Dietary Patterns and Breast Cancer Risk in Black Urban South African Women: The SABC Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Personal Information and Lifestyle Status/History
2.3. Habitual Dietary Intake
2.4. Categorizing of Food Groups to Determine Dietary Patterns
2.5. Ethical Approval
2.6. Statistical Analysis
2.7. Determining the Association between Dietary Patterns and Breast Cancer Risk
3. Results
3.1. Distribution of Selected Characteristics between Breast Cancer Cases and Controls
3.2. Dietary Patterns
3.3. The Association between Dietary Patterns and Breast Cancer Risk
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
IARC Disclaimer
Appendix A
Traditional Dietary Pattern | Cereal-Dairy Breakfast Pattern | Processed Food Pattern | p Value ‡ | |
---|---|---|---|---|
Energy (kJ) * | 7356 (6070–8925) | 8234 (6544–10 931) | 12 325 (9589–15 418) | 0.005 |
Total protein (g) * | 71.9 (51.3–107.3) | 65.5 (51.3–83.1) | 85.2 (63.2–111.4) | 0.324 |
Plant protein (g) * | 31.9 (23.6–45.3) | 29.1 (21.8–38.5) | 36.3 (27.7–47.5) | 0.476 |
Animal protein (g) * | 37.0 (23.1–58.2) | 35.1 (24.3–47.5) | 43.4 (31.1–61.3) | 0.615 |
Total fat (g) * | 87.5 (67.4–111.4) | 63.1 (47.6–93.4) | 94.8 (70.6–121.9) | 0.947 |
Saturated fat (g) * | 12.8 (9.1–17.9) | 19.2 (13.5–27.5) | 27.7 (20.3–37.1) | 0.002 |
Monounsaturated fat (g) * | 27.0 (20.7–35.9) | 21.3 (15.3–30.7) | 29.9 (21.7–41.0) | 0.047 |
Polyunsaturated fat (g) * | 22.7 (17.2–30.5) | 17.2 (11.7–25.5) | 24.9 (17.4–33.9) | 0.323 |
Cholesterol (g) * | 182.0 (109.6–270.0) | 253.7 (116.8–307.5) | 350.2 (218.5–533.4) | 0.028 |
Total CHO (g) † | 367.8 ± 126.6 | 317.9 ± 132.5 | 416.2 ± 154.3 | <0.001 |
Added sugar (g) * | 59.6 (31.1–97.5) | 62.9 (33.9–96.4) | 72.8 (48.3–106.4) | 0.034 |
Dietary fibre (g) † | 29.0 ± 13.9 | 29.8 ± 13.4 | 21.7 ± 8.7 | <0.001 |
Protein: CHO: Fat ratio § | 1:5.3:2.8 | 1:5.1:2.3 | 1:4.8:2.5 | n/a |
Ca (mg) * | 553.3 (347.4–810.9) | 704.3 (512.2–1009.9) | 645.2 (463.1–918.6) | <0.001 |
Fe (mg) † | 18.5 ± 5.8 | 19.6 ± 8.9 | 16.4 ± 6.4 | <0.001 |
Mg (µg) † | 385.4 ± 180.5 | 403.6 ± 168.4 | 334.5 ± 141.2 | 0.729 |
P (mg) * | 1125.7 (781.6–1633.6) | 1262.2 (971.9–1768.8) | 1010.3 (761.6–1239.2) | 0.377 |
K (mg) * | 2643.1 (1836.6–3719.8) | 2945.4 (2320.5–4012.2) | 2330.1 (1836.6–1886.2) | <0.001 |
Na (mg) * | 1381.3 (1040.8–1886.7) | 1694.7 (1129.3–2300.6) | 2734.5 (1975.1–3636.7) | <0.001 |
Zn (mg) † | 14.9 ± 7.2 | 15.7 ± 6.7 | 13.2 ± 5.4 | <0.001 |
Cu (mg) * | 1.5 (1.1–2.1) | 1.6 (1.3–2.27) | 1.1 (0.9–1.4) | <0.001 |
Mn (mg) † | 2752 ± 1058.1 | 2878.0 ± 1437.6 | 2426.7 ± 1198.0 | <0.001 |
Vitamin A (µg) * | 1687.1 (1080.1–2465.0) | 1799.9 (1151.9–2684.9) | 1152.0 (776.8–1839.8) | 0.333 |
Thiamine (mg) * | 1.8 (1.4–2.5) | 1.9 (1.4–2.5) | 1.5 (1.2–1.9) | <0.001 |
Riboflavin (mg) * | 1.6 (1.1–2.5) | 2.0 (1.4–2.8) | 1.2 (0.8–1.5) | 0.003 |
Niacin (mg) * | 25.0 (18.6–35.7) | 25.6 (18.9–36.2) | 18.1 (14.5–23.9) | <0.001 |
Vitamin B6 (µg) * | 3.6 (2.5–5.3) | 3.7 (2.7–5.2) | 2.9 (1.9–3.7) | <0.001 |
Folate (µg) * | 480.0 (343.9–676.3) | 444.8 (326.4–619.4) | 392.1 (300.6–525.1) | <0.001 |
Vitamin B12 (µg) * | 4.8 (2.7–8.4) | 5.64 (3.7–8.9) | 2.8 (1.6–4.9) | <0.001 |
Pantothenic acid (mg) * | 5.7 (3.8–8.2) | 6.1 (4.7–8.6) | 3.9 (3.2–5.5) | <0.001 |
Biotin (µg) * | 51.6 (33.4–72.8) | 53.6 (39.3–73.4) | 39.2 (27.5–55.4) | <0.001 |
Vitamin C (mg) * | 79.9 (45.3–160.1) | 93.5 (52.3–168.0) | 38.2 (23.1–68.8) | <0.001 |
Vitamin D (mg) * | 5.1 (3.3–7.3) | 4.7 (2.9–7.4) | 2.6 (1.3–5.9) | <0.001 |
Vitamin E (mg) * | 14.0 (8.9–19.5) | 14.4 (10.3–19.5) | 8.6 (5.9–11.7) | 0.003 |
Traditional Dietary Pattern | Cereal-Dairy Breakfast Pattern | Processed Food Pattern | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
OR | 95%CI | p-Trend § | OR | 95%CI | p-Trend § | OR | 95%CI | p-Trend § | ||
Overall (cases n = 396; controls n = 396) | Model 1 | 0.85 | (0.81–0.91) | <0.001 | 0.78 | (0.71–0.85) | <0.001 | 0.84 | (0.76–0.92) | <0.001 |
Model 2 | 0.91 | (0.84–0.98) | 0.016 | 0.84 | (0.76–0.94) | 0.002 | 0.98 | (0.87–1.11) | 0.816 | |
Model 3 | 0.91 | (0.84–0.97) | 0.013 | 0.82 | (0.73–0.92) | 0.001 | 1.02 | (0.89–1.12) | 0.782 | |
Premenopausal *,† (n = 267) (cases n = 133; controls n = 134) | Model 1 | 0.87 | (0.79–0.96) | 0.009 | 0.76 | (0.64–0.89) | 0.001 | 0.78 | (0.65–0.93) | 0.005 |
Model 2 | 0.99 | (0.86–1.13) | 0.900 | 0.81 | (0.66–0.97) | 0.028 | 0.85 | (0.69–1.06) | 0.160 | |
Model 3 | 0.98 | (0.85–1.13) | 0.810 | 0.78 | (0.64–0.96) | 0.020 | 0.93 | (0.72–1.19) | 0.569 | |
Postmenopausal *,† (n = 505) (cases n = 248; controls n = 257) | Model 1 | 0.87 | (0.81–0.93) | <0.001 | 0.79 | (0.71–0.87) | <0.001 | 0.87 | (0.78–0.97) | 0.014 |
Model 2 | 0.91 | (0.83–0.99) | 0.035 | 0.87 | (0.77–0.99) | 0.046 | 1.01 | (0.88–1.15) | 0.844 | |
Model 3 | 0.90 | (0.83–0.98) | 0.024 | 0.85 | (0.75–0.97) | 0.019 | 1.00 | (0.86–1.16) | 0.993 | |
ER+ (n = 298) | Model 1 | 0.95 | (0.81–1.11) | 0.543 | 0.94 | (0.74–1.18) | 0.600 | 0.87 | (0.67–1.12) | 0.290 |
Model 2 | 1.06 | (0.88–1.28) | 0.504 | 0.83 | (0.63–1.10) | 0.205 | 0.84 | (0.63–1.15) | 0.284 | |
Model 3 | 1.07 | (0.87–1.31) | 0.486 | 0.81 | (0.61–1.07) | 0.148 | 0.94 | (0.67–1.31) | 0.735 | |
PR+ (n = 263) | Model 1 | 0.85 | (0.73–0.98) | 0.030 | 0.83 | (0.68–1.02) | 0.086 | 0.90 | (0.74–1.11) | 0.337 |
Model 2 | 0.87 | (0.73–1.03) | 0.106 | 0.80 | (0.64–1.00) | 0.054 | 0.91 | (0.73–1.15) | 0.455 | |
Model 3 | 0.88 | (0.74–1.06) | 0.192 | 0.73 | (0.57–0.94) | 0.016 | 1.06 | (0.79–1.41) | 0.679 | |
BMI <30 kg/m2 * (n = 326) (cases = 165; controls = 161) | Model 1 | 0.85 | (0.78–0.92) | <0.001 | 0.72 | (0.62–0.82) | <0.001 | 0.79 | (0.69–1.21) | 0.904 |
Model 2 | 0.84 | (0.77–0.91) | <0.001 | 0.71 | (0.61–0.82) | <0.001 | 0.78 | (0.68–1.36) | 0.976 | |
Model 3 | 0.91 | (0.81–1.01) | 0.096 | 0.73 | (0.61–0.87) | 0.001 | 0.93 | (0.76–1.14) | 0.493 | |
BMI ≥30 kg/m2 * (n = 466) (cases = 231; controls = 235) | Model 1 | 0.89 | (0.83–0.95) | 0.001 | 0.84 | (0.74–0.94) | 0.004 | 0.91 | (0.81–1.02) | 0.094 |
Model 2 | 0.92 | (0.83–1.01) | 0.078 | 0.92 | (0.80–1.06) | 0.246 | 1.01 | (0.87–1.17) | 0.917 | |
Model 3 | 0.91 | (0.83–1.00) | 0.059 | 0.89 | (0.77–1.03) | 0.119 | 1.05 | (0.89–1.23) | 0.534 |
References
- Wentzel-Viljoen, E.; Lee, S.; Laubscher, R.; Vorster, H.H. Accelerated nutrition transition in the North West Province of South Africa: Results from the Prospective Urban and Rural Epidemiology (PURE-NWP-SA) cohort study, 2005 to 2010. Public Health Nutr. 2018, 21, 2630–2641. [Google Scholar] [CrossRef]
- Bourne, L.T.; Lambert, E.V.; Steyn, K. Where does the black population of South Africa stand on the nutrition transition? Public Health Nutr. 2002, 5, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Vorster, H.H.; Kruger, A.; Margetts, B.M. The nutrition transition in Africa: Can it be steered into a more positive direction? Nutrients 2011, 3, 429–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkes, C.; Harris, J.; Gillespie, S. Changing diets: Urbanization and the nutrition transition. In 2017 Global Food Policy Report; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2017; Chapter 4; pp. 34–41. [Google Scholar]
- Wild, C.; Weiderpass, E.; Stewart, B. World Cancer Report 2020; International Agency for Research on Cancer: Lyon, France, 2020; Volume 199, p. 512. [Google Scholar]
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today; International Agency for Research on Cancer: Lyon, France, 2020; Available online: https://gco.iarc.fr/today (accessed on 21 September 2021).
- Department of Health, South Africa. National Cancer Strategic Framework for South Africa 2017–2022. Available online: https://www.health.gov.za/wp-content/uploads/2020/11/national-cancer-strategic-framework-2017-2022-min.pdf (accessed on 20 April 2020).
- World Cancer Research Fund International/American Institute for Cancer Research. Our Cancer Prevention Recommendations. 2018. Available online: https://dietandcancerreoprt.org (accessed on 19 January 2020).
- Jacobs, I.; Taljaard-Krugell, C.; Wicks, M.; Cubasch, H.; Joffe, M.; Laubscher, R.; Romieu, I.; Biessy, C.; Gunter, M.J.; Huybrechts, I.; et al. Adherence to cancer prevention recommendations is associated with a lower breast cancer risk in black urban South African women. Br. J. Nutr. 2021, 14, 1–12. [Google Scholar] [CrossRef]
- Jacobs, I.; Taljaard-Krugell, C.; Wicks, M.; Cubasch, H.; Joffe, M.; Laubscher, R.; Romieu, I.; Levy, R.B.; Rauber, F.; Biessy, C.; et al. Intake of unprocessed/minimally processed foods may reduce the risk of developing breast cancer in black women from Soweto, South Africa. Cent. Excell. Nutr. North-West Univ. Potchefstroom S. Afr. 2021, 12, 637. [Google Scholar]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Newby, P.; Tucker, K.L. Empirically derived eating patterns using factor or cluster analysis: A review. Nutr. Rev. 2004, 62, 177–203. [Google Scholar] [CrossRef] [PubMed]
- Moeller, S.M.; Reedy, J.; Millen, A.E.; Dixon, L.B.; Newby, P.; Tucker, K.L.; Krebs-Smith, S.M.; Guenther, P.M. Dietary patterns: Challenges and opportunities in dietary patterns research. J. Am. Diet. Assoc. 2007, 107, 1233–1239. [Google Scholar] [CrossRef]
- Holmes, M.D.; Dalal, S.; Sewram, V.; Diamond, M.B.; Adebamowo, S.N.; Ajayi, I.O.; Adebamowo, C.; Chiwanga, F.S.; Njelekela, M.; Laurence, C. Consumption of processed food dietary patterns in four African populations. Public Health Nutr. 2018, 21, 1529–1537. [Google Scholar] [CrossRef] [Green Version]
- Ayeni, O.; Joffe, M.; Cubasch, H.; Rinaldi, S.; Taljaard, C.; Vorster, E.; Romieu, I.; Norris, S. Prevalence of comorbidities in women with and without breast cancer in Soweto, South Africa: Results from the SABC study. S. Afr. Med. J. 2019, 109, 264–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romieu, I.; Biessy, C.; Joffe, M.; Cubasch, H.; Norris, S.; Vorster, H.H.; Taljaard-Krugell, C.; Gunter, M.J.; Rinaldi, S. Reproductive factors and risk of breast cancer in black South African women. Cancer Causes Control 2021, 32, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, I.; Taljaard-Krugell, C.; Ricci, C.; Vorster, H.; Rinaldi, S.; Cubasch, H.; Laubscher, R.; Joffe, M.; van Zyl, T.; Norris, S.A. Dietary intake and breast cancer risk in black South African women: The South African Breast Cancer study. Br. J. Nutr. 2019, 121, 591–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romieu, I.; Lajous, M. The role of obesity, physical activityand dietary factors on the risk for breast cancer: Mexican experience. Salud Pública de México 2009, 51, 172–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R.; Schmitz, K.H.; Emplaincourt, P.O. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exer. 2000, 32, S498–S504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacIntyre, U.E.; Venter, C.S.; Vorster, H.H. A culture-sensitive quantitative food frequency questionnaire used in an African population: 2. Relative validation by 7-day weighed records and biomarkers. Public Health Nutr. 2001, 4, 63–71. [Google Scholar] [CrossRef] [Green Version]
- MacIntyre, U.; Venter, C.; Vorster, H. A culture-sensitive quantitative food frequency questionnaire used in an African population: 1. Development and reproducibility. Public Health Nutr. 2001, 4, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Venter, C.; MacIntyre, U.; Vorster, H. The development and testing of a food portion photograph book for use in an African population. J. Hum. Nutr. Diet 2000, 13, 205–218. [Google Scholar] [CrossRef]
- Wolmarans, P.; Kunneke, E.; Laubscher, R. Use of the South African Food Composition Database System (SAFOODS) and Its Products in Assessing Dietary Intake Data: Part II; Taylor & Francis: Abingdon-on-Thames, UK, 2009. [Google Scholar]
- Castelló, A.; Pollán, M.; Buijsse, B.; Ruiz, A.; Casas, A.; Baena-Cañada, J.; Lope, V.; Antolín, S.; Ramos, M.; Muñoz, M. Spanish Mediterranean diet and other dietary patterns and breast cancer risk: Case–control EpiGEICAM study. Br. J. Cancer 2014, 111, 1454. [Google Scholar] [CrossRef] [Green Version]
- Bessaoud, F.; Tretarre, B.; Daurès, J.-P.; Gerber, M. Identification of dietary patterns using two statistical approaches and their association with breast cancer risk: A case-control study in southern France. Ann. Epidemiol. 2012, 22, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J. Applied Multivariate Statistics for the Social Sciences, 4th ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2002. [Google Scholar]
- Zhang, C.-X.; Ho, S.C.; Fu, J.-H.; Cheng, S.-Z.; Chen, Y.-M.; Lin, F.-Y. Dietary patterns and breast cancer risk among Chinese women. Cancer Causes Control 2011, 22, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Cottet, V.; Touvier, M.; Fournier, A.; Touillaud, M.S.; Lafay, L.; Clavel-Chapelon, F.; Boutron-Ruault, M.-C. Postmenopausal breast cancer risk and dietary patterns in the E3N-EPIC prospective cohort study. Am. J. Epidemiol. 2009, 170, 1257–1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mourouti, N.; Papavagelis, C.; Plytzanopoulou, P.; Kontogianni, M.; Vassilakou, T.; Malamos, N.; Linos, A.; Panagiotakos, D. Dietary patterns and breast cancer: A case–control study in women. Eur. J. Nutr. 2015, 54, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Ronco, A.L.; De Stefani, E.; Boffetta, P.; Deneo-Pellegrini, H.; Acosta, G.; Mendilaharsu, M. Food patterns and risk of breast cancer: A factor analysis study in Uruguay. Int. J. Cancer 2006, 119, 1672–1678. [Google Scholar] [CrossRef]
- Demetriou, C.A.; Hadjisavvas, A.; Loizidou, M.A.; Loucaides, G.; Neophytou, I.; Sieri, S.; Kakouri, E.; Middleton, N.; Vineis, P.; Kyriacou, K. The mediterranean dietary pattern and breast cancer risk in Greek-Cypriot women: A case-control study. BMC Cancer 2012, 12, 113. [Google Scholar] [CrossRef] [Green Version]
- Tumas, N.; Niclis, C.; Aballay, L.R.; Osella, A.R.; del Pilar Díaz, M. Traditional dietary pattern of South America is linked to breast cancer: An ongoing case–control study in Argentina. Eur. J. Nutr. 2014, 53, 557–566. [Google Scholar] [CrossRef]
- Link, L.B.; Canchola, A.J.; Bernstein, L.; Clarke, C.A.; Stram, D.O.; Ursin, G.; Horn-Ross, P.L. Dietary patterns and breast cancer risk in the California Teachers Study cohort. Am. J. Clin. Nutr. 2013, 98, 1524–1532. [Google Scholar] [CrossRef] [Green Version]
- Karimi, Z.; Jessri, M.; Houshiar-Rad, A.; Mirzaei, H.-R.; Rashidkhani, B. Dietary patterns and breast cancer risk among women. Public Health Nutr. 2014, 17, 1098–1106. [Google Scholar] [CrossRef] [Green Version]
- Catsburg, C.; Kim, R.S.; Kirsh, V.A.; Soskolne, C.L.; Kreiger, N.; Rohan, T.E. Dietary patterns and breast cancer risk: A study in 2 cohorts. Am. J. Clin. Nutr. 2015, 101, 817–823. [Google Scholar] [CrossRef] [Green Version]
- Brennan, S.F.; Cantwell, M.M.; Cardwell, C.R.; Velentzis, L.S.; Woodside, J.V. Dietary patterns and breast cancer risk: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2010, 91, 1294–1302. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Xia, J.; Li, L.; Ke, Y.; Cheng, J.; Xie, Y.; Chu, W.; Cheung, P.; Kim, J.H.; Colditz, G.A.; et al. Associations between dietary patterns and the risk of breast cancer: A systematic review and meta-analysis of observational studies. Breast Cancer Res. 2019, 21, 16–38. [Google Scholar] [CrossRef] [Green Version]
- Dandamudi, A.; Tommie, J.; Nommsen-Rivers, L.; Couch, S. Dietary patterns and breast cancer risk: A systematic review. Anticancer Res. 2018, 38, 3209–3222. [Google Scholar] [CrossRef] [Green Version]
- National Agricultural Marketing Council. Food Basket Price Monthly. 2020. Available online: https://www.namc.co.za/wp-content/uploads/2020/01/Food-Basket-Jan-2020.pdf (accessed on 21 September 2021).
- Fiolet, T.; Srour, B.; Sellem, L.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Deschasaux, M.; Fassier, P.; Latino-Martel, P.; Beslay, M. Consumption of ultra-processed foods and cancer risk: Results from NutriNet-Santé prospective cohort. Br. Med. J. 2018, 360, k322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.C.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef] [PubMed]
- De Stefani, E.; Deneo-Pellegrini, H.; Boffetta, P.; Ronco, A.L.; Aune, D.; Acosta, G.; Mendilaharsu, M.; Brennan, P.; Ferro, G. Dietary patterns and risk of cancer: A factor analysis in Uruguay. Int. J. Cancer 2009, 124, 1391–1397. [Google Scholar] [CrossRef]
- Shin, S.; Saito, E.; Inoue, M.; Sawada, N.; Ishihara, J.; Takachi, R.; Nanri, A.; Shimazu, T.; Yamaji, T.; Iwasaki, M. Dietary pattern and breast cancer risk in Japanese women: The Japan Public Health Center-based Prospective Study (JPHC Study). Br. J. Nutr. 2016, 115, 1769–1779. [Google Scholar] [CrossRef] [Green Version]
- Buck, K.; Vrieling, A.; Flesch-Janys, D.; Chang-Claude, J. Dietary patterns and the risk of postmenopausal breast cancer in a German case–control study. Cancer Causes Control 2011, 22, 273–282. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Breast Cancer Cases (n = 396) | Controls (n= 396) | p-Value |
---|---|---|---|
Sociodemographic factors | |||
* Age, matched (years) | 54.7 ± 12.9 | 54.6 ± 12.9 | 0.980 |
Ethnicity | 0.041 | ||
Zulu/Pedi/Xhosa/Tswana/Swazi (n/%) | 67 (16.9) | 66 (16.6) | |
Sotho (n/%) | 108 (27.3) | 144 (36.4) | |
Venda/Tsonga (n/%) | 105 (26.5) | 91 (23.0) | |
Ndebele (n/%) | 116 (29.3) | 95 (24.0) | |
Level of education | 0.078 | ||
None/primary (n/%) | 97 (24.5) | 71 (17.9) | |
High School (n/%) | 257 (64.9) | 279 (70.5) | |
College/University/postgraduate (n/%) | 42 (10.6) | 46 (11.6) | |
Individual income/month | 0.350 | ||
R0 (n/%) | 125 (31.6) | 108 (27.3) | |
R1-R3000 (n/%) | 219 (55.3) | 227 (57.3) | |
>R3001 (n/%) | 52 (13.1) | 61 (15.4) | |
Anthropometry | |||
BMI | 0.790 | ||
Underweight < 18.5 kg/m2 (n/%) | 5 (1.3) | 7 (1.8) | |
Normal weight ≥ 18.5 and ≤ 24.9 kg/m2 (n/%) | 63 (15.9) | 71 (17.9) | |
Overweight ≥ 25.0 and ≤ 29.9 kg/m2 (n/%) | 93 (23.5) | 87 (21.9) | |
Obese ≥ 30.0 kg/m2 (n/%) | 235 (59.3) | 231 (58.4) | |
* WC (cm) | 93.3 ± 13.8 | 95.8 ± 13.7 | 0.011 |
Lifestyle factors | |||
† Total vigorous and moderate PA min/week | 39.4 (7.8; 85.8) | 32.1 (9.1; 70.8) | 0.303 |
Current smokers (n/%) | 35 (8.8) | 44 (11.1) | 0.286 |
HIV positivity (n/%) | 65 (16.4) | 90 (22.7) | 0.025 |
Dietary factors | |||
† TE (kJ/day) | 9146 (6812; 9759) | 8990 (7184; 10,284) | 0.239 |
† Protein (g/day) | 63.8 (47.4; 82.7) | 63.5 (49.2; 93.1) | 0.073 |
% of TE | 11.8 | 12.0 | |
† Total fat (g/day) | 64.8 (42.4; 91.9) | 64.4 (47.2; 95.7) | 0.125 |
% of TE | 26.9 | 27.2 | |
† Saturated fat (g/day) | 17.9 (11.5; 26.1) | 19.2 (12.7; 27.9) | 0.044 |
% of TE | 7.4 | 8.1 | |
* CHO (g/day) | 330.8 ± 143.5 | 338.7 ± 147.3 | 0.445 |
% of TE | 61.4 | 64.0 | |
* Dietary Fibre (g/day) | 24.9 ± 11.03 | 25.3 + 11.4 | 0.616 |
† Added Sugar (g/day) | 65.3 (38.4; 105.5) | 67.9 (39.9; 109.7) | 0.313 |
% of TE | 12.1 | 12.0 | |
Non-alcohol consumers (n%) | 350 (88.4) | 321 (81.1) | 0.004 |
Breast cancer risk factors | |||
Full term pregnancy in parous women (n/%) | 377 (95.2) | 382 (96.5) | 0.374 |
Ever breast fed in parous women (n/%) | 339 (91.4) | 349 (89.9) | 0.293 |
†‡ Duration of breast feeding (months) | 35 (20; 62) | 41 (24; 62) | 0.187 |
§ Premenopausal (n/%) | 133 (33.6) | 134 (33.8) | 0.852 |
§ Postmenopausal (n/%) | 248 (65.1) | 257 (65.7) | 0.852 |
† Age at menarche | 15 (13; 16) | 15 (13; 16) | 0.537 |
†║ Age at menopause (years) | 47 (42; 50) | 48 (44; 50) | 0.331 |
Family history of breast cancer (n/%) | 25 (6.3) | 17 (4.3) | 0.205 |
Use of birth control (contraceptives) (n/%) | 229 (57.8) | 215 (54.3) | 0.316 |
Breast cancer case characteristics | |||
Receptor status | |||
ER+ (n/%) | 298 (75.3) | - | |
PR+ (n/%) | 263 (66.4) | - | |
HER2 (n/%) | 114 (28.8) | - | |
¶ Breast Cancer case subtype | |||
HER2 Enriched (n/%) | 21 (5.3) | - | |
Luminal A (n/%) | 40 (10.1) | - | |
Luminal B (n/%) | 269 (67.9) | - | |
TNBC (n/%) | 64 (16.2) | - |
Food Group | Traditional Pattern | Cereal-Dairy Breakfast Pattern | Processed Food Pattern | Unexplained |
---|---|---|---|---|
Milk | −0.0396 | 0.4521 | −0.0057 | 0.5644 |
Plain yoghurt | 0.0135 | 0.2354 | 0.1825 | 0.6403 |
Cheese | 0.0866 | 0.1661 | 0.2240 | 0.4866 |
Sweetened milk products | 0.0270 | 0.2084 | 0.2568 | 0.5416 |
Eggs | 0.1546 | 0.0543 | 0.0513 | 0.7223 |
Legumes | 0.2086 | 0.0234 | −0.1298 | 0.7339 |
Red meat | 0.1501 | 0.1027 | 0.0786 | 0.5441 |
Poultry | 0.2746 | −0.0281 | −0.1508 | 0.6313 |
Fish | 0.1671 | 0.0377 | 0.0622 | 0.6882 |
Organ/offal meat | 0.2803 | −0.1416 | −0.0458 | 0.5721 |
Processed meat | 0.1694 | 0.1278 | −0.0168 | 0.423 |
Candy and sugar | 0.0829 | −0.0031 | 0.2327 | 0.6087 |
Sugar Sweetened Beverages | −0.1375 | −0.0200 | 0.5377 | 0.4992 |
Bread | 0.2091 | −0.0757 | −0.0324 | 0.7691 |
Alcoholic beverages | −0.0619 | −0.1132 | 0.2724 | 0.7916 |
Other drinks * | −0.0705 | 0.0987 | −0.0083 | 0.9549 |
Maize Meal porridge | −0.0604 | −0.2823 | 0.1336 | 0.7422 |
Unprocessed grains † | 0.2194 | 0.1367 | −0.0338 | 0.4955 |
Fast foods ‡ | 0.1124 | −0.0981 | 0.3409 | 0.5053 |
Raw Fruits | 0.2054 | 0.1026 | −0.0701 | 0.6305 |
Fruit juice | −0.0474 | 0.2832 | 0.0826 | 0.7903 |
Fruit spreads/preserved | 0.1457 | −0.0368 | 0.2735 | 0.4852 |
Breakfast Cereals (unsweetened) | 0.0784 | 0.2860 | 0.0154 | 0.6041 |
Sorghum porridge (oats and maltabella) | −0.0278 | 0.4243 | −0.0744 | 0.6313 |
Peanuts and peanut butter | 0.1627 | 0.1291 | 0.0371 | 0.6192 |
Rusks/cookies/sweetened breakfast cereals | 0.0782 | 0.1153 | 0.1971 | 0.658 |
Crackers/potato crisps | 0.1447 | −0.0274 | 0.2465 | 0.6389 |
Mono- and polyunsaturated fats (margarine and vegetable oils) | 0.3377 | −0.0269 | −0.0314 | 0.3313 |
Saturated fats § | 0.0886 | −0.2648 | 0.1269 | 0.8448 |
Soup powders | 0.3056 | −0.1530 | −0.0021 | 0.4613 |
Salad dressings and sauces | 0.1783 | −0.0014 | 0.1749 | 0.4604 |
Starchy vegetables | 0.3203 | −0.0133 | −0.0640 | 0.3526 |
Non-starchy vegetables | 0.3382 | 0.0368 | −0.1177 | 0.2712 |
Percentage proportion | 23.7% | 9.2% | 7.4% |
Traditional Dietary Pattern | Cereal-Dairy Breakfast Pattern | Processed Food Pattern | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
OR | 95%CI | p-Trend § | OR | 95%CI | p-Trend § | OR | 95%CI | p-Trend § | ||
Overall (cases n = 396; controls n = 396) | Model 1 | 0.76 | (0.54–0.94) | <0.00 | 0.74 | (0.62–0.91) | 0.004 | 0.93 | (0.76–1.14) | 0.494 |
Model 2 | 0.71 | (0.57–0.90) | 0.003 | 0.75 | (0.62–0.92) | 0.006 | 0.97 | (0.78–1.20) | 0.785 | |
Model 3 | 0.72 | (0.57–0.89) | 0.004 | 0.73 | (0.59–0.90) | 0.004 | 0.99 | (0.79–1.25) | 0.964 | |
Premenopausal *,† (n = 267) (cases n = 133; controls n = 134) | Model 1 | 0.78 | (0.54–1.14) | 0.206 | 0.78 | (0.56–1.09) | 0.149 | 0.85 | (0.59–1.21) | 0.375 |
Model 2 | 0.79 | (0.54–1.16) | 0.242 | 0.75 | (0.53–1.06) | 0.105 | 0.84 | (0.59–1.21) | 0.364 | |
Model 3 | 0.82 | (055–1.21) | 0.318 | 0.72 | (0.51–1.03) | 0.072 | 0.98 | (0.67–1.46) | 0.947 | |
Postmenopausal *,† (n = 505) (cases n = 248; controls n = 257) | Model 1 | 0.71 | (0.55–0.92) | 0.008 | 0.76 | (0.59–0.97) | 0.027 | 1.01 | (0.78–1.29) | 0.937 |
Model 2 | 0.74 | (0.58–0.96) | 0.023 | 0.79 | (0.62–0.98) | 0.049 | 1.01 | (0.78–1.29) | 0.932 | |
Model 3 | 0.73 | (0.56–0.93) | 0.015 | 0.78 | (0.59–0.98) | 0.033 | 0.97 | (0.74–1.28) | 0.839 | |
ER+ (n = 298) | Model 1 | 0.76 | (0.47–1.24) | 0.284 | 0.96 | (0.62–1.49) | 0.887 | 0.77 | (0.48–1.23) | 0.277 |
Model 2 | 0.84 | (0.48–1.49) | 0.565 | 0.82 | (0.51–1.39) | 0.469 | 0.84 | (0.49–1.43) | 0.527 | |
Model 3 | 0.86 | (0.45–1.66) | 0.672 | 0.83 | (0.50–1.37) | 0.470 | 0.96 | (0.54–1.72) | 0.915 | |
PR+ (n = 263) | Model 1 | 0.54 | (0.34–0.85) | 0.008 | 0.72 | (0.51–1.04) | 0.084 | 0.78 | 0.54–1.13) | 0.192 |
Model 2 | 0.51 | (0.29–0.89) | 0.018 | 0.71 | (0.47–1.06) | 0.098 | 0.81 | (0.53–1.23) | 0.340 | |
Model 3 | 0.45 | (0.24–0.86) | 0.016 | 0.67 | (0.43–1.03) | 0.069 | 0.97 | (0.55–1.70) | 0.922 | |
BMI <30 kg/m2 * (n = 326) (cases = 165; controls = 161) | Model 1 | 0.59 | (0.45–0.77) | <0.001 | 0.56 | (0.43–0.74) | <0.001 | 0.72 | (0.54–1.11) | 0.387 |
Model 2 | 0.56 | (0.42–0.75) | <0.001 | 0.54 | (0.41–0.72) | <0.001 | 0.69 | (0.52–1.09) | 0.121 | |
Model 3 | 0.41 | (0.21–0.77) | 0.006 | 0.33 | (0.16–0.64) | 0.001 | 0.98 | (0.69–1.39) | 0.932 | |
BMI ≥30 kg/m2 * (n = 466) (cases = 231; controls = 235) | Model 1 | 0.73 | (0.55–0.96) | 0.026 | 0.87 | (0.67–1.12) | 0.286 | 1.02) | (0.79–1.33) | 0.879 |
Model 2 | 0.74 | (0.56–0.99) | 0.043 | 0.91 | (0.71–1.18) | 0.503 | 1.00 | (0.76–1.31) | 0.983 | |
Model 3 | 0.75 | (0.57–1.01) | 0.052 | 0.90 | (0.69–1.17) | 0.449 | 1.10 | (0.78–1.41) | 0.741 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacobs, I.; Taljaard-Krugell, C.; Wicks, M.; Cubasch, H.; Joffe, M.; Laubscher, R.; Romieu, I.; Biessy, C.; Rinaldi, S.; Huybrechts, I. Dietary Patterns and Breast Cancer Risk in Black Urban South African Women: The SABC Study. Nutrients 2021, 13, 4106. https://doi.org/10.3390/nu13114106
Jacobs I, Taljaard-Krugell C, Wicks M, Cubasch H, Joffe M, Laubscher R, Romieu I, Biessy C, Rinaldi S, Huybrechts I. Dietary Patterns and Breast Cancer Risk in Black Urban South African Women: The SABC Study. Nutrients. 2021; 13(11):4106. https://doi.org/10.3390/nu13114106
Chicago/Turabian StyleJacobs, Inarie, Christine Taljaard-Krugell, Mariaan Wicks, Herbert Cubasch, Maureen Joffe, Ria Laubscher, Isabelle Romieu, Carine Biessy, Sabina Rinaldi, and Inge Huybrechts. 2021. "Dietary Patterns and Breast Cancer Risk in Black Urban South African Women: The SABC Study" Nutrients 13, no. 11: 4106. https://doi.org/10.3390/nu13114106
APA StyleJacobs, I., Taljaard-Krugell, C., Wicks, M., Cubasch, H., Joffe, M., Laubscher, R., Romieu, I., Biessy, C., Rinaldi, S., & Huybrechts, I. (2021). Dietary Patterns and Breast Cancer Risk in Black Urban South African Women: The SABC Study. Nutrients, 13(11), 4106. https://doi.org/10.3390/nu13114106