Dietary Animal to Plant Protein Ratio Is Associated with Risk Factors of Metabolic Syndrome in Participants of the AHS-2 Calibration Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malik, S.; Wong, N.D.; Franklin, S.S.; Kamath, T.V.; L’Italien, G.J.; Pio, J.R.; Williams, G.R. Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease and all causes in United States adults. Circulation 2004, 110, 1245–1250. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Lambadiari, V.; Dimitriadis, G.; Zampelas, A. Metabolic syndrome and cardiometabolic risk factors. Curr. Vasc. Pharm. 2013, 11, 858–879. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Mouratidou, T.; Vereecken, C.; Kersting, M.; Bolca, S.; de Moraes, A.C.; Cuenca-García, M.; A Moreno, L.; González-Gross, M.; Valtueña, J.; et al. HELENA study group. Dietary animal and plant protein intakes and their associations with obesity and cardio-metabolic indicators in European adolescents: The HELENA cross-sectional study. Nutr. J. 2015, 14, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiavaroli, L.; Lee, D.; Ahmed, A.; Cheung, A.; Khan, T.; Mejia, S.B.; Mirrahimi, A.; Jenkins, D.; Livesey, G.; Wolever, T.; et al. Low Glycemic Index/Load Dietary Patterns and Glycemia and Cardiometabolic Risk Factors in Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Curr. Dev. Nutr. 2021, 5, 1018. [Google Scholar] [CrossRef]
- Moghaddam, E.; Vogt, J.A.; Wolever, T.M. The effects of fat and protein on glycemic responses in nondiabetic humans vary with waist circumference, fasting plasma insulin, and dietary fiber intake. J. Nutr. 2006, 136, 2506–2511. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, N.S.; Sabate, J.; Jaceldo-Siegl, K.; Fraser, G.E. Vegetarian dietary patterns are associated with a lower risk of metabolic syndrome. Diabetes Care 2011, 34, 1225–1227. [Google Scholar] [CrossRef] [Green Version]
- Amini, M.; Esmailzadeh, A.; Shafaeizadeh, S.; Behrooz, J.; Zare, M. Relationship between major dietary patterns and metabolic syndrome among individuals with impaired glucose tolerance. Nutrition 2010, 26, 986–992. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.K.; Lin, Y.L.; Chen, C.L.; Ouyang, C.M.; Wu, Y.T.; Chi, Y.C.; Huang, K.C.; Yang, W.S. Reduced risk for metabolic syndrome and insulin resistance associated with ovo-lacto-vegetarian behavior in female Buddhists: A case-control study. PLoS ONE 2013, 8, e71799. [Google Scholar] [CrossRef] [Green Version]
- Gadjil, M.D.; Anderson, C.A.M.; Kandula, N.R.; Kanaya, A.A.M. Dietary Patterns Are Associated with Metabolic Risk Factors in South Asians Living in the United States. J. Nutr. 2015, 145, 1211–1217. [Google Scholar]
- Hosseini-Esfahani, F.; Hosseinpour-Niazi, S.; Asghari, G.; Bahadoran, Z.; Moslehi, N.; Golzarand, M.; Ejtahedet, H.-S.; Mirmiran, P.; Azizi, F. Nutrition and Cardio-Metabolic Risk Factors: Findings from 20 Years of the Tehran Lipid and Glucose Study. Int. J. Endocrinol. Metab. 2018, 16 (Suppl. 4), e84772. [Google Scholar] [CrossRef] [Green Version]
- Viguiliouk, E.; Kendall, C.W.C.; Kahleová, H.; Rahelić, D.; Salvadó, J.S.; Vivian, L.; Choo, V.L.; Mejia, S.B.; Stewart, S.E.; Leiter, L.A.; et al. Effect of vegetarian dietary patterns on cardiometabolic risk factors in diabetes: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. 2019, 38, 1133–1145. [Google Scholar] [CrossRef]
- Tonstad, S.; Stewart, K.; Oda, K.; Batech, M.; Herring, R.P.; Fraser, G.E. Vegetarian diets and incidence of diabetes in the Adventist Health Study-2. Nutr. Metab. Cardiovasc. Dis. 2011, 23, 292–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Zuurmond, M.G.; Van Der Schaft, N.; Nano, J.; Wijnhoven, H.; Ikram, M.A.; Franco, O.; Voortman, T. Plant versus animal based diets and insulin resistance, prediabetes and type 2 diabetes: The Rotterdam Study. Eur. J. Epidemiology 2018, 33, 883–893. [Google Scholar] [CrossRef] [Green Version]
- Fabiani, A.R.; Naldini, G.; Chiavarini, M. Dietary Patterns and Metabolic Syndrome in Adult Subjects: A Systematic Review and Meta- Analysis. Nutrients 2019, 11, 2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Liao, L.M.; Weinstein, S.J.; Sinha, R.; Graubard, B.I.; Albanes, D. Association Between Plant and Animal Protein Intake and Overall and Cause-Specific Mortality. JAMA Intern. Med. 2020, 180, 1173. [Google Scholar] [CrossRef]
- Chalvon-Demersay, T.; Azzout-Marniche, D.; Arfsten, J.; Egli, L.; Gaudichon, C.; Karagounis, L.G.; Tomé, D. A systematic review of the effects of plant compared with animal protein sources on features of metabolic syndrome. J. Nutr. 2017, 147, 281–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, X.; Scott, D.; Hodge, A.; Giles, G.G.; Ebeling, P.R.; Sanders, K.M.; English, D.R. Dietary protein from different food sources, incident metabolic syndrome and changes in its components: An 11-year longitudinal study in healthy community-dwelling adults. Clin. Nut. 2017, 36, 1540–1548. [Google Scholar] [CrossRef]
- Malik, V.S.; Li, Y.; Tobias, D.K.; Pan, A.; Hu, F.B. Dietary Protein Intake and Risk of Type 2 Diabetes in US Men and Women. Am. J. Epidemiol. 2016, 183, 715–728. [Google Scholar] [CrossRef]
- Richter, C.K.; Skulas-Ray, A.C.; Champagne, C.M.; Kris-Etherton, P.M. Plant protein and animal proteins: Do they differentially affect cardiovascular disease risk? Adv. Nutr. 2015, 13, 712–728. [Google Scholar] [CrossRef] [PubMed]
- Benatar, J.R.; Stewart, R.A.H. Cardiometabolic risk factors in vegans; A meta-analysis of observational studies. PLoS ONE 2018, 13, e0209086. [Google Scholar] [CrossRef] [Green Version]
- Sabaté, J.; Wien, M.A. Perspective on vegetarian dietary patterns and risk of metabolic syndrome. Br. J. Nutr. 2015, 113, S136–S143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahleova, H.; Levin, S.; Barnard, N. Cardio-Metabolic Benefits of Plant-Based Diets. Nutrients 2017, 9, 848. [Google Scholar] [CrossRef]
- Orlich, M.J.; Fraser, G. Vegetarian diets in the Adventist Health Study 2: A review of initial published findings. Am. J. Clin. Nutr. 2014, 100, 353S–358S. [Google Scholar] [CrossRef] [Green Version]
- Azemati, B.; Rajaram, S.; Jaceldo-Siegl, K.; Sabate, J.; Shavlik, D.; Fraser, G.E.; Haddad, E.H. Animal-protein intake is associated with insulin resistance in Adventist Health Study 2 (AHS-2) calibration substudy participants: A Cross-sectional analysis. Curr. Dev. Nutr. 2017, 1, e000299. [Google Scholar] [CrossRef] [Green Version]
- Debra, R.; Keast, D.R.; O’Neil, C.E.; Nicklas, T.A. Current intake of animal and vegetable protein in the US: What we eat in America (WWEIA) National Health and Nutrition Examination Survey (NHANSE), 2007-2010. FASEB 2013, 27, 1075.13. [Google Scholar]
- Butler, T.L.; Fraser, G.E.; Beeson, W.L.; Knutsen, S.F.; Herring, R.P.; Chan, J.; Sabaté, J.; Montgomery, S.; Haddad, E.; Preston-Martin, S.; et al. Cohort profile: The Adventist Health Study-2 (AHS-2). Int. J. Epidemiology 2007, 37, 260–265. [Google Scholar] [CrossRef] [Green Version]
- Jaceldo-Siegl, K.; Knutsen, S.F.; Sabate, J.; Beeson, W.L.; Chan, J.; Herring, R.P. Validation of nutrient intake using an FFQ and repeated 24-h recalls in black and white subjects of the Adventist Health Study-2 (AHS-2). Pub. Health Nutr. 2010, 13, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Willet, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1231S. [Google Scholar] [CrossRef]
- Blair, S.N.; Haskell, W.L.; Ho, P.; Paffenbarger, J.R.; Vranizan, K.M.; Farquhar, J.W.; Wood, P.D. Assessment of habitual physical activity by a seven-day recall in a community survey and controlled experiments. Am. J. Epidemiol. 1985, 122, 794–804. [Google Scholar] [CrossRef]
- Bachorik, P.; Rock, R.; Treciak, E.; Becker, D.; Sigmund, W. Cholesterol screening: Comparative evaluation of on-site and laboratory-based measurements. Clin. Chem. 1990, 36, 255–260. [Google Scholar] [CrossRef]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith Jr, S.C. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiegelman, D.; McDermott, A.; Rosener, B. Regression calibration method for correcting measurement-error bias in nutritional epidemiology. Am. J. Clin. Nutr. 1997, 65, 1179S–1186S. [Google Scholar] [CrossRef]
- Hajihashemi, P.; Hassannejad, R.; Haghighatdoost, F.; Mohammadifard, N.; Sadeghi, M.; Roohafza, H.; Sajjadi, F.; Sarrafzadegan, N. The long-term association of different dietary protein sources with metabolic syndrome. Sci. Rep. 2021, 11, 19394. [Google Scholar] [CrossRef]
- Babio, N.; Sorlí, M.; Bulló, M.; Basora, J.; Ibarrola-Jurado, N.; Fernández-Ballart, J.; Martinez-Gonzalez, M.A.; Serra-Majem, L.; González-Pérez, R.; Salas-Salvadó, J. Nureta-PREDIMED Investigators. Association between red meat consumption and metabolic syndrome in a Mediterranean population at high cardiovascular risk: Cross-sectional and 1-year follow-up assessment. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 200–207. [Google Scholar] [CrossRef]
- Damayanti, D.; Jaceldo-Siegl, K.; Beeson, W.L.; Fraser, G.; Oda, K.; Haddad, E.H. Foods and Supplements Associated with Vitamin B12 Biomarkers among Vegetarian and Non-Vegetarian Participants of the Adventist Health Study-2 (AHS-2) Calibration Study. Nutrients. 2018, 10, 722. [Google Scholar] [CrossRef] [Green Version]
- Hoy, M.K.; Clemens, J.C.; Moshfegh, A.J. Protein Intake of Adults in the U.S.: What We Eat in America, NHANES 2015-2016. Curr. Dev. Nutr. 2021, 5, 133. [Google Scholar] [CrossRef]
- Cocate, P.; Natali, A.J.; de Oliveira, A.; Alfenas, R.C.; Peluzio, M.C.; Longo, G.Z.; dos Santos, E.C.; Buthers, J.M.; de Oliveira, L.L.; Hermsdorff, H.H. Red but not white meat consumption is associated with metabolic. syndrome, insulin resistance and lipid peroxidation in Brazilian middle-aged men. Eur. J. Prev. Cardiol. 2013, 22, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, T.; Rosendahl-Raiise, H.; Dierkes, J.; Drevon, C.A.; Tell, G.S.; Nygård, O. Association between fish intake and the metabolic syndrome and its components among middle-aged men and women: The Hordaland Health Study. Food Nutr. Res. 2017, 61, 1347479. [Google Scholar] [CrossRef] [Green Version]
- Mena-Sánchez, G.; Becerra-Tomás, N.; Babio, N.; Salas-Salvadó, J. Dairy Product Consumption in the Prevention of Metabolic Syndrome: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Adv. Nutr. 2019, 10 (Suppl. 2), S144–S153. [Google Scholar] [CrossRef]
- Park, K.-B.; Park, H.A.; Kang, J.-H.; Kim, K.; Cho, Y.G.; Jang, J. Animal and Plant Protein Intake and Body Mass Index and Waist Circumference in a Korean Elderly Population. Nutrients 2018, 10, 577. [Google Scholar] [CrossRef] [Green Version]
- Bujnowski, D.; Xun, P.; Daviglus, M.L.; Van Horn, L.; He, K.; Stamler, J. Longitudinal association between animal and vegetable protein intake and obesity among men in the United States: The Chicago Western Electric Study. J. Am. Diet. Assoc. 2011, 111, 1150–1155. [Google Scholar] [CrossRef] [Green Version]
- Halkjær, J.; Olsen, A.; Overvad, K.; Jakobsen, M.U.; Boeing, H.; Buijsse, B.; Palli, D.; Tognon, G.; Du, H.; Forouhi, N.G.; et al. Intake of total, animal and plant protein and subsequent changes in weight or waist circumference in European men and women: The Diogenes project. Int. J. Obes. 2011, 35, 1104–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkerwi, A.A.; Sauvageot, N.; Buckley, J.D.; Donneau, A.-F.; Albert, A.; Guillaume, M.; Crichton, G.E. The potential impact of animal protein intake on global and abdominal obesity: Evidence from the Observation of Cardiovascular Risk Factors in Luxembourg (ORISCAV-LUX) study. Public Health Nutr. 2015, 18, 1831–1838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hruby, A.; Jacques, P.F. Dietary protein ad changes in markers of cardiometabolic health across 20 years of follow-up in middle-aged Americans. Pub. Health Nut. 2018, 21, 2998–3010. [Google Scholar] [CrossRef] [Green Version]
- Bahadoran, Z.; Mirmiran, P.; Hossein-Esfahani, F.; Sadeghi, M.; Azizi, F. Dietary protein, protein to carbohydrate ratio and subsequent changes in lipid profile after a 3-year follow up: Tehran Lipid and Glucose Study. Iran. J. Publ. Health 2013, 2, 1232. [Google Scholar]
- Li, S.S.; Mejia, S.B.; Lytvyn, L.; Stewart, S.E.; Viguiliouk, E.; Ha, V.; de Souza, R.J.; Leiter, L.A.; Kendall, C.W.C.; Jenkins, D.J.A.; et al. Effect of Plant Protein on Blood Lipids: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2017, 6, e006659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, K.M.; Guerra, A.C.; Gomes, J.A. Influence of food components on lipid metabolism: Scenarios and perspective on the control and prevention of dyslipidemias. Food Sci. Tecnol. 2010, 30 (Suppl. 1), 7–14. [Google Scholar]
- Zhao, L.G.; Zhang, Q.L.; Liu, X.L.; Wu, H.; Zheng, J.L.; Xiang, Y.B. Dietary protein intake and risk of type 2 diabetes: A dose–response meta-analysis of prospective studies. Eur. J. Nutr. 2019, 58, 1351–1367. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Li, Y.; Wang, C.; Mao, Z.; Zhou, W.; Zhang, L.; Yang, X.; Cui, S.; Li, L. Dietary Protein Consumption and the Risk of Type 2 Diabetes: A Dose-Response Meta-Analysis of Prospective Studies. Nutrients 2019, 11, 2783. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Xu, Q.; Jiang, R.; Han, T.; Sun, C.; Na, L. Dietary Protein Consumption and the Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cohort Studies. Nutrients 2017, 9, 982. [Google Scholar] [CrossRef] [Green Version]
- Shang, X.; Scott, D.; Hodge, A.M.; English, D.R.; Giles, G.G.; Ebeling, P.R.; Sanders, K.M. Dietary protein intake and risk of type 2 diabetes: Results from the Melbourne Collaborative Cohort Study and a meta-analysis of prospective studies. Am. J. Clin. Nutr. 2016, 104, 1352–1365. [Google Scholar] [CrossRef]
- Viguiliouk, E.; Stewart, S.E.; Jayalath, V.H.; Ng, A.P.; Mirrahimi, A.; De Souza, R.J.; Hanley, A.J.; Bazinet, R.P.; Mejia, S.B.; Leiter, L.A.; et al. Effect of Replacing Animal Protein with Plant Protein on Glycemic Control in Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2015, 7, 9804–9824. [Google Scholar] [CrossRef]
- Barnard, N.; Levin, S.; Trapp, C. Meat Consumption as a Risk Factor for Type 2 Diabetes. Nutrients 2014, 6, 897–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radzeviciene, L.; Ostrauskas, R. Egg consumption and the risk of type 2 diabetes mellitus: A case-control study. Public Health Nutrition 2012, 15, 1437–1441. [Google Scholar] [CrossRef] [Green Version]
- Villegas, R.; Xiang, Y.B.; Elasy, T.; Li, H.L.; Yang, G.; Cai, H.; Ye, F.; Gao, Y.-T.; Shyr, Y.; Zheng, W.; et al. Fish, shellfish, and long-chain n-3 fatty acid.consumption and risk of incident type 2 diabetes in middle-aged Chinese men and women. Am. J. Clin. Nutr. 2011, 94, 543–551. [Google Scholar] [CrossRef]
- Hruby, A.; Ma, J.; Rogers, G.; Meigs, J.B.; Jacques, P.F. Associations of Dairy Intake with Incident Prediabetes or Diabetes in Middle-Aged Adults Vary by Both Dairy Type and Glycemic Status. J. Nutr. 2017, 147, 1764–1775. [Google Scholar] [CrossRef] [Green Version]
- Mehrabani, S.; Asemi, M.; Najafian, J.; Sajadi, F.; Maghroun, M.; Mohammadifar, N. Association of Animal and Plant Proteins Intake with Hypertension in Iranian Adult Population: Isfahan Healthy Heart Program. Adv. Bio. Res. 2017, 31, 112. [Google Scholar] [CrossRef]
- Altorf-van der Kuil, W.; Engberink, M.F.; Vedder, M.M.; Boer, J.M.R.; Verschuren, W.M.M.; Geleijnse, J.M. Sources of Dietary Protein in Relation to Blood Pressure in a General Dutch Population. PLoS ONE 2012, 7, e30582. [Google Scholar] [CrossRef] [Green Version]
- Buendia, J.R.; Bradlee, M.L.; Singer, M.R.; Moore, L.L. Diets higher in protein predict lower high blood pressure risk in Framingham Offspring Study adults. Am. J. Hypertens. 2015, 28, 372–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebholz, C.M.; Friedman, E.E.; Powers, L.J.; Arroyave, W.D.; He, J.; Kelly, T.N. Dietary protein intake and blood pressure: A meta-analysis of randomized controlled trials. Am. J. Epidemiol. 2012, 7, S27–S43. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Tsubota, K.; Watanabe, M. Effects of vegetarian diets on blood pressure. Nutr. Diet. Supplements 2016, 8, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Poggiogalle, E.; Fontana, M.; Giusti, A.M.; Pinto, A.; Iannucci, G.; Lenzi, A.; Donini, L.M. Amino Acids and Hypertension in Adults. Nutrients 2019, 11, 1459. [Google Scholar] [CrossRef] [Green Version]
- Vega-López, S.; Matthan, N.R.; Ausman, L.M.; Harding, S.V.; Rideout, T.C.; Ai, M.; Otokozawa, S.; Freed, A.; Kuvin, J.T.; Jones, P.J.; et al. Altering dietary lysine:arginine ratio has little effect on cardiovascular risk factors and vascular reactivity in moderately hypercholesterolemic adults. Atherosclerosis 2010, 210, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Wittenbecher, C.; Mühlenbruch, K.; Kröger, J.; Jacobs, S.; Kuxhaus, O.; Floegel, A.; Fritsche, A.; Pischon, T.; Prehn, C.; Adamski, J.; et al. Amino acids, lipid metabolites, and ferritin as potential mediators linking red meat consumption to type 2 diabetes. Am. J. Clin. Nutr. 2015, 101, 1241–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- She, P.; Van Horn, C.; Reid, T.; Hutson, S.M.; Cooney, R.N.; Lynch, C.J. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am. J. Physiol. Endocrinol. Metab. 2007, 293, E1552–E1563. [Google Scholar] [CrossRef] [Green Version]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Arlotto, M.; Rochon, J.; Gallup, D.; Kayeva, O.; et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009, 9, 311–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siapco, G.S.; Khayef, G.; Pribis, P.; Oda, K.; Haddad, E.; Sabaté, J. Animal Protein Intake Is Associated with General Adiposity in Adolescents: The Teen Food and Development Study. Nutrients 2020, 12, 110. [Google Scholar] [CrossRef] [Green Version]
- Mirmiran, P.; Bahadoran, Z.; Esfandyari, S.; Azizi, F. Dietary protein and amino acid profiles in relation to risk of dysglycemia: Findings from a prospective population-based study. Nutrients 2017, 9, 971. [Google Scholar] [CrossRef]
- Allam-Ndoul, B.; Guénard, F.; Garneau, V.; Barbier, O.; Pérusse, L.; Vohl, M.C. Associations between branched chain amino acid levels, obesity and cardiometabolic complications. Integr Obes. Diabetes 2015, 1, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Ze, S.L.; Lee, J.E.; Kim, J.H.; Lee, G.S.; Kim, S.K. Association between dietary protein intake and metabolic syndrome in Korean adults. Korean J. Fam. Pract. 2017, 7, 451–455. [Google Scholar] [CrossRef]
Metabolic Syndrome | p Value | |||
---|---|---|---|---|
No | Yes | |||
N | 402 | 116 | ||
Age | 60.4 ± 14.0 | 57.6 ± 14.2 | 0.06 | |
BMI | 26.4 ± 5.4 | 32.5 ± 6.6 | <0.001 | |
Sex | Female | 258 (64.1) | 75 (64.6) | 0.9 |
Male | 144 (35.8) | 41 (35.3) | ||
Race | White | 242 (60.2) | 73 (62.9) | 0.5 |
Non-White | 160 (39.8) | 43 (37.0) | ||
Education | High school & lower | 89 (22.3) | 37 (31.9) | 0.08 |
Some college | 139 (34.8) | 32 (27.5) | ||
Bsc & higher | 171 (42.8) | 47 (40.5) | ||
Physical activity (hrs/d) | 36.5 ± 10.2 | 34.9 ± 10.0 | 0.1 | |
Animal protein (g) | 25.1 ± 19.4 | 28.9 ± 20.7 | 0.06 | |
Plant protein (g) | 34.6 ± 11.1 | 32.9 ± 11.0 | 0.1 | |
AP 1 protein ratio | 0.7 ± 0.8 | 0.9 ± 0.9 | 0.06 | |
Total protein * (g) | 59.7 ± 14.5 | 61.9 ± 5.1 | 0.1 | |
GL 2 | 123.4 ± 42.7 | 115.1 ± 39.7 | 0.06 | |
Unsaturated fatty acids * (g) | 51.3 ± 1.8 | 52.1 ± 2.0 | 0.5 | |
PS ratio 3 | 1.1 ± 0.4 | 1.0 ± 0.5 | 0.1 | |
Trans fatty acids (g) | 1.7 ± 0.7 | 1.9 ± 0.7 | 0.01 | |
Calcium (mg) | 990.0 ± 471.7 | 931.6 ± 479.6 | 0.2 | |
Sodium (mg) | 2472.2 ± 849.2 | 2455.0 ± 836.5 | 0.8 | |
Potassium (mg) | 2533.5 ± 829.8 | 2310.7 ± 29.4 | 0.01 | |
Magnesium (mg) | 368.6 ± 156.6 | 351.5 ± 179.1 | 0.3 |
Dietary Protein Intake | Odds Ratio (95% CI) Crude | p Value | Odds Ratio (95% CI) | p Value |
---|---|---|---|---|
Total protein | 0.99 (0.95, 1.02) | 0.6 | 0.94 (0.89, 0.99) | 0.02 |
Animal protein | 0.98 (0.94, 1.02) | 0.5 | 0.94 (0.89, 0.99) | 0.02 |
Plant protein | 0.96 (0.90, 1.04) | 0.4 | 0.94 (0.85, 1.04) | 0.2 |
AP protein | 1.06 (0.84, 1.33) | 0.5 | 0.94 (0.85, 1.04) | 0.2 |
Dietary Protein Intake | ||||||||
---|---|---|---|---|---|---|---|---|
Total Protein | Animal Protein | Plant Protein | AP Protein Ratio | |||||
Components of Metabolic Syndrome | β Coefficient (95% CI) | p Value | β Coefficient (95% CI) | p Value | β Coefficient (95% CI) | p Value | β Coefficient (95% CI) | p Value |
Waist circumference (crude) * | 0.005 (0.002, 0.007) | <0.001 | 0.004 (0.002, 0.007) | 0.001 | 0.003 (−0.0008, 0.008) | 0.1 | 0.035 (0.021, 0.049) | <0.001 |
Waist circumference 1,** | 0.004 (0.002, 0.007) | <0.001 | 0.004 (0.001, 0.007) | 0.006 | 0.002 (−0.002, 0.007) | 0.3 | 0.034 (0.021, 0.047) | <0.001 |
High density lipoprotein (crude) * | −0.001 (−0.005, 0.002) | 0.3 | −0.001 (−0.006, 0.003) | 0.4 | −0.002 (-.010, 0.006) | 0.6 | −0.004 (−0.031, 0.023) | 0.7 |
High density lipoprotein 2,** | 0.001 (−0.002, 0.006) | 0.4 | 0.002 (−0.002, 0.008) | 0.3 | 0.006 (−0.005, 0.0.018) | 0.2 | 0.012 (−0.037, 0.062) | 0.6 |
Triglycerides (crude) * | 0.001 (−0.005, 0.007) | 0.7 | −0.001 (−0.009, 0.006) | 0.6 | −0.009 (−0.022, 0.004) | 0.1 | 0.038 (−0.005, 0.082) | 0.08 |
Triglycerides 3,** | −0.001 (−0.007, 0.004) | 0.6 | −0.002 (−0.010, 0.004) | 0.4 | −0.007 (−0.020, 0.004) | 0.2 | 0.009 (−0.033, 0.052) | 0.6 |
Fasting blood glucose (crude) * | 0.004 (0.002, 0.007) | <0.001 | 0.004 (0.001, 0.007) | 0.006 | 0.003 (−0.001, 0.009) | 0.1 | 0.038 (0.022, 0.055) | <0.001 |
Fasting blood glucose 4,** | 0.001 (−0.0009, 0.004) | 0.1 | 0.001 (−0.001, 0.004) | 0.3 | 0.0006 (−0.004, 0.005) | 0.8 | 0.023 (0.005, 0.041) | 0.009 |
Systolic blood pressure (crude) * | −0.06 (−0.295, 0.194) | 0.6 | −0.025(−0.329, 0.279) | 0.8 | 0.036 (−0.486, 0.559) | 0.8 | −0.878 (−2.54, 0.783) | 0.2 |
Systolic blood pressure 5 | −0.570 (−1.445, 303) | 0.2 | −0.752 (−2.850, 1.344) | 0.4 | −0.984 (−4.655, 2.685) | 0.5 | −2.85 (−6.325, 0.615) | 0.1 |
Diastolic blood pressure (crude) * | 0.185 (0.044, 0.327) | 0.01 | 0.137 (−0.028, 0.302) | 0.1 | 0.018 (−0.262, 0.299) | 0.8 | 1.72(0.857, 2.58) | <0.001 |
Diastolic blood pressure 5 | 0.106 (−0.299, 0.512) | 0.6 | −0.083 (−0.980, 0.812) | 0.8 | −0.325 (−1.913, 1.262) | 0.6 | 1.47 (−0.540, 3.49) | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azemati, B.; Rajaram, S.; Jaceldo-Siegl, K.; Haddad, E.H.; Shavlik, D.; Fraser, G.E. Dietary Animal to Plant Protein Ratio Is Associated with Risk Factors of Metabolic Syndrome in Participants of the AHS-2 Calibration Study. Nutrients 2021, 13, 4296. https://doi.org/10.3390/nu13124296
Azemati B, Rajaram S, Jaceldo-Siegl K, Haddad EH, Shavlik D, Fraser GE. Dietary Animal to Plant Protein Ratio Is Associated with Risk Factors of Metabolic Syndrome in Participants of the AHS-2 Calibration Study. Nutrients. 2021; 13(12):4296. https://doi.org/10.3390/nu13124296
Chicago/Turabian StyleAzemati, Bahar, Sujatha Rajaram, Karen Jaceldo-Siegl, Ella H. Haddad, David Shavlik, and Gary E. Fraser. 2021. "Dietary Animal to Plant Protein Ratio Is Associated with Risk Factors of Metabolic Syndrome in Participants of the AHS-2 Calibration Study" Nutrients 13, no. 12: 4296. https://doi.org/10.3390/nu13124296
APA StyleAzemati, B., Rajaram, S., Jaceldo-Siegl, K., Haddad, E. H., Shavlik, D., & Fraser, G. E. (2021). Dietary Animal to Plant Protein Ratio Is Associated with Risk Factors of Metabolic Syndrome in Participants of the AHS-2 Calibration Study. Nutrients, 13(12), 4296. https://doi.org/10.3390/nu13124296