A Mixed-Lipid Emulsion Containing Fish Oil for the Parenteral Nutrition of Preterm Infants: No Impact on Visual Neuronal Conduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patient Groups
2.3. Visual Evoked Potentials
2.4. Statistical Analysis
2.4.1. Prediction of the Outcomes
2.4.2. Propensity Balancing Analysis
2.4.3. Analysis of the Outcomes
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mercier, C.E.; Dunn, M.S.; Ferrelli, K.R.; Howard, D.B.; Soll, R.F. Vermont Oxford Network EIF-USG: Neurodevelopmental outcome of extremely low birth weight infants from the Vermont Oxford network: 1998–2003. Neonatology 2010, 97, 329–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyall, S.C. Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA and DHA. Front. Aging Neurosci. 2015, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Scott, B.L.; Bazan, N.G. Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc. Natl. Acad. Sci. USA 1989, 86, 2903–2907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kromhout, D.; de Goede, J. Update on cardiometabolic health effects of omega-3 fatty acids. Curr. Opin. Lipidol. 2014, 25, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. Evolutionary aspects of diet and essential fatty acids. World Rev. Nutr. Diet. 2001, 88, 18–27. [Google Scholar]
- Kuipers, R.S.; Luxwolda, M.F.; Offringa, P.J.; Boersma, E.R.; Dijck-Brouwer, D.A.; Muskiet, F.A. Fetal intrauterine whole body linoleic, arachidonic and docosahexaenoic acid contents and accretion rates. Prostaglandins Leukot. Essent. Fat. Acids 2012, 86, 13–20. [Google Scholar] [CrossRef]
- Lapillonne, A.; Jensen, C.L. Reevaluation of the DHA requirement for the premature infant. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Vanek, V.W.; Seidner, D.L.; Allen, P.; Bistrian, B.; Collier, S.; Gura, K.; Miles, J.M.; Valentine, C.J.; Novel Nutrient Task, F. American Society for P, Enteral, N. Update to A.S.P.E.N. position paper: Clinical role for alternative intravenous fat emulsions. Nutr. Clin. Pract. 2014, 29, 841. [Google Scholar] [CrossRef] [PubMed]
- Fell, G.L.; Nandivada, P.; Gura, K.M.; Puder, M. Intravenous Lipid Emulsions in Parenteral Nutrition. Adv. Nutr. 2015, 6, 600–610. [Google Scholar] [CrossRef] [Green Version]
- Binder, C.; Giordano, V.; Thanhaeuser, M.; Kreissl, A.; Huber-Dangl, M.; Longford, N.; Haiden, N.; Berger, A.; Repa, A.; Klebermass-Schrehof, K. A Mixed Lipid Emulsion Containing Fish Oil and Its Effect on Electrophysiological Brain Maturation in Infants of Extremely Low Birth Weight: A Secondary Analysis of a Randomized Clinical Trial. J. Pediatr. 2019, 211, 46–53.e42. [Google Scholar] [CrossRef]
- Pike, A.A.; Marlow, N.; Reber, C. Maturation of the flash visual evoked potential in preterm infants. Early Hum. Dev. 1999, 54, 215–222. [Google Scholar] [CrossRef]
- Kraemer, M.; Abrahamsson, M.; Sjostrom, A. The neonatal development of the light flash visual evoked potential. Doc. Ophthalmol. 1999, 99, 21–39. [Google Scholar] [CrossRef]
- Tsuneishi, S.; Casaer, P. Stepwise decrease in VEP latencies and the process of myelination in the human visual pathway. Brain Dev. 1997, 19, 547–551. [Google Scholar] [CrossRef]
- Tsuneishi, S.; Casaer, P.; Fock, J.M.; Hirano, S. Establishment of normal values for flash visual evoked potentials (VEPs) in preterm infants: A longitudinal study with special reference to two components of the N1 wave. Electroencephalogr. Clin. Neurophysiol. 1995, 96, 291–299. [Google Scholar] [CrossRef]
- Kaneda, Y.; Nakayama, H.; Kagawa, K.; Furuta, N.; Ikuta, T. Sex differences in visual evoked potential and electroencephalogram of healthy adults. Tokushima J. Exp. Med. 1996, 43, 143–157. [Google Scholar] [PubMed]
- Michalczuk, M.; Urban, B.; Chrzanowska-Grenda, B.; Oziębło-Kupczyk, M.; Bakunowicz-Łazarczyk, A. An Influence of Birth Weight, Gestational Age, and Apgar Score on Pattern Visual Evoked Potentials in Children with History of Prematurity. Neural Plast. 2015, 2015, 754864. [Google Scholar] [CrossRef] [Green Version]
- Rayyan, M.; Devlieger, H.; Jochum, F.; Allegaert, K. Short-term use of parenteral nutrition with a lipid emulsion containing a mixture of soybean oil, olive oil, medium-chain triglycerides, and fish oil: A randomized double-blind study in preterm infants. JPEN J. Parenter. Enter. Nutr. 2012, 36, 81S–94S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwindt, E.; Giordano, V.; Rona, Z.; Czaba-Hnizdo, C.; Olischar, M.; Waldhoer, T.; Werther, T.; Fuiko, R.; Berger, A.; Klebermass-Schrehof, K. The impact of extrauterine life on visual maturation in extremely preterm born infants. Pediatr. Res. 2018, 84, 403–410. [Google Scholar] [CrossRef]
- Seki, D.; Mayer, M.; Hausmann, B.; Pjevac, P.; Giordano, V.; Goeral, K.; Unterasinger, L.; Klebermass-Schrehof, K.; de Paepe, K.; van de Wiele, T.; et al. Aberrant gut-microbiota-immune-brain axis development in premature neonates with brain damage. Cell Host Microbe 2021, 29, 1558–1572.e1556. [Google Scholar] [CrossRef]
- Repa, A.; Binder, C.; Thanhaeuser, M.; Kreissl, A.; Pablik, E.; Huber-Dangl, M.; Berger, A.; Haiden, N. A Mixed Lipid Emulsion for Prevention of Parenteral Nutrition Associated Cholestasis in Extremely Low Birth Weight Infants: A Randomized Clinical Trial. J. Pediatr. 2018, 194, 87–93.e81. [Google Scholar] [CrossRef] [Green Version]
- The International Classification of Retinopathy of Prematurity Revisited. Arch. Ophthalmol. 2005, 123, 991–999. [CrossRef]
- De Vries, L.S.; Eken, P.; Dubowitz, L.M. The spectrum of leukomalacia using cranial ultrasound. Behav. Brain Res. 1992, 49, 1–6. [Google Scholar] [CrossRef]
- Walsh, M.C.; Kliegman, R.M. Necrotizing enterocolitis: Treatment based on staging criteria. Pediatr. Clin. N. Am. 1986, 33, 179–201. [Google Scholar] [CrossRef]
- Takashima, S.; Chan, F.; Becker, L.E.; Armstrong, D.L. Morphology of the developing visual cortex of the human infant: A quantitative and qualitative Golgi study. J. Neuropathol. Exp. Neurol. 1980, 39, 487–501. [Google Scholar] [CrossRef]
- Creel, D.J. Chapter 34—Visually evoked potentials. In Handbook of Clinical Neurology; Levin, K.H., Chauvel, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 160, pp. 501–522. [Google Scholar]
- Wand, M.P.; Jones, M.C. Kernel Smoothing; Chapman and Hall/CRC: London, UK, 1995. [Google Scholar]
- Cao, D.; Kevala, K.; Kim, J.; Moon, H.S.; Jun, S.B.; Lovinger, D.; Kim, H.Y. Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. J. Neurochem. 2009, 111, 510–521. [Google Scholar] [CrossRef] [Green Version]
- Cao, D.; Xue, R.; Xu, J.; Liu, Z. Effects of docosahexaenoic acid on the survival and neurite outgrowth of rat cortical neurons in primary cultures. J. Nutr. Biochem. 2005, 16, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Eilander, A.; Hundscheid, D.C.; Osendarp, S.J.; Transler, C.; Zock, P.L. Effects of n-3 long chain polyunsaturated fatty acid supplementation on visual and cognitive development throughout childhood: A review of human studies. Prostaglandins Leukot. Essent. Fat. Acids 2007, 76, 189–203. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.A.; Neumann, M.A.; Makrides, M. Effect of increasing breast milk docosahexaenoic acid on plasma and erythrocyte phospholipid fatty acids and neural indices of exclusively breast fed infants. Eur. J. Clin. Nutr. 1997, 51, 578–584. [Google Scholar] [CrossRef] [Green Version]
- Jensen, C.L.; Voigt, R.G.; Prager, T.C.; Zou, Y.L.; Fraley, J.K.; Rozelle, J.C.; Turcich, M.R.; Llorente, A.M.; Anderson, R.E.; Heird, W.C. Effects of maternal docosahexaenoic acid intake on visual function and neurodevelopment in breastfed term infants. Am. J. Clin. Nutr. 2005, 82, 125–132. [Google Scholar] [CrossRef]
- Lauritzen, L.; Jorgensen, M.H.; Mikkelsen, T.B.; Skovgaard, l.M.; Straarup, E.M.; Olsen, S.F.; Hoy, C.E.; Michaelsen, K.F. Maternal fish oil supplementation in lactation: Effect on visual acuity and n-3 fatty acid content of infant erythrocytes. Lipids 2004, 39, 195–206. [Google Scholar] [CrossRef]
- Malcolm, C.A.; Hamilton, R.; McCulloch, D.L.; Montgomery, C.; Weaver, L.T. Scotopic electroretinogram in term infants born of mothers supplemented with docosahexaenoic acid during pregnancy. Investig. Ophthalmol. Vis. Sci. 2003, 44, 3685–3691. [Google Scholar] [CrossRef] [Green Version]
- Bauer, I.; Crewther, D.P.; Pipingas, A.; Rowsell, R.; Cockerell, R.; Crewther, S.G. Omega-3 fatty acids modify human cortical visual processing--a double-blind, crossover study. PLoS ONE 2011, 6, e28214. [Google Scholar] [CrossRef] [Green Version]
- Morale, S.E.; Hoffman, D.R.; Castaneda, Y.S.; Wheaton, D.H.; Burns, R.A.; Birch, E.E. Duration of long-chain polyunsaturated fatty acids availability in the diet and visual acuity. Early Hum. Dev. 2005, 81, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Como, P.G.; Downey, L.C.; Murphy, D.; Ariagno, R.L.; Rodriguez, W. Infant formula and neurocognitive outcomes: Impact of study end-point selection. J. Perinatol. 2015, 35, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Lauritzen, L.; Brambilla, P.; Mazzocchi, A.; Harslof, L.B.; Ciappolino, V.; Agostoni, C. DHA Effects in Brain Development and Function. Nutrients 2016, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Innis, S.M. Dietary (n-3) Fatty Acids and Brain Development. J. Nutr. 2007, 137, 855–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, S.A. Polyunsaturated fatty acid synthesis and release by brain-derived cells in vitro. J. Mol. Neurosci. 2001, 16, 195–200. [Google Scholar] [CrossRef]
- Frazer, L.C.; Martin, C.R. Parenteral lipid emulsions in the preterm infant: Current issues and controversies. Arch. Dis. Child.-Fetal Neonatal Ed. 2021, 106, 676–681. [Google Scholar] [CrossRef]
- Birch, E.E.; Castaneda, Y.S.; Wheaton, D.H.; Birch, D.G.; Uauy, R.D.; Hoffman, D.R. Visual maturation of term infants fed long-chain polyunsaturated fatty acid-supplemented or control formula for 12 mo. Am. J. Clin. Nutr. 2005, 81, 871–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, M.B.; Straube, S.; Bach, M. Pattern-onset stimulation boosts central multifocal VEP responses. J. Vis. 2003, 3, 432–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faldella, G.; Govoni, M.; Alessandroni, R.; Marchiani, E.; Salvioli, G.P.; Biagi, P.L.; Spano, C. Visual evoked potentials and dietary long chain polyunsaturated fatty acids in preterm infants. Arch. Dis. Child.-Fetal Neonatal Ed. 1996, 75, F108–F112. [Google Scholar] [CrossRef] [PubMed]
- D’Ascenzo, R.; Savini, S.; Biagetti, C.; Bellagamba, M.P.; Marchionni, P.; Pompilio, A.; Cogo, P.E.; Carnielli, V.P. Higher docosahexaenoic acid, lower arachidonic acid and reduced lipid tolerance with high doses of a lipid emulsion containing 15% fish oil: A randomized clinical trial. Clin. Nutr. 2014, 33, 1002–1009. [Google Scholar] [CrossRef] [PubMed]
- Goyens, P.L.; Spilker, M.E.; Zock, P.L.; Katan, M.B.; Mensink, R.P. Compartmental modeling to quantify alpha-linolenic acid conversion after longer term intake of multiple tracer boluses. J. Lipid Res. 2005, 46, 1474–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | S-LE (n = 35) | SMOF-LE (n = 41) | p-Values | |
---|---|---|---|---|
Gender, female (n,%) | 20 (57.1) | 23 (56.1) | 0.99 | |
Gestational age, weeks (mean ± SD) | 25.6 ± 1,1 | 25.1 ± 1.1 | 0.45 | |
Birth weight, g (mean ±SD) | 820 ± 173 | 775 ± 129 | 0.20 | |
Small for gestational age (n,%) | 0 (0) | 1 (2.4) | 0.99 | |
Head circumference, cm (mean ± SD) | 23.9 ± 2.2 | 23.2 ± 1.3 | 0.07 | |
Antenatal steroids for lung maturation (n,%) | 35 (100) | 39 (95.1) | 0.99 | |
Lung maturation, complete (n,%) | 29 (82.9) | 25 (61.0) | 0.09 | |
Cesarean Section (n,%) | 33 (94.3) | 32 (78.0) | 0.05 | |
Multiple birth (n,%) | 15 (42.9) | 12 (29.3) | 0.23 | |
Umbilical artery pH (mean ± SD) | 7.34 ± 0.66 | 7.32 ± 0.11 | 0.37 | |
Apgar Score, 5 min (mean ± SD) | 8.4 ± 0.6 | 8.5 ± 0.9 | 0.56 | |
Total days of mechanical ventilation (mean ± SD) | 2.0 ± 3.9 | 3.7 ± 6.1 | 0.16 | |
ROP grade I-II (n,%) | 17 (48.6) | 23 (56.1) | 0.64 | |
IVH grade I-II (n,%) | 7 (20.0) | 5 (12.2) | 0.52 | |
PVL grade l (n,%) | 0 (0) | 1 (2.4) | 0.99 | |
Chronic lung disease (n,%) | 6 (17.1) | 9 (22.0) | 0.77 | |
NEC (n,%) | 1 (2.9) | 3 (7.3) | 0.62 | |
Total days on any parenteral nutrition (mean ± SD) | 35 ± 16 | 31 ± 16 | 0.26 | |
Total days on parenteral lipids (mean ± SD) | 22 ± 10 | 22 ± 8 | 0.98 | |
Total days on enteral nutrition (mean ± SD) | 73 ± 21 | 86 ± 37 | 0.06 | |
Weight gain per day, g (mean ± SD) | 23 ± 2 | 23 ± 9 | 0.85 | |
Feeding at discharge (n,%) | Human milk | 10 (28.6) | 15 (36.6) | 0.47 |
Formula | 16 (45.7) | 16 (39.0) | 0.64 | |
Both | 9 (25.7) | 9 (22.0) | 0.78 | |
Postmenstrual age at discharge, weeks (mean ± SD) | 36.2 ± 2.6 | 38.2 ± 5.0 | 0.044 | |
Weight at discharge, g (mean ± SD) | 2403 ± 560 | 2705 ± 1011 | 0.12 | |
Weight Z-Score at discharge (mean ± SD) | −1.9 (0.6) | −1.6 (1.1) | 0.13 | |
Length at discharge, g (mean ± SD) | 43.9 (4.0) | 44.9 (6.8) | 0.48 | |
Length at discharge Z-Score (mean ± SD) | −0.09 (1.2) | −0.08 (0.7) | 0.48 | |
HC at discharge, g (mean ± SD) | 31.8 (2.9) | 32.5 (4.3) | 0.43 | |
HC Z-Score at discharge (mean ± SD) | −0.1 (0.7) | 0.1 (1.1) | 0.42 |
PMA (Weeks) | S-LE N2 Means | St.error | SMOF-LE N2 Means | St.error | Estimate | St.error | Lower 95% CI | Upper 95% CI |
28 | 334.6 | 3.6 | 338.4 | 4.9 | 3.7 | 6.1 | −8.5 | 15.9 |
29 | 331.8 | 3.6 | 334.1 | 3.8 | 2.2 | 5.2 | −8.1 | 12.7 |
30 | 329.0 | 3.6 | 330.6 | 3.5 | 1.6 | 5.9 | −8.5 | 11.7 |
31 | 326.1 | 3.7 | 329.4 | 3.6 | 3.2 | 5.2 | −7.1 | 13.6 |
32 | 324.4 | 3.7 | 330.1 | 3.5 | 5.7 | 5.1 | −4.5 | 16.2 |
33 | 323.2 | 3.8 | 330.3 | 3.5 | 7.1 | 5.2 | −3.2 | 17.5 |
34 | 324.3 | 4.5 | 328.2 | 3.9 | 3.8 | 6.1 | −8.1 | 15.8 |
35 | 326.4 | 4.3 | 325.0 | 4.5 | −1.3 | 6.2 | −13.8 | 11.8 |
36 | 327.9 | 6.3 | 321.5 | 5.5 | −6.3 | 8.4 | −23.3 | 10.6 |
PMA (Weeks) | S-LE P2 Means | St.error | SMOF-LE P2 Means | St.error | Estimate | St.error | Lower 95% CI | Upper 95% CI |
28 | 473.9 | 6.4 | 474.4 | 6.9 | 0.4 | 9.5 | −18.6 | 19.5 |
29 | 470.1 | 6.8 | 470.2 | 6.1 | 0.08 | 8.6 | −17.2 | 17.3 |
30 | 466.5 | 5.8 | 465.7 | 5.6 | −0.7 | 8.1 | −17.0 | 15.5 |
31 | 461.6 | 5.8 | 462.1 | 5.4 | 0.5 | 7.9 | −15.4 | 16.5 |
32 | 452.1 | 5.7 | 457.8 | 5.6 | 5.7 | 7.6 | −9.4 | 21.1 |
33 | 452.5 | 6.8 | 452.8 | 5.1 | 0.2 | 8.5 | −16.8 | 17.3 |
34 | 464.8 | 8.3 | 452.4 | 5.4 | −12.3 | 9.9 | −32.2 | 7.6 |
35 | 463.8 | 7.8 | 451.2 | 6.1 | −12.6 | 9.9 | −32.5 | 7.2 |
36 | 462.7 | 8.3 | 456.1 | 11.1 | −6.6 | 13.7 | −34.1 | 20.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binder, C.; Schned, H.; Longford, N.; Schwindt, E.; Thanhaeuser, M.; Thajer, A.; Goeral, K.; Tardelli, M.; Berry, D.; Wisgrill, L.; et al. A Mixed-Lipid Emulsion Containing Fish Oil for the Parenteral Nutrition of Preterm Infants: No Impact on Visual Neuronal Conduction. Nutrients 2021, 13, 4241. https://doi.org/10.3390/nu13124241
Binder C, Schned H, Longford N, Schwindt E, Thanhaeuser M, Thajer A, Goeral K, Tardelli M, Berry D, Wisgrill L, et al. A Mixed-Lipid Emulsion Containing Fish Oil for the Parenteral Nutrition of Preterm Infants: No Impact on Visual Neuronal Conduction. Nutrients. 2021; 13(12):4241. https://doi.org/10.3390/nu13124241
Chicago/Turabian StyleBinder, Christoph, Hannah Schned, Nicholas Longford, Eva Schwindt, Margarita Thanhaeuser, Alexandra Thajer, Katharina Goeral, Matteo Tardelli, David Berry, Lukas Wisgrill, and et al. 2021. "A Mixed-Lipid Emulsion Containing Fish Oil for the Parenteral Nutrition of Preterm Infants: No Impact on Visual Neuronal Conduction" Nutrients 13, no. 12: 4241. https://doi.org/10.3390/nu13124241