Development of an Unified Food Composition Database for the European Project “Stance4Health”
Abstract
:1. Introduction
2. Materials and Methods
2.1. Working Group Organization and Training
2.2. Data Collection, Harmonization and Standardization Methods
2.3. Mapping and Unification Process
2.4. Recipe Calculation and Additional Factors
2.5. Information Management and Data Quality
3. Results
4. Discussion
4.1. Standardization and Unification
4.2. Data Quality and Recipe Calculation
4.3. Strengths and Limitations of the S4H FCDB
4.4. S4H FCDB’s Future Perspective
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pérez Grana, R. Exactitud de las tablas de composición de alimentos en la determinación de nutrientes. Sanid. Mil. 2013, 69, 102–111. [Google Scholar] [CrossRef]
- Westenbrink, S.; Kadvan, A.; Roe, M.; Koroušić Seljak, B.; Mantur-Vierendeel, A.; Finglas, P. 12th IFDC 2017 special issue—Evaluation of harmonized eurofir documentation for macronutrient values in 26 European food composition databases. J. Food Compos. Anal. 2019, 80, 40–50. [Google Scholar] [CrossRef]
- Greenfield, H.; Southgate, D.A. Food Composition Data: Production, Management, and Use; Food and Agriculture Organization: Roma, Italy, 2003; ISBN 92-5-104949-1. [Google Scholar]
- Charrondiere, U.; Stadlmayr, B.; Haytowitz, D.; Oseredczuk, M.; Ireland, J.; Wolmarans, P.; Rittenschober, D.; Selley, B.; Puwastien, P.; Reykdal, Ó. FAO/INFOODS Guidelines for Checking Food Composition Data Prior to the Publication of a User Table/Database Version 1.0; FAO: Roma, Italy, 2012. [Google Scholar]
- Wafa, S.; Colaiezzi, B.; Some, J.; Bell, W.; Prata, C.; Perlick, H.; Rogers, B.; Coates, J. INDDEX24: An innovative global dietary assessment platform to scale up the availability, access, and use of dietary data. Curr. Dev. Nutr. 2020, 4, 1180. [Google Scholar] [CrossRef]
- Ene-Obong, H.; Schönfeldt, H.C.; Campaore, E.; Kimani, A.; Mwaisaka, R.; Vincent, A.; El Ati, J.; Kouebou, P.; Presser, K.; Finglas, P.; et al. Importance and use of reliable food composition data generation by nutrition/dietetic professionals towards solving africa’s nutrition problem: Constraints and the role of FAO/INFOODS/AFROFOODS and other stakeholders in future initiatives. Proc. Nutr. Soc. 2019, 78, 496–505. [Google Scholar] [CrossRef]
- Lupiañez-Barbero, A.; González Blanco, C.; de Leiva Hidalgo, A. Tablas y bases de datos de composición de alimentos españolas: Necesidad de un referente para los profesionales de la salud. Endocrinol. Diabetes Nutr. 2018, 65, 361–373. [Google Scholar] [CrossRef]
- Emmett, P.M.; Jones, L.R.; Northstone, K.; Pounis, G.; Taylor, C.M. Collection and management of dietary data. In Analysis in Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2019; pp. 43–73. ISBN 978-0-12-814556-2. [Google Scholar]
- Ispirova, G.; Eftimov, T.; Koroušić Seljak, B.; Korošec, P. Mapping food composition data from various data sources to a domain-specific ontology. In Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, Funchal, Portugal, 1–3 November 2017; SCITEPRESS—Science and Technology Publications: Funchal, Portugal, 2017; pp. 203–210. [Google Scholar]
- Marconi, S.; Durazzo, A.; Camilli, E.; Lisciani, S.; Gabrielli, P.; Aguzzi, A.; Gambelli, L.; Lucarini, M.; Marletta, L. Food composition databases: Considerations about complex food matrices. Foods 2018, 7, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz, J.; Astudillo, G.; Castro, M.; Castro, C.; Astudillo, S.; Donoso, S. 12th IFDC 2017 special issue—Seasonal variations in nutrient composition of plant-based foods produced at the southern highlands of ecuador. J. Food Compos. Anal. 2019, 83, 103284. [Google Scholar] [CrossRef]
- Smith, M.R.; Micha, R.; Golden, C.D.; Mozaffarian, D.; Myers, S.S. Global expanded nutrient supply (genus) model: A new method for estimating the global dietary supply of nutrients. PLoS ONE 2016, 11, e0146976. [Google Scholar] [CrossRef] [PubMed]
- Drabo, A. Climate change mitigation and agricultural development models: Primary commodity exports or local consumption production? Ecol. Econ. 2017, 137, 110–125. [Google Scholar] [CrossRef]
- Charrondière, U.R.; Stadlmayr, B.; Rittenschober, D.; Mouille, B.; Nilsson, E.; Medhammar, E.; Olango, T.; Eisenwagen, S.; Persijn, D.; Ebanks, K. FAO/INFOODS food composition database for biodiversity. Food Chem. 2013, 140, 408–412. [Google Scholar] [CrossRef] [PubMed]
- Kapsokefalou, M.; Roe, M.; Turrini, A.; Costa, H.S.; Martinez-Victoria, E.; Marletta, L.; Berry, R.; Finglas, P. Food composition at present: New challenges. Nutrients 2019, 11, 1714. [Google Scholar] [CrossRef] [Green Version]
- Zeb, A.; Soininen, J.-P.; Sozer, N. Data harmonisation as a key to enable digitalisation of the food sector: A review. Food Bioprod. Process. 2021, 127, 360–370. [Google Scholar] [CrossRef]
- Lauria, F.; Russo, M.D.; Formisano, A.; De Henauw, S.; Hebestreit, A.; Hunsberger, M.; Kroghe, V.; Intemann, T.; Lissnerd, L.; Molnar, D.; et al. Ultra-processed foods consumption and diet quality of European children, adolescents and adults: Results from the I.Family study. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 3031–3043. [Google Scholar] [CrossRef] [PubMed]
- Ocké, M.C.; Westenbrink, S.; van Rossum, C.T.M.; Temme, E.H.M.; van der Vossen-Wijmenga, W.; Verkaik-Kloosterman, J. The essential role of food composition databases for public health nutrition—Experiences from the Netherlands. J. Food Compos. Anal. 2021, 101, 103967. [Google Scholar] [CrossRef]
- Egan, M.B.; Fragodt, A.; Raats, M.M.; Hodgkins, C.; Lumbers, M. The importance of harmonizing food composition data across Europe. Eur. J. Clin. Nutr. 2007, 61, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Traka, M.H.; Plumb, J.; Berry, R.; Pinchen, H.; Finglas, P.M. Maintaining and updating food composition datasets for multiple users and novel technologies: Current challenges from a UK perspective. Nutr. Bull. 2020, 45, 230–240. [Google Scholar] [CrossRef]
- Delgado-Andrade, C.; Rufián-Henares, J.A.; Morales, F.J. Lysine availability is diminished in commercial fibre-enriched breakfast cereals. Food Chem. 2007, 100, 725–731. [Google Scholar] [CrossRef]
- Grande, F.; Vincent, A. The importance of food composition data for estimating micronutrient intake: What do we know now and into the future? In Global Landscape of Nutrition Challenges in Infants and Children; Michaelsen, K.F., Neufeld, L.M., Prentice, A.M., Eds.; Nestlé Nutrition Institute Workshop Series; S. Karger AG: Basel, Switzerland, 2020; Volume 93, pp. 39–50. ISBN 978-3-318-06648-7. [Google Scholar]
- Micha, R.; Coates, J.; Leclercq, C.; Charrondiere, U.R.; Mozaffarian, D. Global dietary surveillance: Data gaps and challenges. Food Nutr. Bull. 2018, 39, 175–205. [Google Scholar] [CrossRef]
- Barabási, A.-L.; Menichetti, G.; Loscalzo, J. The unmapped chemical complexity of our diet. Nat. Food 2020, 1, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Westenbrink, S.; Presser, K.; Roe, M.; Ireland, J.; Finglas, P. Documentation of aggregated/compiled values in food composition databases; EuroFIR default to improve harmonization. J. Food Compos. Anal. 2021, 101, 103968. [Google Scholar] [CrossRef]
- Roe, M.; Pinchen, H.; Church, S.; Finglas, P. McC ance and widdowson’s the composition of foods seventh summary edition and updated composition of foods integrated dataset. Nutr. Bull. 2015, 40, 36–39. [Google Scholar] [CrossRef]
- Westenbrink, S.; Jansen-van der Vliet, M.; van Rossum, C. Updated folate data in the dutch food composition database and implications for intake estimates. Food Nutr. Res. 2012, 56, 5449. [Google Scholar] [CrossRef]
- Nielsen, C.W. Fødevaredatabanken August 2019; DTU: Lyngby, Denmark, 2019. [Google Scholar]
- Delgado, A.; Issaoui, M.; Vieira, M.C.; Saraiva de Carvalho, I.; Fardet, A. Food composition databases: Does it matter to human health? Nutrients 2021, 13, 2816. [Google Scholar] [CrossRef] [PubMed]
- Charrondière, U.; Rittenschober, D.; Grande, F.; Nowak, V.; Stadlmayr, B. FAO/INFOODS Analytical Food Composition Database Version 2.0; FAO: Roma, Italy, 2017. [Google Scholar]
- Montville, J.B.; Ahuja, J.K.; Martin, C.L.; Heendeniya, K.Y.; Omolewa-Tomobi, G.; Steinfeldt, L.C.; Anand, J.; Adler, M.E.; LaComb, R.P.; Moshfegh, A. USDA food and nutrient database for dietary studies (FNDDS), 5.0. Procedia Food Sci. 2013, 2, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Murphy, S.P.; Charrondiere, U.R.; Burlingame, B. Thirty years of progress in harmonizing and compiling food data as a result of the establishment of INFOODS. Food Chem. 2016, 193, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Charrondiere, U.R.; Rittenschober, D.; Nowak, V.; Stadlmayr, B.; Wijesinha-Bettoni, R.; Haytowitz, D. Improving food composition data quality: Three new FAO/INFOODS guidelines on conversions, data evaluation and food matching. Food Chem. 2016, 193, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Apekey, T.A.; Copeman, J.; Kime, N.H.; Tashani, O.A.; Kittaneh, M.; Walsh, D.; Maynard, M.J. Nutrient composition of popularly consumed african and caribbean foods in the UK. Foods 2019, 8, 500. [Google Scholar] [CrossRef] [Green Version]
- Hulshof, P.; Doets, E.; Seyha, S.; Bunthang, T.; Vonglokham, M.; Kounnavong, S.; Famida, U.; Muslimatun, S.; Santika, O.; Prihatini, S.; et al. Food composition tables in southeast asia: The contribution of the SMILING project. Matern. Child Health J. 2019, 23, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Castellano-Escuder, P.; González-Domínguez, R.; Wishart, D.S.; Andrés-Lacueva, C.; Sánchez-Pla, A. FOBI: An ontology to represent food intake data and associate it with metabolomic data. Database 2020, 2020, baaa033. [Google Scholar] [CrossRef]
- Durazzo, A.; Camilli, E.; D’Addezio, L.; Sette, S.; Marconi, S.; Piccinelli, R.; Le Donne, C.; Turrini, A.; Marletta, L. Italian composite dishes: Description and classification by LanguaLTM and FoodEx2. Eur. Food Res. Technol. 2020, 246, 287–295. [Google Scholar] [CrossRef]
- Katidi, A.; Vlassopoulos, A.; Kapsokefalou, M. Development of the hellenic food thesaurus (HelTH), a branded food composition database: Aims, design and preliminary findings. Food Chem. 2021, 347, 129010. [Google Scholar] [CrossRef] [PubMed]
- Møller, A.; Ireland, J. LanguaLTM 2017—The LanguaLTM thesaurus technical report. Dan. Food Inform. 2018. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). The Food Classification and Description System FoodEx 2 (Revision 2); EFSA: Palma, Italy, 2015; Volume 12. [Google Scholar] [CrossRef] [Green Version]
- Eftimov, T.; Korošec, P.; Koroušić Seljak, B. StandFood: Standardization of foods using a semi-automatic system for classifying and describing foods according to FoodEx2. Nutrients 2017, 9, 542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Food Safety Authority (EFSA); Ioannidou, S. EFSA FoodEx2 Interpreting and Checking Tool User Guide; EFSA: Palma, Italy, 2019; Volume 16. [Google Scholar] [CrossRef]
- Charrondière, U.R.; Rittenschober, D.; Nowak, V.; Wijesinha-Bettoni, R.; Stadlmayr, B.; Haytowitz, D.; Persijn, D. FAO/INFOODS Guidelines for Converting Units, Denominators and Expressions, Version 1.0; FAO: Roma, Italy, 2012. [Google Scholar]
- Charrondiere, U.R.; Burlingame, B. Report on the FAO/INFOODS compilation tool: A simple system to manage food composition data. J. Food Compos. Anal. 2011, 24, 711–715. [Google Scholar] [CrossRef]
- Schlotke, F.; Becker, W.; Ireland, J.; Møller, A.; Ovaskainen, M.-L.; Monspart, J.; Unwin, I. EUROFOODS Recommendations for Food Composition Database Management and Data Interchange. J. Food Compos. Anal. 2000, 13, 709–744. [Google Scholar] [CrossRef] [Green Version]
- Merchant, A.T.; Dehghan, M. Food Composition Database Development for between Country Comparisons. Nutr. J. 2006, 5, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finglas, P.M.; Berry, R.; Astley, S. Assessing and Improving the Quality of Food Composition Databases for Nutrition and Health Applications in Europe: The Contribution of EuroFIR. Adv. Nutr. 2014, 5, 608S–614S. [Google Scholar] [CrossRef] [Green Version]
- Westenbrink, S.; Roe, M.; Oseredczuk, M.; Castanheira, I.; Finglas, P. EuroFIR Quality Approach for Managing Food Composition Data; Where Are We in 2014? Food Chem. 2016, 193, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Finglas, P.; Roe, M.; Pinchen, H.; Astley, S. The Contribution of Food Composition Resources to Nutrition Science Methodology. Nutr. Bull. 2017, 42, 198–206. [Google Scholar] [CrossRef]
- Westenbrink, S.; Oseredczuk, M.; Castanheira, I.; Roe, M. Food Composition Databases: The EuroFIR Approach to Develop Tools to Assure the Quality of the Data Compilation Process. Food Chem. 2009, 113, 759–767. [Google Scholar] [CrossRef]
- Slimani, N.; Deharveng, G.; Unwin, I.; Southgate, D.A.T.; Vignat, J.; Skeie, G.; Salvini, S.; Parpinel, M.; Møller, A.; Ireland, J.; et al. The EPIC Nutrient Database Project (ENDB): A First Attempt to Standardize Nutrient Databases across the 10 European Countries Participating in the EPIC Study. Eur. J. Clin. Nutr. 2007, 61, 1037–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longvah, T.; Anantan, I.; Bhaskarachary, K.; Venkaiah, K.; Longvah, T. Indian Food Composition Tables; National Institute of Nutrition, Indian Council of Medical Research: Hyderabad, Indian, 2017; ISBN 93-5267-677-7. [Google Scholar]
- Park, S.-H.; Kim, S.-N.; Lee, S.H.; Choe, J.-S.; Choi, Y. Development of 9th Revision Korean Food Composition Table and Its Major Changes. Korean J. Community Nutr. 2018, 23, 352–365. [Google Scholar] [CrossRef] [Green Version]
- Coelho, K.C.; Giuntini, B.G.; Grande, F.; Dias, J.S.; Purgatto, E.; Franco, B.D.G.M.; Lajolo, F.M.; Menezes, E.W. Brazilian Food Composition Table (TBCA): Development and functionalities of the online version. J. Food Comp. Anal. 2019, 84, 103287. [Google Scholar] [CrossRef]
- Naveja, J.J.; Rico-Hidalgo, M.P.; Medina-Franco, J.L. Analysis of a Large Food Chemical Database: Chemical Space, Diversity, and Complexity. F1000Research 2018, 7, 993. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Burillo, S.; Hinojosa-Nogueira, D.; Pastoriza, S.; Rufián-Henares, J.A. Nutrición personalizada inteligente. Alimentaria 2019, 500, 25–29. [Google Scholar]
- Charrondiere, U.R.; Rittenschober, D.; Nowak, V.; Nicodemi, C.; Bruggeling, P.; Petracchi, C. FAO/INFOODS e-Learning Course on Food Composition Data. Food Chem. 2016, 193, 6–11. [Google Scholar] [CrossRef]
- Castanheira, I.; André, C.; Oseredczuk, M.; Ireland, J.; Owen, L.; Robb, P.; Earnshaw, A.; Calhau, M.A. Improving Data Quality in Food Composition Databanks: A EuroFIR Contribution. Accredit. Qual. Assur. 2007, 12, 117–125. [Google Scholar] [CrossRef]
- Dahdouh, S.; Grande, F.; Espinosa, S.N.; Vincent, A.; Gibson, R.; Bailey, K.; King, J.; Rittenschober, D.; Charrondière, U.R. Development of the FAO/INFOODS/IZINCG Global Food Composition Database for Phytate. J. Food Compos. Anal. 2019, 78, 42–48. [Google Scholar] [CrossRef]
- Klensin, J.C.; Feskanich, D.; Lin, V.; Truswell, A.S.; Southgate, D.A. Identification of Food Components for INFOODS Data Interchange; United Nations University: Tokyo, Japan, 1989; ISBN 92-808-0734-X. [Google Scholar]
- Knaze, V.; Rothwell, J.A.; Zamora-Ros, R.; Moskal, A.; Kyrø, C.; Jakszyn, P.; Skeie, G.; Weiderpass, E.; Santucci de Magistris, M.; Agnoli, C.; et al. A New Food-Composition Database for 437 Polyphenols in 19,899 Raw and Prepared Foods Used to Estimate Polyphenol Intakes in Adults from 10 European Countries. Am. J. Clin. Nutr. 2018, 108, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Maclean, W.; Harnly, J.; Chen, J.; Chevassus-Agnes, S.; Gilani, G.; Livesey, G.; Warwick, P. Food energy—Methods of analysis and conversion factors. In Food and Agriculture Organization of the United Nations Technical Workshop Report; Agricultural Research Service, U.S. Department of Agriculture: Beltsville, MD, USA, 2003; Volume 77, pp. 8–9. [Google Scholar]
- Martinez-Victoria, E.; de Victoria, I.M.; Martinez-Burgos, M.A. Intake of Energy and Nutrients; Harmonization of Food Composition Databases. Nutr. Hosp. 2015, 31, 168–176. [Google Scholar]
- Rand, W.M.; Pennington, J.A.; Murphy, S.P.; Klensin, J.C. Compiling Data for Food Composition Data Bases; United Nations University Press: Tokyo, Japan, 1991; ISBN 92-808-0772-2. [Google Scholar]
- Roe, M.A.; Bell, S.; Oseredczuk, M.; Christensen, T.; Westenbrink, S.; Pakkala, H.; Presser, K.; Finglas, P.M. Updated Food Composition Database for Nutrient Intake; EFSA: Palma, Italy, 2013; Volume 10. [Google Scholar] [CrossRef] [Green Version]
- Slimani, N.; Ruth Charrondière, U.; van Staveren, W.; Riboli, E. Standardization of Food Composition Databases for the European Prospective Investigation into Cancer and Nutrition (EPIC): General Theoretical Concept. J. Food Compos. Anal. 2000, 13, 567–584. [Google Scholar] [CrossRef]
- Uusitalo, U.; Kronberg-Kippilä, C.; Aronsson, C.A.; Schakel, S.; Schoen, S.; Mattisson, I.; Reinivuo, H.; Silvis, K.; Sichert-Hellert, W.; Stevens, M.; et al. Food Composition Database Harmonization for Between-Country Comparisons of Nutrient Data in the TEDDY Study. J. Food Compos. Anal. 2011, 24, 494–505. [Google Scholar] [CrossRef] [Green Version]
- Aouachria, N.B.; Bakker, M.; König, J.; Leblanc, J.-C.; Lindtner, O.; Tlustos, C.; Arcella, D.; Tard, A.; Tasiopoulou, S. European Food Safety Authority Use of the EFSA Comprehensive European Food Consumption Database in Exposure Assessment. EFSA J. 2011, 9, 2097. [Google Scholar] [CrossRef]
- Gestión de Salud y Nutrición, S.L. I-Diet Food Composition Database, Updated from Original Version of G. Martín Peña FCD. Asturias, Spain, 2019.
- Hartmann, B.M.; Bell, S.; Vásquez-Caicedo, A.L.; Götz, A.; Erhardt, J.; Brombach, C. Der Bundeslebensmittelschlüssel; German Nutrient Database; Federal Research Centre for Nutrition and Food (BfEL): Karlsruhe, Germany, 2005. [Google Scholar]
- Trichopoulou, A.; Georga, K. Composition Tables of Foods and Greek Dishes, 3rd ed.; Parisianou Publications: Athens, Greece, 2004. [Google Scholar]
- Gnagnarella, P.; Salvini, S.; Parpinel, M. Food Composition Database for Epidemiological Studies in Italy. Available online: http://www.bda-ieo.it/ (accessed on 31 January 2020).
- Neveu, V.; Perez-Jimenez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An Online Comprehensive Database on Polyphenol Contents in Foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Urpi-Sarda, M.; Boto-Ordonez, M.; Knox, C.; Llorach, R.; Eisner, R.; Cruz, J.; Neveu, V.; Wishart, D.; Manach, C.; et al. Phenol-Explorer 2.0: A Major Update of the Phenol-Explorer Database Integrating Data on Polyphenol Metabolism and Pharmacokinetics in Humans and Experimental Animals. Database 2012, 2012, bas031. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Perez-Jimenez, J.; Neveu, V.; Medina-Remon, A.; M’Hiri, N.; Garcia-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S.; et al. Phenol-Explorer 3.0: A Major Update of the Phenol-Explorer Database to Incorporate Data on the Effects of Food Processing on Polyphenol Content. Database 2013, 2013, bat070. [Google Scholar] [CrossRef] [PubMed]
- Reinivuo, H.; Bell, S.; Ovaskainen, M.-L. Harmonisation of Recipe Calculation Procedures in European Food Composition Databases. J. Food Compos. Anal. 2009, 22, 410–413. [Google Scholar] [CrossRef]
- Vásquez-Caicedo, A.; Bell, S.; Hartmann, B. Report on Collection of Rules on Use of Recipe Calculation Procedures Including the Use of Yield and Retention Factors for Imputing Nutrient Values for Composite Foods; European Food Information Resource Network: Brussels, Belgium, 2008. [Google Scholar]
- Bell, S.; Becker, W.; Vásquez-Caicedo, A.; Hartmann, B.; Møller, A.; Butriss, J. Report on Nutrient Losses and Gains Factors Used in European Food Composition Databases; European Food Information Resource Network: Brussels, Belgium, 2006. [Google Scholar]
- Bognár, A. Tables on Weight Yield of Food and Retention Factors of Food Constituents for the Calculation of Nutrient Composition of Cooked Foods (Dishes); BFE: Karlsruhe, Germany, 2002; ISBN 0933-5463. [Google Scholar]
- Charrondiere, U.R.; Sivieri, A.; Burlingame, B. Differences in nutrient values of recipes due to different calculation methods and sets of nutrient retention factors. In Quality Food Composition Data: Key for Health and Trade, Proceedings of the 8th International Food Data Conference, Bangkok, Thailand, 1–3 October 2009; Judprasong, K., Puwastien, P., Jittinandana, S., Eds.; Bangkok, Thailand, 2009. [Google Scholar]
- Bawajeeh, A.; Kalendar, S.; Scarpa, G.; Hancock, N.; Beer, S.; Gibson, L.; Williams, G.; Dashti, B.; Albar, S.; Ensaff, H.; et al. Development of an Arabic Food Composition Database for Use in an Arabic Online Dietary Assessment Tool (Myfood24). J. Food Compos. Anal. 2021, 102, 104047. [Google Scholar] [CrossRef]
- Carter, M.; Hancock, N.; Albar, S.; Brown, H.; Greenwood, D.; Hardie, L.; Frost, G.; Wark, P.; Cade, J. Development of a New Branded UK Food Composition Database for an Online Dietary Assessment Tool. Nutrients 2016, 8, 480. [Google Scholar] [CrossRef] [Green Version]
- Nowak, V.; Persijn, D.; Rittenschober, D.; Charrondiere, U.R. Review of Food Composition Data for Edible Insects. Food Chem. 2016, 193, 39–46. [Google Scholar] [CrossRef]
- Yoo, Y.M.; Atkin, R.; Pachón, H. Development of a Food Composition Table to Analyze Senegalese Food Expenditure Data. Afr. J. Food Agric. Nutr. Dev. 2019, 19, 1–21. [Google Scholar]
- Durazzo, A.; Camilli, E.; Marconi, S.; Lisciani, S.; Gabrielli, P.; Gambelli, L.; Aguzzi, A.; Lucarini, M.; Kiefer, J.; Marletta, L. Nutritional Composition and Dietary Intake of Composite Dishes Traditionally Consumed in Italy. J. Food Compos. Anal. 2019, 77, 115–124. [Google Scholar] [CrossRef]
- Ireland, J.D.; Møller, A. Review of International Food Classification and Description. J. Food Compos. Anal. 2000, 13, 529–538. [Google Scholar] [CrossRef] [Green Version]
- Chin, E.L.; Simmons, G.; Bouzid, Y.Y.; Kan, A.; Burnett, D.J.; Tagkopoulos, I.; Lemay, D.G. Nutrient Estimation from 24-Hour Food Recalls Using Machine Learning and Database Mapping: A Case Study with Lactose. Nutrients 2019, 11, 3045. [Google Scholar] [CrossRef] [Green Version]
- Ispirova, G.; Eftimov, T.; Korošec, P.; Koroušić Seljak, B. MIGHT: Statistical Methodology for Missing-Data Imputation in Food Composition Databases. Appl. Sci. 2019, 9, 4111. [Google Scholar] [CrossRef] [Green Version]
- Presser, K.; Weber, D.; Norrie, M. FoodCASE: A System to Manage Food Composition, Consumption and TDS Data. Food Chem. 2018, 238, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Møller, A.; Christensen, T. Danish Food Information: EuroFIR Web Services-EuroFIR Food Data Transport Package, Version 1.3; DTU: Lyngby, Denmark, 2008. [Google Scholar]
- Durazzo, A.; Camilli, E.; D’Addezio, L.; Le Donne, C.; Ferrari, M.; Marconi, S.; Marletta, L.; Mistura, L.; Piccinelli, R.; Scalvedi, M.L.; et al. Food Groups and Individual Foods: Nutritional Attributes and Dietary Importance. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2018; p. B9780081005965214000. ISBN 978-0-08-100596-5. [Google Scholar]
- Jimoh, F.; Lund, E.K.; Harvey, L.J.; Frost, C.; Lay, W.J.; Roe, M.A.; Berry, R.; Finglas, P.M. Comparing Diet and Exercise Monitoring Using Smartphone App and Paper Diary: A Two-Phase Intervention Study. JMIR mHealth uHealth 2018, 6, e17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, D.Y. Personalized Diet Oriented by Artificial Intelligence and Ethnic Foods. J. Ethn. Foods 2020, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Cespedes, E.M.; Hu, F.B. Dietary Patterns: From Nutritional Epidemiologic Analysis to National Guidelines. Am. J. Clin. Nutr. 2015, 101, 899–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ocké, M.; de Boer, E.; Brants, H.; van der Laan, J.; Niekerk, M.; van Rossum, C.; Temme, L.; Freisling, H.; Nicolas, G.; Casagrande, C.; et al. PANCAKE—Pilot Study for the Assessment of Nutrient Intake and Food Consumption Among Kids in Europe; EFSA: Palma, Italy, 2012; Volume 9. [Google Scholar] [CrossRef]
- Wark, P.A.; Hardie, L.J.; Frost, G.S.; Alwan, N.A.; Carter, M.; Elliott, P.; Ford, H.E.; Hancock, N.; Morris, M.A.; Mulla, U.Z.; et al. Validity of an Online 24-h Recall Tool (Myfood24) for Dietary Assessment in Population Studies: Comparison with Biomarkers and Standard Interviews. BMC Med. 2018, 16, 136. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Dietary Reference Values for Nutrients Summary Report; EFSA: Palma, Italy, 2017. [Google Scholar]
- Harrington, R.A.; Adhikari, V.; Rayner, M.; Scarborough, P. Nutrient Composition Databases in the Age of Big Data: FoodDB, a Comprehensive, Real-Time Database Infrastructure. BMJ Open 2019, 9, e026652. [Google Scholar] [CrossRef] [PubMed]
- Blasco, T.; Pérez-Burillo, S.; Balzerani, F.; Hinojosa-Nogueira, D.; Lerma-Aguilera, A.; Pastoriza, S.; Cendoya, X.; Rubio, Á.; Gosalbes, M.J.; Jiménez-Hernández, N.; et al. An Extended Reconstruction of Human Gut Microbiota Metabolism of Dietary Compounds. Nat. Commun. 2021, 12, 4728. [Google Scholar] [CrossRef] [PubMed]
- Kovarich, S.; Ceriani, L.; Ciacci, A.; Baldin, R.; Perez Miguel, M.; Gibin, D.; Carnesecchi, E.; Roncaglioni, A.; Mostrag, A.; Tarkhov, A.; et al. OpenFoodTox: EFSA’s Chemical Hazards Database; EFSA: Palma, Italy, 2020. [Google Scholar]
- Rufian-Henares, J.A.; De la Cueva, S.P. Assessment of Hydroxymethylfurfural Intake in the Spanish Diet. Food Addit. Contam. 2008, 25, 1306–1312. [Google Scholar] [CrossRef]
- Rufian-Henares, J.A.; Garcia-Villanova, B.; Guerra-Hernández, E. Occurrence of furosine and hydroxymethylfurfural as markers of thermal damage in dehydrated vegetables. Eur. Food Res. Technol. 2008, 228, 249–256. [Google Scholar] [CrossRef]
Name of the FCDB | Last Update | Nº FoodsT 1 | Nº Foods 2 | Nº Items 3 | References |
---|---|---|---|---|---|
Tabla de Composición de Alimentos de Martin Peña actualizada de la version original por i-Diet (Spain) | 2019 | 726 | 711 | 90 | [69] |
Composition tables of foods and Greek dishes (Greece) | 2007 | 88 | 84 | 18 | [71] |
Bundeslebensmittelschlüssel (BLS) (Germany) | 2014 | 936 | 715 | 146 | [70] |
Banca Dati di Composizione degli Alimenti per Studi Epidemiologici in Italia (Italy) | 2015 | 978 | 976 | 97 | [72] |
Dutch Food Composition Database (NEVO) (Netherlands) | 2019 | 2152 | 949 | 144 | [27] |
McCance and Widdowson’s ‘composition of foods (United Kingdom) | 2019 | 2910 | 1208 | 280 | [26] |
Food and Nutrient Database for Dietary Studies (FNDDS) (United States) | 2018 | 7083 | 609 | 69 | [31] |
FAO/INFOODS Analytical food composition database version 2.0 (AnFooD2. 0) | 2017 | 2953 | 346 | 378 | [30] |
FAO/INFOODS food composition database for biodiversity (BioFoodComp4.0) | 2017 | 7953 | 355 | 538 | [14] |
Phenol-Explorer 3.6 database on polyphenol content in food | 2015 | 458 | 457 | 520 | [73,74,75] |
Validation Testing | Step as HACCP |
---|---|
Verification of food name and description, possible misspellings or translation errors. | Harmonization |
Classification and consistency verification of food name and grouping. | Harmonization |
Verification of FoodEx2 coding and INFOODS compound tagging. | Harmonization |
Sum of (water + protein + fat + total carbohydrates + alcohol + ash) is within the range: 95–105 g. | Unification |
Implausible values, such total fat value, is = 0, Fatty acids = 0 and Cholesterol = 0, or fiber in fish. | Unification |
Outlier values within each nutrient or compound. | Unification |
Spreadsheet to MySQL data transfer checking. | Management |
Model recipe testing. | Recipes Calculation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hinojosa-Nogueira, D.; Pérez-Burillo, S.; Navajas-Porras, B.; Ortiz-Viso, B.; de la Cueva, S.P.; Lauria, F.; Fatouros, A.; Priftis, K.N.; González-Vigil, V.; Rufián-Henares, J.Á. Development of an Unified Food Composition Database for the European Project “Stance4Health”. Nutrients 2021, 13, 4206. https://doi.org/10.3390/nu13124206
Hinojosa-Nogueira D, Pérez-Burillo S, Navajas-Porras B, Ortiz-Viso B, de la Cueva SP, Lauria F, Fatouros A, Priftis KN, González-Vigil V, Rufián-Henares JÁ. Development of an Unified Food Composition Database for the European Project “Stance4Health”. Nutrients. 2021; 13(12):4206. https://doi.org/10.3390/nu13124206
Chicago/Turabian StyleHinojosa-Nogueira, Daniel, Sergio Pérez-Burillo, Beatriz Navajas-Porras, Bartolomé Ortiz-Viso, Silvia Pastoriza de la Cueva, Fabio Lauria, Alexandra Fatouros, Kostas N. Priftis, Verónica González-Vigil, and José Ángel Rufián-Henares. 2021. "Development of an Unified Food Composition Database for the European Project “Stance4Health”" Nutrients 13, no. 12: 4206. https://doi.org/10.3390/nu13124206
APA StyleHinojosa-Nogueira, D., Pérez-Burillo, S., Navajas-Porras, B., Ortiz-Viso, B., de la Cueva, S. P., Lauria, F., Fatouros, A., Priftis, K. N., González-Vigil, V., & Rufián-Henares, J. Á. (2021). Development of an Unified Food Composition Database for the European Project “Stance4Health”. Nutrients, 13(12), 4206. https://doi.org/10.3390/nu13124206