Relationship between Prefecture-Level Yield of Not-for-Sale Fruits and Vegetables and Individual-Level Fruit and Vegetable Intake in Japan: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Survey Outline
2.2. Variables
2.2.1. Fruit and Vegetable Intake
2.2.2. Yield of Not-for-Sale Fruits and Vegetables
2.2.3. Other Items
2.3. Analyses
2.4. Ethical Approval
3. Results
3.1. Preliminary Analyses
3.2. Main Analyses
4. Discussion
Limitation
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
All | Men | Women | |
---|---|---|---|
Vegetable | |||
(p-Value of intercept of null models) | (<0.001) | (0.010) | (0.001) |
Null models | 197,971 | 90,195 | 107,709 |
Models put into individual-level variables | 195,877 | 89,272 | 106,400 |
Models put into prefectural-level yield (g) | 195,868 | 89,263 | 106,392 |
Models put into prefectural-level yield (trend of categories) | 195,860 | 89,257 | 106,384 |
Models put into prefectural-level yield (quartile categories) | 195,845 | 89,241 | 106,369 |
Fruit | |||
(p-Value of intercept of null models) | (0.001) | (0.042) | (0.007) |
Null models | 189,273 | 85,559 | 103,627 |
Models put into individual-level variables | 186,557 | 84,501 | 101,950 |
Models put into prefectural-level yield (g) | 186,551 | 84,498 | 101,943 |
Models put into prefectural-level yield (trend of categories) | 186,548 | 84,492 | 101,943 |
Models put into prefectural-level yield (quartile categories) | 186,534 | 84,478 | 101,928 |
Fruits and vegetables | |||
(p-Value of intercept of null models) | (<0.001) | (0.005) | (0.001) |
Null models | 207,462 | 94,282 | 113,175 |
Models put into individual-level variables | 203,778 | 92,811 | 110,753 |
Models put into prefectural-level yield(g) | 203,768 | 92,801 | 110,743 |
Models put into prefectural-level yield (trend of categories) | 203,763 | 92,797 | 110,738 |
Models put into prefectural-level yield (quartile categories) | 203,748 | 92,782 | 110,723 |
Series of digits: Akaike’s information criterion (p-Value) |
References
- World Health Organization. WHO and FAO Announce Global Initiative to Promote Consumption of Fruit and Vegetables. Available online: https://www.who.int/news/item/11-11-2003-who-and-fao-announce-global-initiative-to-promote-consumption-of-fruit-and-vegetables (accessed on 17 August 2021).
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—A systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef]
- He, F.J.; Nowson, C.A.; Lucas, M.; MacGregor, G.A. Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: Meta-analysis of cohort studies. J. Hum. Hypertens. 2007, 21, 717–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, F.J.; Nowsonk, C.A.; Lucas, M.; MacGregor, G.A. Fruit and vegetable consumption and stroke: Meta-analysis of cohort studies. Lancet 2006, 367, 320–326. [Google Scholar] [CrossRef]
- Guzek, D.; Głąbska, D.; Groele, B.; Gutkowska, K. Fruit and vegetable dietary patterns and mental health in women: A sys-tematic review. Nutr. Rev. 2021, nuab007. [Google Scholar] [CrossRef] [PubMed]
- Ju, S.-Y.; Park, Y.K. Low fruit and vegetable intake is associated with depression among Korean adults in data from the 2014 Korea National Health and Nutrition Examination Survey. J. Health Popul. Nutr. 2019, 38, 1–10. [Google Scholar] [CrossRef]
- Kamphuis, C.B.M.; Giskes, K.; De Bruijn, G.-J.; Wendel-Vos, W.; Brug, J.; Van Lenthe, F.J. Environmental determinants of fruit and vegetable consumption among adults: A systematic review. Br. J. Nutr. 2006, 96, 620–635. [Google Scholar] [PubMed]
- Garcia, M.T.; Ribeiro, S.M.; Germani, A.C.; Bógus, C.M. The impact of urban gardens on adequate and healthy food: A systematic review. Public Health Nutr. 2017, 21, 416–425. [Google Scholar] [CrossRef] [Green Version]
- Schram-Bijkerk, D.; Otte, P.; Dirven, L.; Breure, A.M. Indicators to support healthy urban gardening in urban management. Sci. Total Environ. 2018, 621, 863–871. [Google Scholar] [CrossRef]
- Savoie-Roskos, M.R.; Wengreen, H.; Durward, C. Increasing Fruit and Vegetable Intake among Children and Youth through Gardening-Based Interventions: A Systematic Review. J. Acad. Nutr. Diet. 2017, 117, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Ohly, H.; Gentry, S.; Wigglesworth, R.; Bethel, A.; Lovell, R.; Garside, R. A systematic review of the health and well-being impacts of school gardening: Synthesis of quantitative and qualitative evidence. BMC Public Health 2016, 16, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.N.; Spaniol, M.R.; Somerset, S. Sustenance and sustainability: Maximizing the impact of school gardens on health outcomes. Public Health Nutr. 2015, 18, 2358–2367. [Google Scholar] [CrossRef]
- Langellotto, G.A.; Gupta, A. Gardening Increases Vegetable Consumption in School-aged Children: A Meta-analytical Synthesis. HortTechnology 2012, 22, 430–445. [Google Scholar] [CrossRef] [Green Version]
- McCormack, L.A.; Laska, M.N.; Larson, N.I.; Story, M. Review of the nutritional implications of farmers’ markets and com-munity gardens: A call for evaluateon and research efforts. J. Am. Diet Assoc. 2010, 110, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Robinson-O’Brien, R.; Story, M.; Heim, S. Impact of Garden-Based Youth Nutrition Intervention Programs: A Review. J. Am. Diet. Assoc. 2009, 109, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Machida, D.; Kushida, O. The Influence of Food Production Experience on Dietary Knowledge, Awareness, Behaviors, and Health among Japanese: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 924. [Google Scholar] [CrossRef] [Green Version]
- Kamiyama, C.; Hashimoto, S.; Kohsaka, R.; Saito, O. Non-market food provisioning services via homegardens and communal sharing in satoyama socio-ecological production landscapes on Japan’s Noto peninsula. Ecosyst. Serv. 2016, 17, 185–196. [Google Scholar] [CrossRef]
- Kamiyama, C.; Nakazawa, N.; Saito, O. Measuring nonmarket food provisioning services through self-production and social networks in Japan. J. Jpn. Soc. Civ. Eng. Ser. G Environ. Res. 2014, 70, 361–369. [Google Scholar]
- Tatebayashi, K.; Kamiyama, C.; Matsui, T.; Saito, O.; Machimura, T. Accounting shadow benefits of non-market food through food-sharing networks on Hachijo Island, Japan. Sustain. Sci. 2018, 14, 469–486. [Google Scholar] [CrossRef]
- Saito, O.; Havas, J.; Shirai, K.; Kurisu, K.; Aramaki, T.; Hanaki, K. Non-market food provisioning services in Hachijo Island, Japan and their implications toward building a resilient island. J. Jpn. Soc. Civ. Eng. Ser. G Environ. Res. 2015, 71, 349–357. [Google Scholar] [CrossRef]
- Saito, O.; Kamiyama, C.; Hashimoto, S. Non-Market food provision and sharing in Japan’s socio-ecological production land-scapes. Sustainability 2018, 10, 213. [Google Scholar] [CrossRef] [Green Version]
- Umezawa, A.; Miwa, T.; Shibui, E.; Namikawa, T.; Tanaka, N.; Ishikawa, M. Total Vegetable Intake and Homegrown Vegetable Intake in the Rural Area Residents of Hokkaido. Jpn. J. Nutr. Diet. 2012, 70, 283–293. [Google Scholar] [CrossRef] [Green Version]
- Machida, D.; Yoshida, T. Vegetable intake frequency is higher among the rural than among the urban or suburban residents, and is partially related to vegetable cultivation, receiving, and purchasing at farmers’ markets: A cross-sectional study in a city within Gunma, Japan. J. Rural. Med. 2018, 13, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Machida, D.; Yoshida, T. Negative association of vegetable cultivation with the proportion of severely insufficient vegetable intake both directly and indirectly: A cross-sectional study in a city in Gunma, Japan. J. Rural. Med. 2018, 13, 160–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machida, D.; Yoshida, T. Factors that Affect Nonmarket Fruit and Vegetable Receptions: Analyses of Two Cross-Sectional Surveys in Gunma, Japan. Agriculture 2019, 9, 230. [Google Scholar] [CrossRef] [Green Version]
- Machida, D.; Kushida, O.; Yoshida, T. Relationship between vegetable intake and vegetable cultivation by prefecture in Japan: An ecological study at the prefectural level. Nihon Kenkoukyouiku Gakkaishi 2017, 25, 85–92. [Google Scholar]
- Ministry of Health, Labor and Welfare. The National Health and Nutrition Survey in Japan. 2016. Available online: https://www.mhlw.go.jp/content/000681180.pdf (accessed on 17 August 2021).
- Ministry of Agriculture, Forestry and Fisheries. Outline of National Crop Survey (Vegetables). Available online: https://www.maff.go.jp/j/tokei/kouhyou/sakumotu/sakkyou_yasai/gaiyou/index.html#1 (accessed on 17 August 2021).
- Ministry of Agriculture, Forestry and Fisheries. Outline of National Crop Survey (Fruits). Available online: https://www.maff.go.jp/j/tokei/kouhyou/sakumotu/sakkyou_kazyu/gaiyou/index.html#1 (accessed on 17 August 2021).
- Statistics Bureau Ministry of Internal Affairs and Communications. Summary of Census Results. 2015. Available online: https://www.stat.go.jp/data/kokusei/2015/kekka/kihon1/pdf/gaiyou1.pdf (accessed on 17 August 2021).
- IBM. SPSS Statistics 23.0 Linear Mixed Models. Available online: https://www.ibm.com/docs/en/spss-statistics/23.0.0?topic=option-linear-mixed-models (accessed on 17 August 2021).
- IBM. SPSS Statistics 23.0 Information Criteria. Available online: https://www.ibm.com/docs/en/spss-statistics/23.0.0?topic=effect-information-criteria (accessed on 17 August 2021).
- A Basic Direction for Comprehensive Implementation of National Health Promotion. Available online: https://www.mhlw.go.jp/file/06-Seisakujouhou-10900000-Kenkoukyoku/0000047330.pdf (accessed on 16 August 2021).
- Ministry of Agriculture, Forestry and Fisheries. About the Current Situation of Food Access Problem. Available online: https://www.maff.go.jp/j/shokusan/eat/access_genjo.html (accessed on 17 August 2021).
- Japanese Ministry of Agriculture, Forestry and Fisheries. Statistics on the Agricultural Labor Force. Available online: http://www.maff.go.jp/j/tokei/sihyo/data/08.html (accessed on 5 November 2021).
- Japanese Ministry of Agriculture, Forestry and Fisheries. Area Survey. Available online: http://www.maff.go.jp/j/tokei/kouhyou/sakumotu/menseki/index.html#r (accessed on 5 November 2021).
All Participants | Men | Women | ||||
---|---|---|---|---|---|---|
Prefecture | n | % | n | % | n | % |
Hokkaido | 196 | 1.3 | 90 | 1.3 | 106 | 1.3 |
Aomori | 376 | 2.5 | 171 | 2.5 | 205 | 2.5 |
Iwate | 279 | 1.9 | 123 | 1.8 | 156 | 1.9 |
Miyagi | 246 | 1.6 | 117 | 1.7 | 129 | 1.6 |
Akita | 293 | 1.9 | 127 | 1.9 | 166 | 2.0 |
Yamagata | 400 | 2.7 | 185 | 2.7 | 215 | 2.6 |
Fukushima | 280 | 1.9 | 127 | 1.9 | 153 | 1.9 |
Ibaraki | 196 | 1.3 | 87 | 1.3 | 109 | 1.3 |
Tochigi | 651 | 4.3 | 321 | 4.7 | 330 | 4.0 |
Gunma | 378 | 2.5 | 182 | 2.7 | 196 | 2.4 |
Saitama | 460 | 3.1 | 226 | 3.3 | 234 | 2.8 |
Chiba | 457 | 3.0 | 213 | 3.1 | 244 | 3.0 |
Tokyo | 224 | 1.5 | 105 | 1.5 | 119 | 1.4 |
Kanagawa | 199 | 1.3 | 95 | 1.4 | 104 | 1.3 |
Niigata | 445 | 3.0 | 206 | 3.0 | 239 | 2.9 |
Toyama | 293 | 1.9 | 119 | 1.8 | 174 | 2.1 |
Ishikawa | 349 | 2.3 | 155 | 2.3 | 194 | 2.4 |
Fukui | 330 | 2.2 | 145 | 2.1 | 185 | 2.2 |
Yamanashi | 339 | 2.3 | 149 | 2.2 | 190 | 2.3 |
Nagano | 349 | 2.3 | 147 | 2.2 | 202 | 2.4 |
Gifu | 626 | 4.2 | 307 | 4.5 | 319 | 3.9 |
Shizuoka | 394 | 2.6 | 179 | 2.6 | 215 | 2.6 |
Aichi | 266 | 1.8 | 116 | 1.7 | 150 | 1.8 |
Mie | 333 | 2.2 | 156 | 2.3 | 177 | 2.1 |
Shiga | 213 | 1.4 | 96 | 1.4 | 117 | 1.4 |
Kyoto | 195 | 1.3 | 87 | 1.3 | 108 | 1.3 |
Osaka | 253 | 1.7 | 101 | 1.5 | 152 | 1.8 |
Hyogo | 431 | 2.9 | 189 | 2.8 | 242 | 2.9 |
Nara | 373 | 2.5 | 172 | 2.5 | 201 | 2.4 |
Wakayama | 216 | 1.4 | 95 | 1.4 | 121 | 1.5 |
Tottori | 251 | 1.7 | 106 | 1.6 | 145 | 1.8 |
Shimane | 439 | 2.9 | 183 | 2.7 | 256 | 3.1 |
Okayama | 313 | 2.1 | 145 | 2.1 | 168 | 2.0 |
Hiroshima | 265 | 1.8 | 114 | 1.7 | 151 | 1.8 |
Yamaguchi | 279 | 1.9 | 123 | 1.8 | 156 | 1.9 |
Tokushima | 406 | 2.7 | 192 | 2.8 | 214 | 2.6 |
Kagawa | 446 | 3.0 | 205 | 3.0 | 241 | 2.9 |
Ehime | 445 | 3.0 | 195 | 2.9 | 250 | 3.0 |
Kochi | 152 | 1.0 | 59 | 0.9 | 93 | 1.1 |
Fukuoka | 209 | 1.4 | 93 | 1.4 | 116 | 1.4 |
Saga | 306 | 2.0 | 131 | 1.9 | 175 | 2.1 |
Nagasaki | 247 | 1.6 | 104 | 1.5 | 143 | 1.7 |
Oita | 366 | 2.4 | 171 | 2.5 | 195 | 2.4 |
Miyazaki | 366 | 2.4 | 162 | 2.4 | 204 | 2.5 |
Kagoshima | 204 | 1.4 | 85 | 1.3 | 119 | 1.4 |
Okinawa | 312 | 2.1 | 144 | 2.1 | 168 | 2.0 |
N | 15,046 | 100.0 | 6800 | 100.0 | 8246 | 100.0 |
n | % | |
---|---|---|
Age | ||
20–39 | 2699 | 17.9 |
40–59 | 4986 | 33.1 |
60–79 | 7361 | 48.9 |
Family structure | ||
Living alone | 1780 | 11.8 |
Living together | 13,266 | 88.2 |
Body mass index | ||
Less than 18.5 | 1152 | 7.7 |
18.5–less than 25.0 | 9934 | 66.0 |
25.0 or more | 3960 | 26.3 |
Energy intake | ||
Q1 (low) | 3761 | 25.0 |
Q2 | 3762 | 25.0 |
Q3 | 3761 | 25.0 |
Q4 (high) | 3762 | 25.0 |
Smoking status | ||
Nonsmoking | 12,406 | 82.5 |
Smoking | 2640 | 17.5 |
Drinking status | ||
Every day | 2754 | 18.3 |
1–6 days/week | 3028 | 20.1 |
3 days or less/month, rarely | 3772 | 25.1 |
Never | 5492 | 36.5 |
Yield of not-for-sale vegetables | ||
Q1 (low) | 3532 | 23.5 |
Q2 | 3892 | 25.9 |
Q3 | 3809 | 25.3 |
Q4 (high) | 3813 | 25.3 |
Yield of not-for-sale fruits | ||
Q1 (low) | 3725 | 24.8 |
Q2 | 3502 | 23.3 |
Q3 | 3924 | 26.1 |
Q4 (high) | 3895 | 25.9 |
Yield of not-for-sale fruits and vegetables | ||
Q1 (low) | 3529 | 23.5 |
Q2 | 3937 | 26.2 |
Q3 | 3411 | 22.7 |
Q4 (high) | 4169 | 27.7 |
N | 15,046 | 100.0 |
NSV | NSF | NSFV | Vegetable Intake (g) | Fruit Intake (g) | FV Intake (g) | ||||
---|---|---|---|---|---|---|---|---|---|
Prefecture | g | g | g | Mean | SD | Mean | SD | Mean | SD |
Hokkaido | 56.7 | 2.3 | 59.0 | 282.3 | 166.4 | 93.2 | 115.3 | 375.4 | 216.6 |
Aomori | 85.5 | 97.2 | 183.2 | 312.4 | 180.9 | 118.9 | 148.2 | 431.3 | 256.6 |
Iwate | 64.5 | 15.9 | 80.7 | 306.6 | 176.3 | 138.6 | 158.5 | 445.3 | 271.3 |
Miyagi | 38.7 | 3.1 | 42.6 | 323.5 | 209.1 | 103.9 | 139.9 | 427.4 | 256.4 |
Akita | 87.4 | 17.1 | 105.0 | 280.9 | 194.2 | 101.4 | 133.8 | 382.3 | 255.5 |
Yamagata | 80.9 | 49.9 | 131.6 | 278.9 | 160.9 | 125.5 | 151.6 | 404.4 | 239.6 |
Fukushima | 75.5 | 13.4 | 89.8 | 314.8 | 187.5 | 104.2 | 142.0 | 419.0 | 237.3 |
Ibaraki | 86.2 | 8.4 | 95.1 | 295.3 | 188.0 | 118.7 | 151.1 | 413.9 | 287.6 |
Tochigi | 54.5 | 6.6 | 61.6 | 278.5 | 182.5 | 81.7 | 112.5 | 360.2 | 231.0 |
Gunma | 92.8 | 6.9 | 100.7 | 273.3 | 165.7 | 103.8 | 147.1 | 377.2 | 239.8 |
Saitama | 24.2 | 0.8 | 25.1 | 298.5 | 168.0 | 99.0 | 121.3 | 397.6 | 229.4 |
Chiba | 36.8 | 2.8 | 39.8 | 281.9 | 178.4 | 106.3 | 119.5 | 388.2 | 233.6 |
Tokyo | 1.5 | 0.1 | 1.6 | 290.5 | 182.2 | 108.7 | 138.6 | 399.1 | 247.2 |
Kanagawa | 5.6 | 1.7 | 7.4 | 292.2 | 156.8 | 92.8 | 123.1 | 385.0 | 220.8 |
Niigata | 66.8 | 7.3 | 74.3 | 295.2 | 184.9 | 106.6 | 126.2 | 401.8 | 254.2 |
Toyama | 27.4 | 4.1 | 31.6 | 294.6 | 179.7 | 121.5 | 127.9 | 416.0 | 245.7 |
Ishikawa | 29.1 | 7.7 | 37.2 | 296.3 | 162.7 | 112.5 | 128.1 | 408.9 | 233.8 |
Fukui | 30.4 | 4.0 | 34.8 | 285.5 | 151.3 | 103.6 | 137.1 | 389.0 | 219.3 |
Yamanashi | 42.1 | 27.4 | 70.5 | 316.1 | 170.3 | 107.0 | 145.0 | 423.2 | 245.7 |
Nagano | 117.0 | 34.3 | 152.0 | 345.5 | 210.9 | 111.8 | 137.6 | 457.3 | 267.5 |
Gifu | 34.7 | 5.0 | 40.0 | 277.1 | 167.7 | 86.8 | 111.0 | 364.0 | 218.5 |
Shizuoka | 16.7 | 14.6 | 31.6 | 259.5 | 142.9 | 108.0 | 124.1 | 367.5 | 204.8 |
Aichi | 14.8 | 4.2 | 19.1 | 231.9 | 136.9 | 77.9 | 103.6 | 309.8 | 185.1 |
Mie | 29.7 | 8.6 | 39.1 | 256.4 | 154.7 | 100.9 | 135.0 | 357.3 | 224.3 |
Shiga | 28.2 | 3.0 | 31.5 | 260.4 | 158.8 | 105.2 | 132.0 | 365.6 | 233.3 |
Kyoto | 15.7 | 2.1 | 17.8 | 274.5 | 202.6 | 104.9 | 130.3 | 379.4 | 282.3 |
Osaka | 1.4 | 0.8 | 2.1 | 230.2 | 150.4 | 83.5 | 105.3 | 313.7 | 197.7 |
Hyogo | 22.7 | 2.6 | 25.5 | 288.4 | 208.1 | 114.2 | 135.6 | 402.6 | 289.1 |
Nara | 20.5 | 8.8 | 29.4 | 276.4 | 153.4 | 100.6 | 121.3 | 377.0 | 214.7 |
Wakayama | 23.9 | 62.0 | 91.9 | 263.9 | 192.4 | 143.6 | 163.2 | 407.5 | 275.5 |
Tottori | 86.5 | 23.2 | 110.0 | 287.3 | 148.6 | 117.2 | 120.7 | 404.5 | 204.3 |
Shimane | 69.2 | 4.7 | 74.4 | 301.9 | 175.9 | 100.4 | 117.2 | 402.3 | 222.4 |
Okayama | 28.9 | 7.5 | 36.8 | 262.4 | 148.3 | 82.3 | 115.1 | 344.7 | 203.6 |
Hiroshima | 25.5 | 8.1 | 34.1 | 290.9 | 154.1 | 116.0 | 132.2 | 407.0 | 223.6 |
Yamaguchi | 32.3 | 6.8 | 39.7 | 271.5 | 184.9 | 108.7 | 141.0 | 380.2 | 254.6 |
Tokushima | 70.3 | 12.6 | 83.2 | 314.3 | 191.0 | 116.9 | 146.0 | 431.2 | 262.0 |
Kagawa | 30.9 | 7.0 | 38.0 | 273.0 | 159.7 | 110.9 | 119.4 | 383.9 | 218.6 |
Ehime | 34.0 | 30.7 | 65.0 | 272.3 | 171.3 | 104.2 | 134.1 | 376.5 | 239.8 |
Kochi | 51.3 | 7.5 | 59.1 | 317.2 | 183.0 | 141.1 | 160.6 | 458.3 | 278.7 |
Fukuoka | 10.2 | 3.2 | 13.6 | 302.3 | 171.0 | 123.1 | 137.0 | 425.4 | 237.2 |
Saga | 66.5 | 18.5 | 85.5 | 268.2 | 170.6 | 99.8 | 122.7 | 368.0 | 239.4 |
Nagasaki | 43.6 | 15.3 | 59.1 | 257.9 | 152.5 | 106.7 | 115.9 | 364.6 | 213.4 |
Oita | 42.0 | 13.4 | 56.2 | 295.4 | 173.2 | 112.6 | 126.1 | 408.0 | 243.1 |
Miyazaki | 60.1 | 6.3 | 67.0 | 294.7 | 190.1 | 109.8 | 131.5 | 404.5 | 257.8 |
Kagoshima | 60.5 | 5.4 | 66.4 | 279.9 | 163.7 | 89.6 | 113.5 | 369.5 | 200.7 |
Okinawa | 11.1 | 1.0 | 12.0 | 273.5 | 181.3 | 81.6 | 111.3 | 355.1 | 226.4 |
Total | 45.4 | 13.2 | 59.1 | 285.5 | 174.8 | 105.4 | 130.7 | 390.9 | 239.6 |
Spearman’s correlation coefficient between intake and yield among prefectures (p-Value) | 0.376 | (0.010) | 0.442 | (0.002) | 0.401 | (0.006) |
Vegetable Intake | Fruit Intake | Fruit and Vegetable Intake | |||||||
---|---|---|---|---|---|---|---|---|---|
Prefecture-Level Yield of Not-for-Sale Crops | B | 95% CI | p | B | 95% CI | p | B | 95% CI | p |
(All participants) | |||||||||
Interval scale (g) | 0.390 | 0.183–0.596 | <0.001 | 0.268 | 0.099–0.438 | 0.003 | 0.357 | 0.167–0.548 | <0.001 |
Category (Reference: Q1) | |||||||||
Q2 | 0.254 | −15.660–16.169 | 0.974 | −4.421 | −13.467–4.625 | 0.329 | 8.932 | −12.960–30.824 | 0.414 |
Q3 | 18.662 | 2.962–34.362 | 0.021 | 5.013 | −3.474–13.500 | 0.240 | 21.077 | −1.517–43.671 | 0.067 |
Q4 | 27.003 | 11.087–42.918 | 0.001 | 8.995 | 0.522–17.468 | 0.038 | 32.973 | 11.870–54.076 | 0.003 |
p for trend < 0.001 | p for trend = 0.013 | p for trend = 0.001 | |||||||
(Men) | |||||||||
Interval scale (g) | 0.380 | 0.173–0.586 | 0.001 | 0.235 | 0.050–0.420 | 0.014 | 0.362 | 0.167–0.556 | 0.001 |
Category (Reference: Q1) | |||||||||
Q2 | −2.554 | −18.424–13.316 | 0.746 | −2.785 | −12.343–6.773 | 0.556 | 10.180 | −12.376–32.736 | 0.366 |
Q3 | 15.946 | 0.128–31.764 | 0.048 | 5.314 | −3.793–14.420 | 0.245 | 17.676 | −5.763–41.114 | 0.135 |
Q4 | 23.933 | 8.046–39.820 | 0.004 | 10.958 | 1.801–20.114 | 0.020 | 33.521 | 11.595–55.447 | 0.004 |
p for trend = 0.001 | p for trend = 0.008 | p for trend = 0.002 | |||||||
(Women) | |||||||||
Interval scale (g) | 0.409 | 0.176–0.642 | 0.001 | 0.306 | 0.118–0.493 | 0.002 | 0.372 | 0.170–0.575 | 0.001 |
Category (Reference: Q1) | |||||||||
Q2 | 2.104 | −15.926–20.133 | 0.815 | −5.147 | −15.450–5.156 | 0.318 | 7.322 | −15.876–30.520 | 0.527 |
Q3 | 19.828 | 2.020–37.636 | 0.030 | 5.049 | −4.681–14.778 | 0.301 | 23.932 | −0.020–47.885 | 0.050 |
Q4 | 29.793 | 11.764–47.822 | 0.002 | 7.901 | −1.787–17.590 | 0.107 | 33.833 | 11.445–56.221 | 0.004 |
p for trend < 0.001 | p for trend = 0.039 | p for trend = 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machida, D. Relationship between Prefecture-Level Yield of Not-for-Sale Fruits and Vegetables and Individual-Level Fruit and Vegetable Intake in Japan: A Cross-Sectional Study. Nutrients 2021, 13, 4072. https://doi.org/10.3390/nu13114072
Machida D. Relationship between Prefecture-Level Yield of Not-for-Sale Fruits and Vegetables and Individual-Level Fruit and Vegetable Intake in Japan: A Cross-Sectional Study. Nutrients. 2021; 13(11):4072. https://doi.org/10.3390/nu13114072
Chicago/Turabian StyleMachida, Daisuke. 2021. "Relationship between Prefecture-Level Yield of Not-for-Sale Fruits and Vegetables and Individual-Level Fruit and Vegetable Intake in Japan: A Cross-Sectional Study" Nutrients 13, no. 11: 4072. https://doi.org/10.3390/nu13114072
APA StyleMachida, D. (2021). Relationship between Prefecture-Level Yield of Not-for-Sale Fruits and Vegetables and Individual-Level Fruit and Vegetable Intake in Japan: A Cross-Sectional Study. Nutrients, 13(11), 4072. https://doi.org/10.3390/nu13114072