Adherence to the Mediterranean Diet Improves Fatty Acids Profile in Pediatric Patients with Idiopathic Nephrotic Syndrome
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Definition of INS
2.3. Adherence to Mediterranean Diet
2.4. Fatty Acid Analysis
2.5. Biochemical Analyses
2.6. Statistical Analysis
2.7. Ethical Approval
3. Results
3.1. Patients
3.2. Adherence to Mediterranean Diet
3.3. Fatty Acids Profile
3.4. Correlations of Biochemical Parameters with KidMed Score and Fatty Acids
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colucci, M.; Carsetti, R.; Rosado, M.M.; Cascioli, S.; Bruschi, M.; Candiano, G.; Corpetti, G.; Giardino, L.; Serafinelli, J.; Giannone, C.; et al. Atypical IgM on T cells predict relapse and steroid dependence in idiopathic nephrotic syndrome. Kidney Int. 2019, 96, 971–982. [Google Scholar] [CrossRef] [PubMed]
- Turolo, S.; Edefonti, A.C.; Morello, W.; Syren, M.L.; De Cosmi, V.; Ghio, L.; Tamburello, C.; Demarco, E.A.; Berrettini, A.; Manzoni, G.; et al. Persistent Abnormalities of Fatty Acids Profile in Children With Idiopathic Nephrotic Syndrome in Stable Remission. Front. Pediatr. 2021, 27, 633470. [Google Scholar] [CrossRef] [PubMed]
- Dasilva, G.; Medina, I. Lipidomic methodologies for biomarkers of chronic inflammation in nutritional research: ω-3 and ω-6 lipid mediators. Free Radic. Biol. Med. 2019, 144, 90–109. [Google Scholar] [CrossRef] [PubMed]
- Turolo, S.; Edefonti, A.; Mazzocchi, A.; Syren, M.L.; Morello, W.; Agostoni, C.; Montini, G. Role of Arachidonic Acid and Its Metabolites in the Biological and Clinical Manifestations of Idiopathic Nephrotic Syndrome. Int. J. Mol. Sci. 2021, 22, 5452. [Google Scholar] [CrossRef] [PubMed]
- Detopoulou, P.; Fragopoulou, E.; Alepoudea, E.; Nomikos, T.; Kalogeropoulos, N.S. Antonopoulou Associations between erythrocyte fatty acids and Mediterranean diet in Greek volunteers. Hell. J. Atheroscler. 2018, 9, 17–31. [Google Scholar]
- Serra-Majem, L.; Ribas, L.; García, A.; Pérez-Rodrigo, C.; Aranceta, J. Nutrient adequacy and Mediterranean Diet in Spanish school children and adolescents. Eur. J. Clin. Nutr. 2003, 57, S35–S39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Archero, F.; Ricotti, R.; Solito, A.; Carrera, D.; Civello, F.; Di Bella, R.; Bellone, S.; Prodam, F. Adherence to the Mediterranean Diet among School Children and Adolescents Living in Northern Italy and Unhealthy Food Behaviors Associated to Overweight. Nutrients 2018, 10, 1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cattran, D.C.; Feehally, J.; Cook, H.T.; Liu, Z.H.; Fernando, C.; Fervenza, F.C.; Mezzano, S.A.; Floege, J.; Nachman, P.H.; Gipson, D.S.; et al. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerulonephritis Work Group.KDIGO clinical practice guideline for glomerulonephritis. Kidney Int. Suppl. 2012, 2, 139–274. [Google Scholar] [CrossRef] [Green Version]
- Codini, M.; Tringaniello, C.; Cossignani, L.; Boccuto, A.; Mirarchi, A.; Cerquiglini, L.; Troiani, S.; Verducci, G.; Patria, F.F.; Conte, C.; et al. Relationship between Fatty Acids Composition/Antioxidant Potential of Breast Milk and Maternal Diet: Comparison with Infant Formulas. Molecules 2020, 25, 2910. [Google Scholar] [CrossRef] [PubMed]
- Djuricic, I.; Calder, P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S.; Mozaffarian, D.; Rimm, E.; Kris-Etherton, P.; Rudel, L.L.; Appel, L.J.; Engler, M.M.; Engler, M.B.; Sacks, F. Omega-6 fatty acids and risk for cardiovascular disease: A science advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention. Circulation 2009, 119, 902–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, K.; Browne, R.W.; Blair, R.H.; Bonner, M.R.; Tian, M.; Niu, Z.; Deng, F.; Farhat, Z.; Mu, L. Changes in arachidonic acid (AA)- and linoleic acid (LA)-derived hydroxy metabolites and their interplay with inflammatory biomarkers in response to drastic changes in air pollution exposure. Environ. Res. 2021, 200, 111401. [Google Scholar] [CrossRef] [PubMed]
- Selmin, O.I.; Papoutsis, A.J.; Hazan, S.; Smith, C.; Greenfield, N.; Donovan, M.G.; Wren, S.N.; Doetschman, T.C.; Snider, J.M.; Snider, A.J.; et al. n-6 High Fat Diet Induces Gut Microbiome Dysbiosis and Colonic Inflammation. Int. J. Mol. Sci. 2021, 22, 6919. [Google Scholar] [CrossRef] [PubMed]
- Liput, K.P.; Lepczyński, A.; Ogłuszka, M.; Nawrocka, A.; Poławska, E.; Grzesiak, A.; Ślaska, B.; Pareek, C.S.; Czarnik, U. 8 and Mariusz Pierzchała. Effects of Dietary n-3 and n-6 Polyunsaturated Fatty Acids in Inflammation and Cancerogenesis. Int. J. Mol. Sci. 2021, 22, 6965. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.F.; Qin, H.D.; Guo, L.L.; Luo, Z.G.; Chang, J.; Qin, C.C. Hypercholesterolemia increases the production of leukotriene B4 in neutrophils by enhancing the nuclear localization of 5-lipoxygenase. Cell Physiol. Biochem. 2014, 34, 1723–1732. [Google Scholar] [CrossRef] [PubMed]
- Macri, E.V.; Lifshitz, F.; Alsina, E.; Juiz, N.; Zago, V.; Lezón, C.; Rodriguez, P.N.; Schreier, L.; Boyer, P.M.; Friedman, S.M. Monounsaturated fatty acids-rich diets in hypercholesterolemic-growing rats. Int. J. Food Sci. Nutr. 2015, 66, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Arapostathi, C.; Tzanetakou, I.P.; Kokkinos, A.D.; Tentolouris, N.K.; Vlachos, I.S.; Donta, I.A.; Perrea, K.N.; Perrea, D.N.; Katsilambros, N.L. A diet rich in monounsaturated fatty acids improves the lipid profile of mice previously on a diet rich in saturated fatty acids. Angiology 2011, 62, 636–640. [Google Scholar] [CrossRef] [PubMed]
- Grao-Cruces, E.; Varela, L.M.; Martin, M.E.; Bermudez, B.; Montserrat-de la Paz, S. High-Density Lipoproteins and Mediterranean Diet: A Systematic Review. Nutrients 2021, 13, 955. [Google Scholar] [CrossRef] [PubMed]
Proteinuria | Remission | |
---|---|---|
mean ± s.d. | mean ± s.d. | |
uPr/uCr * (mg/mg) | 2.81 ± 2.13 * | 0.24 ± 0.29 |
Triglycerides (mg/dl) | 117.11 ± 61.72 | 90.09 ± 50.51 |
Total cholesterol (mg/dl) * | 204.77 ± 52.75 * | 158.16 ± 41.16 |
HDL cholesterol (mg/dl) | 69.83 ± 23.26 | 62.10 ± 16.80 |
Total protein (g/dl) * | 5.66 ± 0.71 * | 6.72 ± 0.45 |
Total albumin (g/dl) * | 3.33 ± 0.82 * | 4.51 ± 0.31 |
Yes | No | Score | |
---|---|---|---|
(1) Takes a fruit or fruit juice every day? | 30 | 18 | Yes + 1/no 0 |
(2) Has a second fruit every day? | 20 | 28 | Yes + 1/no 0 |
(3) Has fresh or cooked vegetables regularly once a day? | 34 | 14 | Yes + 1/no 0 |
(4) Has fresh or cooked vegetables more than once a day? | 21 | 27 | Yes + 1/no 0 |
(5) Consumes fish regularly (at least 2–3 times per week)? | 21 | 27 | Yes + 1/no 0 |
(6) Goes more than once a week to a fast-food (hamburger) restaurant? | 5 | 43 | Yes − 1/no 0 |
(7) Likes pulses and eats them more than once a week? | 13 | 35 | Yes + 1/no 0 |
(8) Consumes pasta or rice almost every day (5 or more times per week)? | 38 | 10 | Yes + 1/no 0 |
(9) Has cereals or grains (bread, etc.) for breakfast? | 31 | 17 | Yes + 1/no 0 |
(10) Consumes nuts regularly (at least 2–3 times per week)? | 12 | 36 | Yes + 1/no 0 |
(11) Uses olive oil at home? | 44 | 4 | Yes + 1/no 0 |
(12) Skips breakfast? | 12 | 36 | Yes − 1/no 0 |
(13) Has a dairy product for breakfast (yoghurt, milk, etc.)? | 35 | 13 | Yes + 1/no 0 |
(14) Has commercially baked goods or pastries for breakfast? | 29 | 19 | Yes − 1/no 0 |
(15) Takes two yoghurts and/or some cheese (40 g) daily? | 6 | 42 | Yes + 1/no 0 |
(16) Takes sweets and candy several times every day? | 9 | 39 | Yes − 1/no 0 |
SD | SR | Remission | Proteinuria | SD in Remission | SD with Proteinuria | SR in Remission | SR with Proteinuria | |
---|---|---|---|---|---|---|---|---|
KIDMED score | 5.00 ± 2.48 | 5.37 ± 1.68 | 5.31 ± 2.36 | 4.56 ± 2.35 | 5.40 ± 2.40 | 3.60 ± 3.60 | 5.50 ± 1.80 | 5.25 ± 1.58 |
Low Adherence (Kidmed Score 2.56 ± 1.21) n = 16 | High Adherence (Kidmed Score 7.67 ± 0.72) n = 15 | ||
---|---|---|---|
mean ± s.d. | mean ± s.d. | p-value | |
16.0 (Palmitic acid) | 23.01 ± 1.57 | 22.99 ± 1.90 | 0.97 |
16:1 (Palmitoleic acid) | 0.79 ± 0.34 | 0.85 ± 0.37 | 0.65 |
18:0 (Stearic acid) | 11.34 ± 1.80 | 12.10 ± 2.58 | 0.35 |
18:1n9 (Oleic acid) | 17.21 ± 2.73 | 17.53 ± 2.17 | 0.72 |
18:1n7 (Cis-vaccenic acid) | 1.21 ± 0.22 | 1.29 ± 0.29 | 0.35 |
18:2n6 (Linoleic acid) | 25.15 ± 5.34* | 21.54 ± 4.46 | 0.05 |
18:3n3 (Linolenic acid) | 0.22 ± 0.15 | 0.20 ± 0.09 | 0.67 |
20:3n9 (Mead acid) | 0.13 ± 0.13 | 0.18 ± 0.28 | 0.54 |
20:3n6 (DGLA) | 1.65 ± 0.39 | 1.53 ± 0.28 | 0.32 |
20:4n6 (Arachidonic acid) | 11.33 ± 2.01 | 11.63 ± 1.80 | 0.66 |
20:5n3 (EPA) | 0.19 ± 0.17 | 0.21 ± 0.16 | 0.75 |
22:0 (Behenic acid) | 0.80 ± 0.53* | 1.29 ± 0.51 | 0.01 |
22:5n3 (DPA) | 0.66 ± 0.23 | 0.77 ± 0.17 | 0.12 |
24:0 (Lignoceric acid) | 1.80 ± 0.67* | 2.39 ± 0.75 | 0.02 |
22:6n3 (DHA) | 2.39 ± 0.77 | 2.84 ± 0.65 | 0.08 |
24:1 (nervonic acid) | 2.01 ± 0.50 | 2.47 ± 0.87 | 0.07 |
SFA | 36.96 ± 2.84 | 38.77 ± 4.74 | 0.20 |
MUFA | 21.22 ± 2.98 | 22.15 ± 1.95 | 0.31 |
PUFA | 41.72 ± 3.80 * | 38.90 ± 3.55 | 0.04 |
N3 | 3.45 ± 0.91 | 4.03 ± 0.74 | 0.06 |
N6 * | 38.14 ± 4.18 | 34.70 ± 3.77 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefano, T.; Alberto, E.; William, M.; Giulia, B.; Louise, S.M.; Chiara, T.; Carlo, A.; Giovanni, M. Adherence to the Mediterranean Diet Improves Fatty Acids Profile in Pediatric Patients with Idiopathic Nephrotic Syndrome. Nutrients 2021, 13, 4110. https://doi.org/10.3390/nu13114110
Stefano T, Alberto E, William M, Giulia B, Louise SM, Chiara T, Carlo A, Giovanni M. Adherence to the Mediterranean Diet Improves Fatty Acids Profile in Pediatric Patients with Idiopathic Nephrotic Syndrome. Nutrients. 2021; 13(11):4110. https://doi.org/10.3390/nu13114110
Chicago/Turabian StyleStefano, Turolo, Edefonti Alberto, Morello William, Bolzan Giulia, Syren M. Louise, Tamburello Chiara, Agostoni Carlo, and Montini Giovanni. 2021. "Adherence to the Mediterranean Diet Improves Fatty Acids Profile in Pediatric Patients with Idiopathic Nephrotic Syndrome" Nutrients 13, no. 11: 4110. https://doi.org/10.3390/nu13114110
APA StyleStefano, T., Alberto, E., William, M., Giulia, B., Louise, S. M., Chiara, T., Carlo, A., & Giovanni, M. (2021). Adherence to the Mediterranean Diet Improves Fatty Acids Profile in Pediatric Patients with Idiopathic Nephrotic Syndrome. Nutrients, 13(11), 4110. https://doi.org/10.3390/nu13114110