, Carrié C. Augmented Renal Clearance, Muscle Catabolism and Urinary Nitrogen Loss: Implications for Nutritional Support in Critically Ill Trauma Patients. Nutrients. 2021; 13(10):3554. https://doi.org/10.3390/nu13103554
Chicago/Turabian StyleDreydemy, Guilhem, Alexis Coussy, Alexandre Lannou, Laurent Petit, Matthieu Biais, and Cédric Carrié. 2021. "Augmented Renal Clearance, Muscle Catabolism and Urinary Nitrogen Loss: Implications for Nutritional Support in Critically Ill Trauma Patients" Nutrients 13, no. 10: 3554. https://doi.org/10.3390/nu13103554
APA StyleDreydemy, G., Coussy, A., Lannou, A., Petit, L., Biais, M., & Carrié, C. (2021). Augmented Renal Clearance, Muscle Catabolism and Urinary Nitrogen Loss: Implications for Nutritional Support in Critically Ill Trauma Patients. Nutrients, 13(10), 3554. https://doi.org/10.3390/nu13103554