Seasonal Consumption of Cherries from Different Origins Affects Metabolic Markers and Gene Expression of Lipogenic Enzymes in Rat Liver: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruits: Preparation and Characterization
2.2. Animals
2.3. Serum Analysis
2.4. Cardiovascular Risk Indices
2.5. Hepatic Gene Expression Analysis
2.6. Statistical Analysis
3. Results
3.1. Exposure to Different Photoperiods Significantly Affected Triglycerides and Blood NEFAs
3.2. Exposure to L12 Increased Blood Glucose, While Cherry Consumption Normalized It
3.3. Insulin Levels and HOMA Index Tended to Be Affected by Exposure to Different Photoperiods and Treatments, Concomitantly
3.4. The Cardiovascular Risk Indices Were Affected by Both Photoperiod and Treatment
3.5. Gene Expression of Acc1 and Fas1 Lipogenic Enzymes Was Increased by Chronic Exposure to the L18 Photoperiod
3.6. The Gene Expression of Srebp-1c and Cpt1α Tended to Be Affected by Exposure to Different Photoperiods
3.7. The Gene Expression of Enzymes Related to Lipid Oxidation Was Not Significantly Affected by the Photoperiod or by the Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Heimler, D.; Romani, A.; Ieri, F. Plant polyphenol content, soil fertilization and agricultural management: A review. Eur. Food Res. Technol. 2017, 243, 1107–1115. [Google Scholar] [CrossRef]
- Vita, J.A. Polyphenols and cardiovascular disease: Effects on endothelial and platelet function. Am. J. Clin. Nutr. 2005, 81, 292S–297S. [Google Scholar] [CrossRef]
- Fraga, C.G.; Oteiza, P.I. Dietary flavonoids: Role of (-)-epicatechin and related procyanidins in cell signaling. Free Radic. Biol. Med. 2011, 51, 813–823. [Google Scholar] [CrossRef]
- Oppedisano, F.; Muscoli, C.; Musolino, V.; Carresi, C.; Macrì, R.; Giancotta, C.; Bosco, F.; Maiuolo, J.; Scarano, F.; Paone, S.; et al. The Protective Effect of Cynara Cardunculus Extract in Diet-Induced NAFLD: Involvement of OCTN1 and OCTN2 Transporter Subfamily. Nutrients 2020, 12, 1435. [Google Scholar] [CrossRef]
- Subramanian, G.; Shanmugamprema, D.; Subramani, R.; Muthuswamy, K.; Ponnusamy, V.; Tankay, K.; Velusamy, T.; Krishnan, V.; Subramaniam, S. Anti-Obesity Effect of T. Chebula Fruit Extract on High Fat Diet Induced Obese Mice: A Possible Alternative Therapy. Mol. Nutr. Food Res. 2021, 65, 2001224. [Google Scholar] [CrossRef]
- Afrin, S.; Giampieri, F.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Varela-López, A.; Quiles, J.L.; Mezzetti, B.; Battino, M. Chemopreventive and therapeutic effects of edible berries: A focus on colon cancer prevention and treatment. Molecules 2016, 21, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Kaur, M.; Katnoria, J.K.; Nagpal, A.K. Polyphenols in Food: Cancer Prevention and Apoptosis Induction. Curr. Med. Chem. 2017, 25, 4740–4757. [Google Scholar] [CrossRef] [PubMed]
- Martí, R.; Roselló, S.; Cebolla-Cornejo, J. Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers 2016, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. J. AOAC Int. 2019, 102, 1397–1400. [Google Scholar] [CrossRef] [PubMed]
- Cubero, J.; Toribio, F.; Garrido, M.; Hernández, M.T.; Maynar, J.; Barriga, C.; Rodríguez, A.B. Assays of the amino acid tryptophan in cherries by HPLC-fluorescence. Food Anal. Methods 2010, 3, 36–39. [Google Scholar] [CrossRef]
- Commisso, M.; Bianconi, M.; Di Carlo, F.; Poletti, S.; Bulgarini, A.; Munari, F.; Negri, S.; Stocchero, M.; Ceoldo, S.; Avesani, L.; et al. Multi-approach metabolomics analysis and artificial simplified phytocomplexes reveal cultivar-dependent synergy between polyphenols and ascorbic acid in fruits of the sweet cherry (Prunus avium L.). PLoS ONE 2017, 12, e0180889. [Google Scholar] [CrossRef] [Green Version]
- McCune, L.M.; Kubota, C.; Stendell-Hollis, N.R.; Thomson, C.A. Cherries and health: A review. Crit. Rev. Food Sci. Nutr. 2011, 51, 1–12. [Google Scholar] [CrossRef]
- Connolly, D.A.J.; McHugh, M.P.; Padilla-Zakour, O.I. Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. Br. J. Sports Med. 2006, 40, 679–683. [Google Scholar] [CrossRef]
- Kelley, D.S.; Adkins, Y.; Laugero, K.D. A review of the health benefits of cherries. Nutrients 2018, 10, 368. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Zhao, B.; Huang, L.; Shen, Q.; Ma, L.; Chen, Y.; Wu, T.; Fu, Z. Effects of altered photoperiod on circadian clock and lipid metabolism in rats. Chronobiol. Int. 2017, 34, 1094–1104. [Google Scholar] [CrossRef]
- Mattson, M.P. Dietary factors, hormesis and health. Ageing Res. Rev. 2008, 7, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Hooper, P.L.; Hooper, P.L.; Tytell, M.; Vígh, L. Xenohormesis: Health benefits from an eon of plant stress response evolution. Cell Stress Chaperones 2010, 15, 761–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baur, J.A.; Sinclair, D.A. What is xenohormesis? Am. J. Pharmacol. Toxicol. 2008, 3, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arola-Arnal, A.; Cruz-Carrión, Á.; Torres-Fuentes, C.; Ávila-Román, J.; Aragonès, G.; Mulero, M.; Bravo, F.I.; Muguerza, B.; Arola, L.; Suárez, M. Chrononutrition and polyphenols: Roles and diseases. Nutrients 2019, 11, 2602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariné-Casadó, R.; Domenech-Coca, C.; del Bas, J.M.; Bladé, C.; Caimari, A.; Arola, L. Cherry consumption out of season alters lipid and glucose homeostasis in normoweight and cafeteria-fed obese Fischer 344 rats. J. Nutr. Biochem. 2019, 63, 72–86. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Carrión, Á.; de Azua, M.J.R.; Mulero, M.; Arola-Arnal, A.; Suárez, M. Oxidative stress in rats is modulated by seasonal consumption of sweet cherries from different geographical origins: Local vs. non-local. Nutrients 2020, 12, 2854. [Google Scholar] [CrossRef]
- Ioannou, I.; Hafsa, I.; Hamdi, S.; Charbonnel, C.; Ghoul, M. Review of the effects of food processing and formulation on flavonol and anthocyanin behaviour. J. Food Eng. 2012, 111, 208–217. [Google Scholar] [CrossRef]
- Iglesias-Carres, L.; Mas-Capdevila, A.; Bravo, F.I.; Bladé, C.; Arola-Arnal, A.; Muguerza, B. Optimization of extraction methods for characterization of phenolic compounds in apricot fruit (Prunus armeniaca). Food Funct. 2019, 10, 6492–6502. [Google Scholar] [CrossRef] [Green Version]
- Iglesias-Carres, L.; Mas-Capdevila, A.; Isabel Bravo, F.; Mulero, M.; Muguerza, B.; Arola-Arnal, A. optimization and characterization of Royal Dawn cherry (Prunus avium) phenolics extraction. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariné-Casadó, R.; Domenech-Coca, C.; del Bas, J.M.; Bladé, C.; Arola, L.; Caimari, A. The exposure to different photoperiods strongly modulates the glucose and lipid metabolisms of normoweight fischer 344 rats. Front. Physiol. 2018, 9, 416. [Google Scholar] [CrossRef]
- Mariné-Casadó, R.; Domenech-Coca, C.; del Bas, J.M.; Bladé, C.; Arola, L.; Caimari, A. Intake of an Obesogenic Cafeteria Diet Affects Body Weight, Feeding Behavior, and Glucose and Lipid Metabolism in a Photoperiod-Dependent Manner in F344 Rats. Front. Physiol. 2018, 9, 1639. [Google Scholar] [CrossRef]
- Gibert-Ramos, A.; Ibars, M.; Salvadó, M.J.; Crescenti, A. Response to the photoperiod in the white and brown adipose tissues of Fischer 344 rats fed a standard or cafeteria diet. J. Nutr. Biochem. 2019, 70, 82–90. [Google Scholar] [CrossRef]
- Sadowska, J.; Bruszkowska, M. Assessing the effect of sugar type and form of its intake on selected parameters of carbohydrate-lipid metabolism and plasma atherogenic indices in rats. Rocz. Panstw. Zakl. Hig. 2019, 70, 59–67. [Google Scholar] [CrossRef]
- Dobiášová, M. Atherogenic impact of lecithin-cholesterol acyltransferase and its relation to cholesterol esterification rate in HDL (FERHDL) and AIP [log(TG/HDL-C)] biomarkers: The butterfly effect? Physiol. Res. 2017, 66, 193–203. [Google Scholar] [CrossRef]
- Sultani, R.; Tong, D.C.; Peverelle, M.; Lee, Y.S.; Baradi, A.; Wilson, A.M. Elevated Triglycerides to High-Density Lipoprotein Cholesterol (TG/HDL-C) Ratio Predicts Long-Term Mortality in High-Risk Patients. Hear. Lung Circ. 2019, 29, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Rundek, T.; Blanton, S.H.; Bartels, S.; Dong, C.; Raval, A.; Demmer, R.T.; Cabral, D.; Elkind, M.S.V.; Sacco, R.L.; Desvarieux, M. Traditional risk factors are not major contributors to the variance in carotid intima-media thickness. Stroke 2013, 44, 2101–2108. [Google Scholar] [CrossRef] [Green Version]
- Pfaffl, M.W. Quantification strategies in real-time PCR. AZ Quant. PCR 2004, 1, 89–113. [Google Scholar]
- Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic syndrome: Definitions and controversies. BMC Med. 2011, 9, 48. [Google Scholar] [CrossRef] [Green Version]
- Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 2008, 22, 659–661. [Google Scholar] [CrossRef] [Green Version]
- Rui, L. Energy Metabolism in the Liver. Physiol. Behav. 2016, 176, 139–148. [Google Scholar] [CrossRef]
- Morgan, A.E.; Mooney, K.M.; Wilkinson, S.J.; Pickles, N.A.; Mc Auley, M.T. Cholesterol metabolism: A review of how ageing disrupts the biological mechanisms responsible for its regulation. Ageing Res. Rev. 2016, 27, 108–124. [Google Scholar] [CrossRef]
- Jia, Y.; Hoang, M.H.; Jun, H.J.; Lee, J.H.; Lee, S.J. Cyanidin, a natural flavonoid, is an agonistic ligand for liver X receptor alpha and beta and reduces cellular lipid accumulation in macrophages and hepatocytes. Bioorganic Med. Chem. Lett. 2013, 23, 4185–4190. [Google Scholar] [CrossRef]
- Xia, M.; Hou, M.; Zhu, H.; Ma, J.; Tang, Z.; Wang, Q.; Li, Y.; Chi, D.; Yu, X.; Zhao, T.; et al. Anthocyanins induce cholesterol efflux from mouse peritoneal macrophages: The role of the peroxisome proliferator-activated receptor γ-liver X receptor α-ABCA1 pathway. J. Biol. Chem. 2005, 280, 36792–36801. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Xia, M.; Yan, X.; Li, D.; Wang, L.; Xu, Y.; Jin, T.; Ling, W. Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circ. Res. 2012, 111, 967–981. [Google Scholar] [CrossRef] [Green Version]
- Dikeman, C.L.; Fahey, G.C. Viscosity as related to dietary fiber: A review. Crit. Rev. Food Sci. Nutr. 2006, 46, 649–663. [Google Scholar] [CrossRef]
- Cásedas, G.; Les, F.; Gómez-Serranillos, M.P.; Smith, C.; López, V. Bioactive and functional properties of sour cherry juice (Prunus cerasus). Food Funct. 2016, 7, 4675–4682. [Google Scholar] [CrossRef] [Green Version]
- Remón, S.; Venturini, M.E.; Lopez-Buesa, P.; Oria, R. Burlat cherry quality after long range transport: Optimisation of packaging conditions. Innov. Food Sci. Emerg. Technol. 2003, 4, 425–434. [Google Scholar] [CrossRef]
- Correia, S.; Schouten, R.; Silva, A.P.; Gonçalves, B. Factors affecting quality and health promoting compounds during growth and postharvest life of sweet cherry (Prunus avium L.). Front. Plant Sci. 2017, 8, 2166. [Google Scholar] [CrossRef] [Green Version]
- Esti, M.; Cinquanta, L.; Sinesio, F.; Moneta, E.; Di Matteo, M. Physicochemical and sensory fruit characteristics of two sweet cherry cultivars after cool storage. Food Chem. 2002, 76, 399–405. [Google Scholar] [CrossRef]
- Gibert-Ramos, A.; Palacios-Jordan, H.; Salvadó, M.J.; Crescenti, A. Consumption of out-of-season orange modulates fat accumulation, morphology and gene expression in the adipose tissue of Fischer 344 rats. Eur. J. Nutr. 2020, 59, 621–631. [Google Scholar] [CrossRef] [Green Version]
- Horton, J.D.; Goldstein, J.L.; Brown, M.S. SREBPs. Most 2002, 109, 1125–1131. [Google Scholar] [CrossRef]
- Shimano, H.; Horton, J.D.; Shimomura, I.; Hammer, R.E.; Brown, M.S.; Goldstein, J.L. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J. Clin. Investig. 1997, 99, 846–854. [Google Scholar] [CrossRef] [Green Version]
- Abu-Elheiga, L.; Brinkley, W.R.; Zhong, L.; Chirala, S.S.; Woldegiorgis, G.; Wakil, S.J. The subcellular localization of acetyl-CoA carboxylase 2. Proc. Natl. Acad. Sci. USA 2000, 97, 1444–1449. [Google Scholar] [CrossRef] [Green Version]
- Iglesias-Carres, L.; Mas-Capdevila, A.; Bravo, F.I.; Aragonès, G.; Muguerza, B.; Arola-Arnal, A. Optimization of a polyphenol extraction method for sweet orange pulp (Citrus sinensis L.) to identify phenolic compounds consumed from sweet oranges. PLoS ONE 2019, 14, e0211267. [Google Scholar] [CrossRef]
- Crescenti, A.; del Bas, J.M.; Arola-Arnal, A.; Oms-Oliu, G.; Arola, L.; Caimari, A. Grape seed procyanidins administered at physiological doses to rats during pregnancy and lactation promote lipid oxidation and up-regulate AMPK in the muscle of male offspring in adulthood. J. Nutr. Biochem. 2015, 26, 912–920. [Google Scholar] [CrossRef]
- Samuel, V.T.; Shulman, G.I. The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux. J. Clin. Investig. 2016, 126, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Nair, D.; Carrigan, T.P.; Curtin, R.J.; Popovic, Z.B.; Kuzmiak, S.; Schoenhagen, P.; Flamm, S.D.; Desai, M.Y. Association of total cholesterol/high-density lipoprotein cholesterol ratio with proximal coronary atherosclerosis detected by multislice computed tomography. Prev. Cardiol. 2009, 12, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, M.A. Association between cardiovascular risk factors and triglyceride to high-density lipoprotein ratio: A single-center experience. Arch. Med. Sci.-Atheroscler. Dis. 2019, 4, 196–200. [Google Scholar] [CrossRef]
- Pantoja-Torres, B.; Toro-Huamanchumo, C.J.; Urrunaga-Pastor, D.; Guarnizo-Poma, M.; Lazaro-Alcantara, H.; Paico-Palacios, S.; del Carmen Ranilla-Seguin, V.; Benites-Zapata, V.A. High triglycerides to HDL-cholesterol ratio is associated with insulin resistance in normal-weight healthy adults. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 382–388. [Google Scholar] [CrossRef]
- Endothelial Permeability, LDL Deposition, and Cardiovascular Risk Factors-A Review—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/29228169-endothelial-permeability-ldl-deposition-and-cardiovascular-risk-factors-a-review/?from_term=LDL+and+risk+cardiovascular&from_pos=1 (accessed on 26 February 2020).
L6 | L12 | L18 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
nLC | LC | VH | nLC | LC | VH | nLC | LC | VH | 2wA | |
Serum parametrs | ||||||||||
TAG (mmol/L) | 1.42 ± 0.12 a | 1.03 ± 0.14 b | 1.14 ± 0.11 a *b | 1.11 ± 0.08 b | 1.11 ± 0.10 b | 1.16 ± 0.08 a * b | 1.00 ± 0.10 b | 0.96 ± 0.10 b | 0.95 ± 0.08 b | P |
TC (mmol/L) | 2.07 ± 0.22 | 1.94 ± 0.21 | 1.80 ± 0.16 | 2.21 ± 0.15 | 2.21 ± 0.14 | 1.97 ± 0.20 | 1.98± 0.23 | 1.84 ±0.21 | 1.97 ± 0.25 | |
HDL-c (mmol/L) | 0.82 ± 0.17 ab | 0.72 ± 0.17 ab | 0.75 ± 0.11 ab | 0.78 ± 0.17 ab | 0.45 ± 0.08 ab * | 0.65 ± 0.18 ab | 0.89 ± 0.19 a *b | 0.94 ± 0.29 b | 0.38 ± 0.16 a | |
LDL-c (mmol/L) | 0.18 ± 0.05 | 0.20 ± 0.05 | 0.16 ± 0.06 | 0.16 ± 0.06 | 0.08 ± 0.02 | 0.09 ± 0.02 | 0.18 ± 0.06 | 0.21 ± 0.04 | 0.11 ± 0.03 | |
NEFAs (mmol/L) | 0.79 ± 0.05 a | 0.69 ± 0.09 ab | 0.79 ± 0.10 a | 0.79 ± 0.06 a | 0.76 ± 0.07 a | 0.78 ± 0.06 a | 0.55 ± 0.05 b | 0.56 ± 0.06 b | 0.76 ± 0.08 a | P |
Glucose (mmol/L) | 8.69 ± 0.43 ab | 8.46 ± 0.46 ab * | 9.38 ± 0.69 ab | 8.32 ± 0.92 a | 8.06 ± 0.52 a | 9.91 ± 0.55 b | 8.24 ± 0.57 a | 8.49 ± 0.19 ab * | 8.50 ± 0.19 ab * | T * |
Insulin (ng/mL) | 9.86 ± 1.69 a | 10.65 ± 1.56 a | 5.37 ± 0.63 b | 9.22 ± 1.71 a | 9.07 ± 1.45 ab | 8.95 ±1.65 ab * | 8.12 ± 1.03 ab | 7.07 ± 0.77 ab | 9.14 ± 1.32 ab * | PxT * |
HOMA | 0.16 ± 0.03 a | 0.17 ± 0.03 a | 0.09 ± 0.01 b | 0.15 ± 0.04 ab | 0.13 ± 0.02 ab | 0.18 ± 0.04 a | 0.12 ± 0.02 ab | 0.11 ± 0.01 ab | 0.13 ± 0.01 ab | PxT * |
Atherogenic ratios | ||||||||||
AI | 0.24 ± 0.09 | 0.24 ± 0.12 | 0.14 ± 0.13 | 0.21 ± 0.09 | 0.44 ± 0.11 * | 0.38 ± 0.13 | 0.03 ± 0.12 | 0.13 ± 0.13 * | 0.33 ± 0.20 | P * |
CR1 | 2.13 ± 0.33 a | 3.90 ± 0.86 a | 1.97 ± 0.32 a | 3.69 ± 0.62 a | 6.38 ± 1.30 b | 3.63 ± 0.51 a | 2.00 ± 0.39 a | 3.19 ± 0.74 a | 2.80 ± 0.45 a | P, T |
CR2 | 0.20 ± 0.05 | 0.34 ± 0.07 | 0.27 ± 0.13 | 0.30 ± 0.10 | 0.23 ± 0.06 | 0.10 ± 0.03 | 0.16 ± 0.05 | 0.30 ± 0.05 | 0.24 ± 0.12 | |
At.C | 1.13 ± 0.33 a | 2.90 ± 0.86 a | 0.97 ± 0.32 a | 2.69 ± 0.62 a | 5.38 ± 1.30 b | 2.63 ± 0.51 a | 1.00 ± 0.39 a | 2.19 ± 0.74 a | 1.80 ± 0.45 a | P, T |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz de Azua, M.J.; Cruz-Carrión, Á.; Muguerza, B.; Arola-Arnal, A.; Suarez, M. Seasonal Consumption of Cherries from Different Origins Affects Metabolic Markers and Gene Expression of Lipogenic Enzymes in Rat Liver: A Preliminary Study. Nutrients 2021, 13, 3643. https://doi.org/10.3390/nu13103643
Ruiz de Azua MJ, Cruz-Carrión Á, Muguerza B, Arola-Arnal A, Suarez M. Seasonal Consumption of Cherries from Different Origins Affects Metabolic Markers and Gene Expression of Lipogenic Enzymes in Rat Liver: A Preliminary Study. Nutrients. 2021; 13(10):3643. https://doi.org/10.3390/nu13103643
Chicago/Turabian StyleRuiz de Azua, Ma. Josefina, Álvaro Cruz-Carrión, Begoña Muguerza, Anna Arola-Arnal, and Manuel Suarez. 2021. "Seasonal Consumption of Cherries from Different Origins Affects Metabolic Markers and Gene Expression of Lipogenic Enzymes in Rat Liver: A Preliminary Study" Nutrients 13, no. 10: 3643. https://doi.org/10.3390/nu13103643
APA StyleRuiz de Azua, M. J., Cruz-Carrión, Á., Muguerza, B., Arola-Arnal, A., & Suarez, M. (2021). Seasonal Consumption of Cherries from Different Origins Affects Metabolic Markers and Gene Expression of Lipogenic Enzymes in Rat Liver: A Preliminary Study. Nutrients, 13(10), 3643. https://doi.org/10.3390/nu13103643