Nutrition and Healthy Aging: Prevention and Treatment of Gastrointestinal Diseases
Abstract
:1. Introduction
2. Definition and Causes of Malnutrition
3. Pathophysiology of Undernutrition
- ➢
- Intestinal function with a reduction in sensory perceptions, salivation, chewing, absorption of nutrients, and lactose tolerance;
- ➢
- Brain function with cognitive impairment and Alzheimer’s disease;
- ➢
- Body composition with loss of lean mass (especially in skeletal muscle tissue, a phenomenon known as sarcopenia) and increase in fat mass with variation in its distribution;
- ➢
- Balance of fluids;
- ➢
- Bones and joints with osteoporosis and/or arthritis with a consequent increased risk of falls and fractures;
- ➢
- Metabolism with type 2 diabetes mellitus and dyslipidemia;
- ➢
- The cardiovascular system with various diseases;
- ➢
- Cell growth with cancer (cancer in the elderly exhibits a slower growth because they show a slower rate of cell development than in young people) [41].
4. The Aging Gastrointestinal Tract
5. Gastrointestinal Functions
5.1. Chewing Activity and Esophagus
5.2. Stomach
5.3. Small Bowel
5.4. Colon
5.5. Pancreas
5.6. Microbial Digestion
5.7. Intestinal Barrier and Immune System
6. Adverse Consequences of Undernutrition
6.1. Nervous System
6.2. Musculoskeletal System
6.3. Cardiovascular Disease
6.4. Immune System
6.5. Skin System
7. Dietary Solutions for the Aging Gastrointestinal Tract
- Dietary guidelines against malnutrition in the elderly.
- To increase the number of meals to at least three a day, interspersed with snacks;
- To use fortified foods such as enriched bread, yogurt, or pasta;
- To increase nutrient density by adding traditional foods with milk powder or concentrate, grated cheese, eggs, fresh cream, and nuts;
- To hire nourishing liquids such as milk drinks, juices, and smoothies;
- To introduce ONS in the case of specific diseases associated with malnutrition, assumed as snacks or added to meals;
- Tools for nutrition assessment.
- Malnutrition Universal Tool (MUST) for adult community residents.
- Nutritional Risk Screening (NRS) for elderly hospitalized.
- Mini Nutritional Assessment Short Form (MNA) in the elderly.
- Impact of major food products on malnutrition.
Dairy Products
- Meat products
- Fish
- Cereal-based foods
- Barley grain, oat grain fiber, and sugar beet fiber promote the increase in fecal mass;
- Fruits and vegetables
- Water
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rudnicka, E.; Napierała, P.; Podfigurna, A.; Męczekalski, B.; Smolarczyk, R.; Grymowi, M. The World Health Organization (WHO) approach to healthy ageing. Maturitas 2020, 139, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Niccoli, T.; Partridge, L. Aging as a risk factor for disease. Curr. Biol. 2012, 22, R741–R752. [Google Scholar] [CrossRef] [Green Version]
- Norman, K.; Hab, U.; Pirlich, M. Malnutrition in Older Adults. Recent Adv. Remain. Chall. 2021, 13, 2764. [Google Scholar]
- Posner, B.M.; Jette, A.M.; Smith, K.W.; Miller, D.R. Nutrition and Health Risks in the Elderly the Nutrition Screening Initiative. Am. J. Public Health 1993, 83, 972–978. [Google Scholar] [CrossRef] [Green Version]
- Hamirudin, A.H.; Charlton, K.; Walton, K. Outcomes related to nutrition screening in community living older adults: A systematic literature review. Arch. Gerontol. Geriatr. 2016, 62, 9–25. [Google Scholar] [CrossRef] [Green Version]
- Popkin, B.M.; Corvalan, C.; Grummer-Strawn, L.M. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet 2019, 395, 65–74. [Google Scholar] [CrossRef]
- Davis, J.N.; Brietta, M.O.; Engle-Stone, R. The double burden of malnutrition: A systematic review of operational definitions. Curr. Dev. Nutr. 2020, 4, nzaa127. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The Double Burden of Malnutrition: Policy Brief; World Health Organization: Geneva, Switzerland, 2017; Available online: http//www.who.int/nutrition/publications/doubleburdenmalnutrition-policybrief/en/ (accessed on 20 November 2021).
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cereda, E.; Cruz-Jentoft, A.; Goisser, S.; de Groot, L.; Großhauser, F.; Kiesswetter, E.; Norman, K.; et al. Management of Malnutrition in Older Patients—Current Approaches, Evidence and Open Questions. J. Clin. Med. 2019, 8, 974. [Google Scholar] [CrossRef] [Green Version]
- Ennis, B.W.; Saffel-Shrier, S.; Verson, H. Diagnosing Malnutrition in the Elderly. Nurse Pract. 2001, 26, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Evans, C. Malnutrition in the Elderly: A Multifactorial Failure to Thrive. Perm. J. 2005, 9, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Cereda, E.; Veronese, N.; Caccialanza, R. The final word on nutritional screening and assessment in older persons. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 24–29. [Google Scholar] [CrossRef]
- Lochs, H.; Devens, C. Malnutrition—The ignored risk factor. Dig. Dis. 2003, 21, 196–197. [Google Scholar] [CrossRef] [PubMed]
- Visvanathan, R.; McPhee Chapman, I. Undernutrition and Anorexia in the Older People. Gastroenterol. Clin. N. Am. 2009, 38, 393–409. [Google Scholar] [CrossRef]
- Soenen, S.; Rayner, C.K.; Jones, K.; Horowitz, M. The ageing gastrointestinal tract. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older adults: Evidence for a phenotype. J. Gerontol. Ser. A 2001, 56, M146–M157. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, M.; Mazzuoli, S.; Regano, N.; Inguaggiato, R.; Bianco, M.; Leandro, G.; Bugianesi, E.; Noè, D.; Orzes, N.; Pallini, P.; et al. Undernutrition, risk of malnutrition and obesity in gastroenterological patients: A multicenter study. World J. Gastrointest. Oncol. 2016, 8, 563–572. [Google Scholar] [CrossRef] [Green Version]
- Norman, K.; Kirchner, H.; Lochs, H.; Pirlich, M. Malnutrition affects quality of life in gastroenterology patients. World J. Gastroenterol. 2006, 12, 3380–3385. [Google Scholar] [CrossRef]
- Sturm, K.; MacIntosh, C.G.; Parker, B.; Wishart, J.; Horowitz, M.; Chapman, I.M. Appetite, Food Intake, and Plasma Concentrations of Cholecystokinin, Ghrelin, and Other Gastrointestinal Hormones in Undernourished Older Women and Well-Nourished Young and Older Women. J. Clin. Endocrinol. Metab. 2003, 88, 3747–3755. [Google Scholar] [CrossRef] [Green Version]
- Norman, K.; Pichard, C.; Lochs, H.; Pirlich, M. Prognostic impact of disease-related malnutrition. Clin. Nutr. 2008, 27, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Saltzman, J.R.; Russel, R.M. The aging gut. Gastroenterol. Clin. N. Am. 1998, 27, 309–324. [Google Scholar] [CrossRef]
- Mangels, A.R. CE: Malnutrition in Older Adults. AJN Am. J. Nurs. 2018, 118, 34–41. [Google Scholar] [CrossRef]
- Agarwal, E.; Miller, M.; Yaxley, A.; Isenring, E. Malnutrition in the elderly: A narrative review. Maturitas 2013, 76, 296–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Boer, A.; Ter Horst, G.J.; Lorist, M.M. Physiological and psychological age-related changes associated with reduced food intake in older persons. Aging Res. Rev. 2013, 12, 316–328. [Google Scholar] [CrossRef]
- Jensen, G.L.; McGee, M.; Binkley, J. Nutrition in the Elderly. Gastroenterol. Clin. N. Am. 2001, 30, 313–334. [Google Scholar] [CrossRef]
- Hickson, M. Malnutrition and ageing. Postgrad. Med. J. 2006, 82, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Mathur, P.; Pillai, R. Overnutrition: Current scenario and combact strategies. Indian J. Med. Res. 2019, 149, 695–705. [Google Scholar] [CrossRef]
- Stenholm, S.; Harris, T.B.; Rantanen, T.; Visser, M.; Kritchevsky, S.B.; Ferrucci, L. Sarcopenic obesity: Definition, cause and consequences. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 693–700. [Google Scholar] [CrossRef] [Green Version]
- Teigen, L.M.; Kuchnia, A.J.; Nagel, E.M.; Price, K.L.; Hurt, R.T.; Earthman, C.P. Diagnosing clinical malnutrition: Perspectives from the past and implications for the future. Clin. Nutr. ESPEN 2018, 26, 13–20. [Google Scholar] [CrossRef]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. An ESPEN Consensus Statement: ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef]
- Yeung, S.S.; Chan, R.S.; Kwok, T.; Lee, J.S.; Woo, J. Malnutrition According to GLIM Criteria and Adverse Outcomes in Community-Dwelling Chinese Older Adults: A Prospective Analysis. J. Am. Med Dir. Assoc. 2020, 22, 1953–1959. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De van der Schueren, M.A.E.; Keller, H.; Cederholm, T.; Barazzoni, R.; Compher, C.; Correia, M.; Gonzalez, M.C.; Jager-Wittenaar, H.; Pirlich, M.; Steiber, A.; et al. Global Leadership Initiative on Malnutrition (GLIM): Guidance on validation of the operational criteria for the diagnosis of protein-energy malnutrition in adults. Clin. Nutr. 2020, 39, 2872–2880. [Google Scholar] [CrossRef] [PubMed]
- Roubenoff, R. Inflammatory and hormonal mediators of cachexia. J. Nutr. 1997, 127, 1014–1016. [Google Scholar] [CrossRef]
- Tan, V.M.H.; Pang, B.W.J.; Lau, L.K.; Jabbar, K.A.; Seah, W.T.; Chen, K.K.; Ng, T.P.; Wee, S.L. Malnutrition and Sarcopenia in Community-Dwelling Adults in Singapore: Yishun Health Study. J. Nutr. Health Aging 2021, 25, 374–381. [Google Scholar] [CrossRef]
- Coin, A.; Sergi, G.; Benincà, P.; Lupoli, L.; Cinti, G.; Ferrara, L.; Benedetti, G.; Tomasi, G.; Pisent, C.; Enzi, G. Bone mineral density and body composition in underweight and normal elderly subjects. Osteoporos. Int. 2000, 11, 1043–1050. [Google Scholar] [CrossRef]
- Geinoz, G.; Rapin, C.H.; Rizzoli, R.; Kraemer, R.; Buchs, B.; Slosman, D.; Michel, J.P.; Bonjour, J.P. Relationship between bone mineral density and dietary intakes in the elderly. Osteoporos. Int. 1993, 3, 242–248. [Google Scholar] [CrossRef]
- Lengelé, L.; Bruyère, O.; Beaudart, C.; Reginster, J.Y.; Locquet, M. Impact of Malnutrition Status on Muscle Parameter Changes over a 5-Year Follow-Up of Community-Dwelling Older Adults from the SarcoPhAge Cohort. Nutrients 2021, 13, 407. [Google Scholar] [CrossRef]
- Kawakami, K.; Kadota, J.; Iida, K.; Shirai, R.; Abe, K.; Kohno, S. Reduced immune function and malnutrition in the elderly. Tohoku J. Exp. Med. 1999, 187, 157–171. [Google Scholar] [CrossRef] [Green Version]
- Rémond, D.; Danit, R.; Shahar, D.R.; Gille, D.; Pinto, P.; Kachal, J.; Peyron, M.A. Nunes Dos Santos, C.; Walther, B.; Bordoni, A.; et al. Understanding the gastrointestinal tract of the elderly to develop dietary solutions that prevent malnutrition. Oncotarget 2015, 6, 13858–13898. [Google Scholar] [CrossRef] [Green Version]
- Morley, J.E. Hormones and Sarcopenia. Curr. Pharm. Des. 2017, 23, 4484–4492. [Google Scholar] [CrossRef]
- Salazar, N.; Valdes-Varela, L.; Gonzalez, S.; Gueimonde, M.; de los Reyes-Gavilàn, C.G. Nutrition and the gut microbe in the elderly. Gut Microbes 2017, 8, 82–97. [Google Scholar] [CrossRef]
- Holt, P. Gastrointestinal diseases in the elderly. Curr. Opin. Clin. Nutr. Metab. Care 2003, 6, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Hazeldine, J.; Lord, J.M. Innate immunesenescence: Underlying mechanisms and clinical relevance. Biogerontology 2015, 16, 187–201. [Google Scholar] [CrossRef] [PubMed]
- Man, A.L.; Bertelli, E.; Rentini, S.; Regoli, M.; Briars, G.; Marini, M.; Watson, A.J.M.; Nicoletti, C. Age-associated modifications of intestinal permeability and innate immunity in human small intestine. Clin. Sci. 2015, 129, 515–527. [Google Scholar] [CrossRef] [Green Version]
- Grishina, I.; Fenton, A.; Sankaran-Walters, S. Gender differences, aging and hormonal status in mucosal injury and repair. Aging Dis. 2014, 5, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Man, A.L.; Gicheva, N.; Nicoletti, C. The impact of ageing on the intestinal epithelial barrier and immune system. Cell. Immunol. 2014, 289, 112–118. [Google Scholar] [CrossRef]
- Landi, F.; Picca, A.; Calvani, R.; Marzetti, E. Anorexia of Aging: Assessment and Management. Clin. Geriatr. Med. 2017, 33, 315–323. [Google Scholar] [CrossRef]
- Donini, L.M.; Savina, C.; Cannellla, C. Eating habits and appetite control in the Elderly: The anorexia of aging. Int. Psychogeriatr. 2003, 15, 73–87. [Google Scholar] [CrossRef]
- Cousson, P.Y.; Bessadet, M.; Veyrune, J.L.; Lesourd, B.; Lassauzay, C. Nutritional status, dietary intake and oral quality of life in elderly complete denture wearers. Gerontology 2012, 29, e685–e692. [Google Scholar] [CrossRef]
- Watanabe, Y.; Okada, K.; Kondo, M.; Matsushita, T.; Nakazawa, S.; Yamazaki, Y. Oral health for achieving longevity. Geriatr. Gerontol. Int. 2020, 20, 526–538. [Google Scholar] [CrossRef]
- Ritche, C.S.; Joshipura, K.; Hung, H.C.; Douglas, C.W. Nutrition as a mediator in the relation between oral and systemic disease: Association between specific measures af adult health and nutrition outcomes. Crit. Rev. Oral. Biol. Mod. 2002, 13, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Mioche, I.; Bourdiol, P.; Peyron, M.A. Influence of age on mastication: Effects on eating behavior. Nutr. Res. Rev. 2004, 17, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Peyron, M.A.; Blanc, O.; Lund, J.P.; Woda, A. Influence of age on adaptality of human mastication. J. Neurophysiol. 2004, 92, 773–779. [Google Scholar] [CrossRef] [Green Version]
- Besanko, L.K.; Burgstad, C.M.; Cock, C.; Heddle, R.; Fraser, A.; Fraser, R.J. Changes in esophageal and lower esophageal sphincter motility with healthy aging. J. Gastroenterol. Liver Dis. 2014, 23, 243–248. [Google Scholar] [CrossRef]
- O’Connor, A.; O’Morain, C. Digestive function of the stomach. Dig. Dis. 2014, 32, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Soen, S.; Rayner, C.K.; Horowitz, M.; Jones, K.L. Gastric emptyng in the elderly. Clin. Geriatr. Med. 2015, 31, 339–353. [Google Scholar] [CrossRef] [PubMed]
- Trahair, L.G.; Horowitz, M.; Jones, K.L. Postprandial hypotension is associated with more rapid gastric emptying in healthy older individuals. J. Am. Med. Dir. Assoc. 2015, 16, 521–523. [Google Scholar] [CrossRef]
- Rayner, C.K.; Horowitz, M. Physiology of the ageing gut. Curr. Opin. Clin. Nutr. Metab. Care. 2013, 16, 33–38. [Google Scholar] [CrossRef]
- Marrinan, S.; Emmanuel, A.V.; Bum, D.J. Dylayed gastric emptying in Parkinson’s disease. Mov. Disord. 2014, 29, 23–32. [Google Scholar] [CrossRef]
- Parlesak, A.; Klein, B.; Schecher, K.; Bode, J.C.; Bode, C. Prevalence of small bowel bacterial overgrouth and its association with nutrition intake in nonhospitalized older adults. J. Am. Geriatr. Soc. 2003, 51, 768–773. [Google Scholar] [CrossRef]
- Feldman, M.; Cryer, B.; McArthur, K.E.; Huet, B.A.; Lee, E. Effects of aging and gastritis on gastric acid and pepsin secretion in humans: A prospective study. Gastroenterology 1996, 110, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Hurlimann, S.; Dür, S.; Schwab, P.; Varga, L.; Mazzucchelli, L.; Brand, R.; Halter, F. Effects of Helicobacter pylori on gastritis, pentagastrin-stimulated gastric acid secretion, and meal-stimulated plasma gastrin release in the absence of peptic ulcer disease. Am. J. Gastroenterol. 1998, 93, 1277–1285. [Google Scholar] [CrossRef]
- Pilotto, A.; Franceschini, M. Helicobacter pylori infection in older people. World J. Gastroenterol. 2014, 20, 6364–6376. [Google Scholar]
- Tamawski, A.S.; Ahluwala, A.; Jones, M.K. Increased susceptibility of aging gastric mucosa to injury: The mechanism and clinical implication. World J. Gastroenterol. 2014, 20, 4467–4482. [Google Scholar] [CrossRef]
- Ren, W.-Y.; Wu, K.-F.; Li, X.; Luo, M.; Liu, H.-C.; Zhang, S.-C.; Hu, Y. Age related changes in small intestine mucosa epithelium architecture and epithelial tight junctions in rat models. Aging Clin. Exp. Res. 2014, 26, 183–191. [Google Scholar] [CrossRef]
- Valentini, L.; Ramminger, S.; Haas, V.; Postrach, E.; Werich, M.; Fischer, A.; Koller, M.; Swidsinski, A.; Bereswill, S.; Lochs, H.; et al. Small intestine permeability in older adults. Physiol. Rep. 2014, 2, e00281. [Google Scholar] [CrossRef]
- Tran, L.; Meerveld, B.G. In a non-human primate model, aging disrupts the neural control of intestinal smooth muscle contractility in a region-specific manner. Neurogastroenterol. Motil. 2014, 26, 410–418. [Google Scholar] [CrossRef]
- Metcalf, A.M.; Phillips, S.F.; Zinsmeister, A.R.; MacCarty, R.L.; Beart, R.W.; Wolff, B.G. Simplified assessment of segmental colonic transit. Gastroenterology 1987, 92, 40–47. [Google Scholar] [CrossRef]
- Graff, J.; Brinch, K.; Madsen, J.L. Gastrointestinal mean transit times in young and middle-aged healthy subjects. Clin. Physiol. 2001, 21, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Gullo, L.; Simoni, P.; Migliori, M.; Lucrezio, L.; Bassi, M.; Frau, F.; Costa, P.L.; Nestico, V. A Study of Pancreatic Function among Subjects over Ninety Years of Age. Pancreatology 2009, 9, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Laugier, R.; Bernard, J.-P.; Berthezene, P.; Dupuy, P. Changes in pancreatic exocrine secretion with age: Pancreatic exocrine does decrease in the elderly. Digestion 1991, 50, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Herzing, K.H.; Purhonen, A.K.; Rasamen, K.M.; Idziak, J.; Juvonen, P.; Phillips, R.; Walkowiak, J. Fecal pancreatic elastase-1 levels in older individuals without known gastrointestinal diseases od diabetes mellitus. BMC Geriatr. 2011, 11, 4. [Google Scholar]
- Sato, T.; Ito, K.; Tamada, T.; Sone, T.; Noda, Y.; Higaki, A.; Kanki, A.; Tanimoto, D.; Higashi, H. Age-related changes in normal adult pancreas: MR imaging evaluation. Eur. J. Radiol. 2012, 81, 2093–2098. [Google Scholar] [CrossRef] [PubMed]
- Rothenbacher, D.; Löw, M.; Hardt, P.D.; Klör, H.-U.; Ziegler, H.; Brenner, H. Prevalence and determinants of exocrine pancreatic insufficiency among older adults: Results of a population-based study. Scand. J. Gastroenterol. 2005, 40, 697–704. [Google Scholar] [CrossRef]
- De Tata, V. Age-Related Impairment of Pancreatic Beta-Cell Function: Pathophysiological and Cellular Mechanisms. Front. Endocrinol. 2014, 5, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, R.; Brenda, E.; Orgon, A.L.; Powell, C.C.; Dalla, M.C.; Basu, A.; Vittone, J.L.; Klee, G.; Arora, P.; Jensen, M.D.; et al. Mechanism of age-associated deterioration in glucose toleranxice: Contribution of alterations in insulin secretion, action and clearance. Diabetes 2003, 52, 1738–1748. [Google Scholar] [CrossRef] [Green Version]
- Odamaki, T.; Kato, K.; Sugahara, H.; Hashikura, N.; Takkahashi, S.; Xiai, J.Z.; Abe, F.; Osawa, R. Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol. 2016, 16, 90. [Google Scholar] [CrossRef] [Green Version]
- Biagi, E.; Candela, M.; Turroni, S.; Garagnani, P.; Franceschi, C.; Brigidi, P. Ageing and gut microbes: Perspectives for health maintenance and longevity. Pharmacol. Res. 2013, 69, 11–20. [Google Scholar] [CrossRef]
- Biagi, E.; Candela, M.; Fairweather-Tait, S.; Franceschi, C.; Brigidi, P. Aging of the human microorganism: The microbial counterpart. Age 2012, 34, 247–267. [Google Scholar] [CrossRef] [Green Version]
- Rampelli, S.; Candela, M.; Turroni, S.; Biagi, E.; Collino, S.; Franceschi, C.; O’Toole, P.; Brigidi, P. Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging 2013, 5, 902–912. [Google Scholar] [CrossRef] [Green Version]
- Cătoia, A.F.; Corinab, A.; Katsikic, N.; Vodnard, D.C.; Andreicuț, A.D.; Pantea Stoiane, A.; Rizzof, M.; Pérez-Martínezb, P. Gut microbiota and aging-A focus on centenarians. BBA—Mol. Basis Dis. 2020, 1, 1657–1665. [Google Scholar] [CrossRef] [PubMed]
- Pascale, A.; Marchesi, N.; Marelli, C.; Coppola, A.; Luzi, L.; Govoni, S.; Giustina, A.; Gazzaruso, C. Microbiota and metabolic diseases. Endocrine 2018, 61, 357–371. [Google Scholar] [CrossRef] [PubMed]
- Biagi, E.; Nylund, L.; Candela, M.; Ostan, R.; Bucci, L.; Pini, E.; Nikkila, J.; Monti, D.; Satokari, R.; Franceschi, C.; et al. Through ageing, and beyond: Gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 2010, 5, e10667. [Google Scholar] [CrossRef]
- Biagi, E.; Franceschi, C.; Rampelli, S.; Severgnini, M.; Ostan, R.; Turroni, S.; Consolandi, C.; Quercia, S.; Scurti, M.; Monti, D.; et al. Gut microbiota and extreme longevity. Curr. Biol. 2016, 26, 1480–1485. [Google Scholar] [CrossRef] [Green Version]
- Claesson, M.; Jeffery, I.B.; Conde, S.; Power, S.E.; O’ Connor, E.M.; Cusak, S.; Harris, H.M.; Coakley, M.; Lakshminarayanan, B.; O’Sullivan, O.; et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012, 488, 178–184. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Ouwehand, A.; Isolauri, E.; Hosoda, M.; Benno, Y.; Salminen, S. Differences in Composition and Mucosal Adhesion of Bifidobacteria Isolated from Healthy Adults and Healthy Seniors. Curr. Microbiol. 2001, 43, 351–354. [Google Scholar] [CrossRef]
- Newton, J.L.; Jordan, N.; Pearson, J.; Williams, G.V.; Allen, A.; James, O.F. The adherent gastric antral and duodenal mucus gel layner thins with advancing age in subjects infected with Helicobacter pylori. Gerontology 2000, 46, 153–157. [Google Scholar] [CrossRef]
- Mabbott, N.A.; Kobayashi, A.; Sehgal, A.; Bradford, B.; Pattison, M.; Donaldson, D. Aging and the mucosal immune system in the intestine. Biogerontology 2015, 16, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Kato, H.; Fujihashi, K.; Wang, H.Y.; Kato, R.; Dohi, T.; Fujihashi, K.; Hagiwara, Y.; Kataoka, K.; Kobayashi, R.; McGhee, J.R. Lack of oral tolerance in aging is due to sequential loss of Peyer’s patch cell interactions. Int. Immunol. 2003, 15, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Soderstrom, L.; Rosenbland, A.; Adolfoss, E.T.; Saletti, A.; Bergkvist, L. Nutritional status predicts preterm deth in older people: A prospective cohort study. Clin. Nutr. 2014, 333, 354–359. [Google Scholar] [CrossRef] [Green Version]
- Feldblum, I.; German, L.; Bilenko, N.; Shahar, A.; Enten, R.; Greenberg, D.; Harman, I.; Castel, H.; Shahar, D. Nutritional risk and health care use before and after an acute hospitalization among the elderly. Nutrition 2009, 25, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.M.; Veyres, P.; Pivot, X.; Soummer, A.-M.; Jambou, P.; Filippi, J.; van Obberghen, E.; Hebuterne, X. Malnutrition is an independent factor associated with nosocomial infections. Br. J. Nutr. 2004, 92, 105–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.M.; Ortolani, E.; Savera, G.; Sisto, A.; Marzetti, E. Anorexia of Aging: Risk Factors, Consequences, and Potential Treatments. Nutrition 2016, 8, 69. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.C. Nutritional determinants of cognitive aging and dementia. Proc. Nutr Soc. 2012, 71, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Christen, Y. Oxidative stress and Alzheimer disease. Am. J. Clin. Nutr. 2000, 71, 621S–629S. [Google Scholar] [CrossRef]
- Mangialasche, F.; Kivipelto, M.; Mecocci, P.; Rizzuto, D.; Palmer, K.; Winblad, B.; Fratiglioni, L. High plasma levels of vitamin E forms and reduced Alzheimer’s disease risk in advanced age. J. Alzheimer Dis. 2010, 20, 1029–1037. [Google Scholar] [CrossRef] [Green Version]
- Engehhart, M.J.; Geerlings, M.I.; Riutenberg, A.; van Swieten, J.C.; Hofman, A.; Witteman, J.C.; Breteler, M.M. Dietary intake of antioxidants and risk of Alzheimer disease. J. Am. Med. Assoc. 2002, 287, 3223–3229. [Google Scholar] [CrossRef] [Green Version]
- Haan, M.N.; Miller, J.W.; Aiello, A.E.; Whitmer, R.A.; Jagust, W.J.; Mungas, D.M.; Allen, L.H.; Green, R. Homocysteina, B vitamins and the incidence of dementia and cognitive impairment: Results from the Sacramento Area Latino Study on Aging. Am. J. Clin. Nutr. 2007, 85, 511–517. [Google Scholar] [CrossRef]
- Seshadri, S. Elevated plasma homocysteine levels: Risk factor or risk marker for the development of dementia and Alzheimer’s disease? J. Alzheimer Dis. 2006, 9, 393–398. [Google Scholar] [CrossRef]
- Delmonico, M.J.; Harris, T.B.; Visser, M.; Park, S.W.; Conroy, M.B.; Velasquez-Mieyer, P.; Boudreau, R.; Manini, T.M.; Nevitt, M.; Health Aging Body Composition Study; et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am. J. Clin. Nutr. 2009, 90, 1579–1585. [Google Scholar]
- Cruz-Jontoft, A.J.; Landi, F.; Schneider, S.M.; Zaniga, C.; Arai, H.; Boirie, Y.; Chen, L.K.; Fielding, R.A.; Martin, F.C.; Michel, J.P.; et al. Prevalence of and interventions for sarcopenia in ageing adults: A systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Aging 2014, 43, 748–759. [Google Scholar] [CrossRef] [PubMed]
- Nieves, J.W. Skeletal effects of nutrients and nutraceuticals, beyond calcium and vitamin D. Osteoporos. Int. 2013, 79, 771–786. [Google Scholar] [CrossRef]
- Brincata, M.; Gambita, J.; Agiusa, J.C. The role of vitamin D in osteoporosis. Maturitas 2015, 80, 329–332. [Google Scholar] [CrossRef]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Styudy Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef] [PubMed]
- Paddon-Jones, D.; Leidy, H. Dietary protein and muscle in older persons. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Schulman, R.C.; Weiss, A.J.; Mechanick, J.I. Nutrition bone and aging: An integrative physiology approach. Curr. Osteoporos. Rep. 2011, 9, 184–195. [Google Scholar] [CrossRef] [PubMed]
- McKeag, N.A.; McKinley, M.C.; Woodside, J.V.; Harbison, M.T.; McKeown, P.P. The role of micronutrients in heart failure. J. Acad. Nutr. Diet. 2012, 112, 870–886. [Google Scholar] [CrossRef]
- North, B.J.; Sinclar, D.A. The Intersection between Aging and Cardiovascolar Disease. Circ. Res. 2012, 110, 1097–1108. [Google Scholar] [CrossRef]
- Lennie, T.A.; Moser, D.K.; Heo, S.; Chung, M.L.; Zambroski, C.H. Factors influencing food intake in patients with heart failure: A comparison with healthy elders. J. Cardiovasc. Nurs. 2006, 21, 123–129. [Google Scholar] [CrossRef]
- Moreley, J.E. Pathophysiology of the anorexia of aging. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 27–32. [Google Scholar] [CrossRef]
- Franceschi, C.; Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated disease. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, S4–S9. [Google Scholar] [CrossRef] [PubMed]
- Lesourd, B.; Mazari, L. Nutrition and immunity in the elderly. Proc. Nutr. Soc. 1999, 58, 685–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sijben, J.W.; Calder, P.C. Differential immunomodulation with long-chain n-3 PUFA in health and chronic disease. Proc. Nutr Soc. 2007, 66, 237–259. [Google Scholar] [CrossRef] [Green Version]
- Wintergest, F.S.; Maggini, S.; Horning, D.H. Contribution of selected vitamins and trace elements to immune function. Ann. Nutr. Metab. 2007, 51, 301–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.T.; Stenger, S.; Li, H.; Wenzel, L.; Tan, B.H.; Krutzik, S.R.; Ochoa, M.T.; Schauber, J.; Wu, K.; Meinken, C.; et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006, 311, 1770–1773. [Google Scholar] [CrossRef]
- Pae, M.; Meydani, S.N.; Wu, D. The role of nutrition in enhancing immunity in aging. Aging Dis. 2012, 3, 91–129. [Google Scholar]
- Ahluwalia, N. Aging, nutrition and immune function. J. Nutr. Health Aging 2004, 8, 2–6. [Google Scholar]
- Fulop, T.; Pawelec, G.; Castle, S.; Loeb, M. Immunosenescence and vaccination in nursing home residents. Clin. Infect. Dis. 2009, 48, 443–448. [Google Scholar] [CrossRef] [Green Version]
- Arnold, M.; Barbul, A. Nutrition and wound healing. Plast. Reconstr. Surg. 2006, 117, 42S–58S. [Google Scholar] [CrossRef]
- Stechmiller, J.K. Understanding the role of nutrition and wound healing. Nutr. Clin. Pract. 2010, 25, 61–68. [Google Scholar] [CrossRef]
- Raynaud-Simon, A. Virtual clinical nutrition university: Malnutrition in the elderly, epidemiology and consequences. e-SPEN Eur. e-J. Clin. Nutr. Metab. 2009, 4, 422–450. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, M.; Muniz, N. Position of the Academy of Nutrition and Dietetics: Food and nutrition for older adults: Promoting health and wellness. J. Acad. Nutr. Diet. 2012, 112, 1255–1277. [Google Scholar] [CrossRef] [PubMed]
- Raynaud-Simon, A.; Revel-Delhom, C.; Hebuterne, X. Clinical practice guidelines from the French Health High Authority: Nutritional support strategy in protein-energy malnutrition in the elderly. Clin. Nutr. 2011, 30, 319–321. [Google Scholar] [CrossRef]
- EFSA. Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for carbohydretes and dietary fibres. EFSA J. 2010, 8, 1462–1539. [Google Scholar]
- EFSA. Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsatured fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010, 8, 1461–1568. [Google Scholar]
- EFSA. Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for protein. EFSA J. 2012, 10, 2557. [Google Scholar] [CrossRef]
- EFSA. Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for energy. EFSA J. 2013, 11, 3005. [Google Scholar] [CrossRef] [Green Version]
- Deutz, N.E.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.J.; Krznariç, Z.; Nair, K.S.; et al. Protein intake and exercise for optimal muscle function with aging.: Recommendations from the Espen Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Bouillanne, O.; Curis, E.; Hamon-Vilcot, B.; Nicolis, I.; Chrétien, P.; Schauer, N.; Vincent, J.-P.; Cynober, L.; Aussel, C. Impact of protein pulse feeding on lean mass in malnourished and at-risk hospitalized elderly patients: A randomized controlled trial. Clin. Nutr. 2013, 32, 186–192. [Google Scholar] [CrossRef]
- De Groot, C.P.; van Staveren, W.A. Nutritional concerns, health and survival in old age. Biogerontology 2010, 11, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Mocchegiani, E.; Romeo, J.; Malavolta, M.; Costarelli, L.; Giacconi, R.; Diaz, L.-E.; Marcos, A. Zinc: Dietary intake and impact of supplementation on immune function in elderly. Age 2013, 35, 839–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mak, T.N.; Caldeira, S. The Role of Nutrition in Active and Healthy Ageing for Ptrvrnyion and Treatment of Age-Related Diseases: Evidence so Far; Sceince and Policy Report by the Joint Research Centre of the European Commission; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar]
- National Prescribing Centre. Prescribing of Adult Oral Nutritional Supplements (ONS): Guiding Principles for Improving the Systems and Processes for ONS Use; National Prescribing Centre: Liverpool, UK, 2012. [Google Scholar]
- Schneyder, A. Malnutrition and nutritional supplements. Aust. Prescr. 2014, 37, 120–123. [Google Scholar] [CrossRef]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.J.; Goisser, S.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.C.; et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin. Nutr. 2019, 38, 10–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, S.B.; Fuss, P.; Heyman, M.B.; Evans, J.W.; Tsay, R.; Rasmussen, H.; Fiatarone, M.; Cortiella, J.; Dallal, G.E.; Young, V.R. Control of food intake in older men. JAMA 1994, 272, 1601–1606. [Google Scholar] [CrossRef]
- Kondrup, J.; Allison, S.P.; Elia, A.; Vellas, B.; Plauth, M. ESPEN Guidelines for Nutrition Screening. Clin. Nutr. 2003, 22, 415–421. [Google Scholar] [CrossRef]
- Cereda, E. Mini Nutritional Assessment. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Chwang, L.C. Nutrition and dietetics in aged care. Nutr. Diet. 2012, 69, 203–207. [Google Scholar] [CrossRef]
- Fukushuma, Y.; Miyaguchi, S.; Yamano, T.; Kuburagi, T.; Iino, H.; Ushida, K.; Sato, K. Improvement of nutritional status and incidence of infection in hospitalized, enterally fed elderly by feeding of fermented milk containing probiotic Lactobacillus johnsonii La1. Br. J. Nutr. 2007, 98, 969–977. [Google Scholar] [CrossRef] [Green Version]
- Iuliano, S.; Woods, J.; Robbins, J. Consuming two additional serves of dairy food a day significantly improves energy and nutrient intakes in ambulatory aged care residents: A feasibility study. J. Nutr. Health Aging 2013, 17, 509–513. [Google Scholar] [CrossRef]
- Russell, R.M.; Baik, H.; Kehayias, J.J. Older men and women efficiently absorb vitamin B 12 from milk and fortifield bread. J. Nutr. 2001, 131, 291–293. [Google Scholar] [CrossRef] [Green Version]
- Fujita, R.; Iimuro, S.; Shinizaki, T.; Sakamaki, K.; Uemura, Y.; Takeuchi, A.; Mtsuyama, Y.; Ohashi, Y. Decreased duration od acute upper respiratory tract infections with daily intake of fermented milk: A multicenter, double-blinded, randomized comparative study in users of day care facilities for elderly population. Am. J. Infect. Control. 2013, 41, 1231–1253. [Google Scholar] [CrossRef] [PubMed]
- Lahtinen, S.J.; Forssten, S.; Aakko, J.; Granlund, L.; Rautonen, N.; Salminen, S.; Viitanen, M.; Ouwehand, A.C. Probiotic cheese containing Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus NCFM® modifies subpopulations of fecal lactobacilli and Clostridium difficile in the elderly. Age 2012, 34, 133–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boge, T.; Remigy, M.; Vaudaine, S.; Tanguy, J.; Bourdet-Sicard, R.; van der Werf, S. A probiotic fermented dairy drink improves antibody response to influenza vaccination in the elderly in two randomized controlled trials. Vaccine 2009, 27, 5677–5684. [Google Scholar] [CrossRef] [PubMed]
- Kau, A.L.; Ahern, P.P.; Griffin, N.W.; Goodman, A.L.; Gordon, J.I. Human nutrition, the gut microbiome and the immune system. Nature 2011, 474, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Rizzoli, R.; Boonen, S.; Brandi, M.L.; Bruyere, O.; Cooper, C.; Kanis, J.A.; Kaufman, J.M.; Ringe, J.D.; Weryha, G.; Reginster, J.Y. Vitamin D supplementation in elderly or postmenopausal women: A 2013 update of the 2008 recommendations from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Curr. Med. Res. Opin. 2013, 29, 305–313. [Google Scholar] [CrossRef]
- Engelen, M.; de Castro, C.; Rutten, E.; Wouters, E.; Schols, A.; Deutz, N. Enhanced anabolic response to milk protein sip feeding in elderly subjects with COPD is associated with a reduced splanchnic extraction of multiple amino acids. Clin. Nutr. 2012, 31, 616–624. [Google Scholar] [CrossRef] [Green Version]
- Sairanen, U.; Piirainen, L.; Nevala, R.; Korpela, R. Yogurt containing galacto-oligosaccharides, prunes and linseed reduces the severity of mild constipation in elderly subjects. Eur. J. Clin. Nutr. 2007, 61, 1328–1423. [Google Scholar] [CrossRef] [Green Version]
- Rajala, S.A.; Salminen, S.J.; Seppanen, J.H.; Vapaatalo, H. Treatment of chronic constipation with lactitol sweetened yoghurt supplemented with guar gum and wheat bran in elderly hospital in-patients. Compr. Gerontol. A 1988, 2, 83–86. [Google Scholar]
- Nagata, S.; Asahara, T.; Ohta, T.; Yamada, T.; Kondo, S.; Bian, L.; Wang, C.; Yamashiro, Y.; Nomoto, K. Effect of the continuous intake of probiotic-fermented milk containing Lactobacillus casei strain Shirota on fever in a mass outbreak of norovirus gastroenteritis and the faecal microflora in a health service facility for the aged. Br. J. Nutr. 2011, 106, 549–556. [Google Scholar] [CrossRef] [Green Version]
- Petersson, L.G.; Magnusson, K.; Hakestam, U.; Baigi, A.; Twetman, S. Reversal of primary root caries lesions after daily intake of milk supplemented with fluoride and probiotic lactobacilli in older adults. Acta Odontol. Scand. 2011, 69, 321–327. [Google Scholar] [CrossRef]
- Griep, M.I.; Mets, T.F.; Massart, D.L. Effects of flavor amplification of Quorn and yoghurt on food preference and consumption in relation to age, BMI and odour perception. Br. J. Nutr. 2000, 83, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Pederson, A.N.; Cederholm, T. Health effects of protein intake in healthy population: A systematic literature reviews. Food Nutr. Res. 2014, 58, 23364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurrel, R.F.; Reddy, M.B.; Juillerat, M.; Cooks, J.D. Meat protein fractions enhance nonheme iron absorption in humans. J. Nutr. 2006, 136, 2808–2812. [Google Scholar] [CrossRef]
- Ortigues-Marty, I.; Thomas, E.; Prévéraud, D.; Girard, C.L.; Bauchart, D.; Durand, D.; Peyron, A. Influence of maturation and cooking treatments on the nutritional value of bovine meats: Water losses and vitamin B 12. Meat Sci. 2006, 73, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Pourkhalili, A.; Mirlohi, M.; Rahimi, E. Heme iron content in lamb meat is differentially altered upon boiling, grilling, or frying as assessed by four distinct analytical methods. Sci. World J. 2013, 8, 2013. [Google Scholar] [CrossRef] [Green Version]
- Amal, M.A.; Mosoni, L.; Boirie, L.; Boirie, Y.; Houlier, M.L.; Morin, L.; Verdier, F.; Ritz, P.; Antoine, J.M.; Prugnaud, J.; et al. Protein pulse feeding improves protein retention in elderly women. Am. J. Clin. Nutr. 1999, 69, 1202–1208. [Google Scholar]
- Dangin, M.; Guillet, C.; Garcia-Rodenas, C.; Reffers-Magnani, K.; Fauquant, J.; Ballevre, O.; Beaufrere, B. The rate of protein gain differently during aging in humans. J. Physiol. 2003, 549, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Rémond, D.; Machebeuf, M.; Yven, C.; Buffière, C.; Mioche, L.; Mosoni, L.; Mirand, P.P. Postprandial whole-body protein metabolism after a meat meal is influenced by chewing efficiency in elderly subjects. Am. J. Clin. Nutr. 2007, 85, 1286–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennings, B.; Groen, B.B.; van Dijk, J.; de Lange, A.; Kiskini, A.; Kuklinski, M.; Senden, J.M.G.; van Loon, L. Minced beef is more rapidly digested and absorbed than beef steak, resulting in greater postprandial protein retention in older men. Am. J. Nutr. 2013, 98, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Bauchart, C.; Savary-Auzeloux, I.; Mirand, P.P.; Thomas, E.; Morzel, M.; Rémond, D. Carnosine concentration of ingested meat affects carnosine net release into the portal vein of minipigs. J. Nutr. 2007, 137, 589–593. [Google Scholar] [CrossRef]
- Guiotto, A.; Calderan, A.; Ruzza, P.; Borin, G. Carnosine and carnosine-related antioxidants: A review. Curr. Med. Chem. 2005, 12, 2293–2315. [Google Scholar] [CrossRef] [PubMed]
- Hobart, L.J.; Seibel, I.; Yeargans, G.S.; Seidler, N.W. Anti-crosslinking properties of carnosine: Significance of histidine. Life Sci. 2004, 75, 1379–1389. [Google Scholar] [CrossRef] [PubMed]
- Hipkiss, A.R. Could carnosine or related structures suppress Alzheimer’s disease? J. Alzheimer Dis. 2007, 11, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Hipkiss, A.R. Would carnosine or carnivorous diet help suppress aging and associated pathologies? Am. N. Y. Acad. Sci. 2006, 1067, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Szczesniak, D.; Budzen, S.; Kopec, W.; Rymaszewska, J. Anserine and carnosine supplementation in the elderly: Effects on cognitive functioning and physical capacity. Arch. Gerontol. Geriatr. 2014, 59, 485–490. [Google Scholar] [CrossRef]
- Calder, P.C. Fatty acids and inflammation: The cutting edge between food and pharma. Eur. J. Paharmacol. 2011, 668, 550–558. [Google Scholar] [CrossRef]
- Gozales, S.; Huerta, J.M.; Fernandez, S.; Patterson, A.M.; Lasheras, C. The relationship between dietary lipids and cognitive performance in an elderly population. Int. J. Food Sci. Nutr. 2010, 61, 217–225. [Google Scholar]
- Baierle, M.; Vencato, P.H.; Oldenburg, L.; Bordignon, S.; Zibetti, M.R.; Trentini, C.M.; Duarte, M.M.M.F.; Veit, J.C.; Somacal, S.; Emanuelli, T.; et al. Fatty acid status and its relationship to cognitive decline and homocysteine levels in the elderly. Nutrition 2014, 6, 3624–3640. [Google Scholar] [CrossRef] [Green Version]
- Berr, C.; Akbaraly, T.; Arnaud, J.; Hininger, I.; Roussel, A.-M.; Gateau, P.B. Increased selenium intake in elderly high fish consumers may account for health benefits previously ascribed to omega-3 fatty acid. J. Nutr. Health Aging 2009, 13, 14–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellow, N.J.; Walker, K.Z. Authorised EU health claim for arabinoxylan. In Foods, Nutrients and Food Ingredients with Authorised EU Health Claims; Elsevier: Amsterdam, The Netherlands, 2018; Volume 3, pp. 201–218. [Google Scholar]
- Lu, Z.X.; Walker, K.Z.; Muir, J.G.; Mascara, T.; O’Dea, K. Arabinoxylan fiber, a byproduct of wheat flour processing, reduces the postprandial glucose response in normoglycemic subjects. Am. J. Clin. Nutr. 2000, 71, 1123–1128. [Google Scholar] [CrossRef]
- European Comiisssion. Commission Regulation (EU) No 432/2012. Off. J. Eur. Union 2012, 55, 136/1–136/40. [Google Scholar]
- European Comiisssion. Commission Regulation (EU) No 40/2014. Off. J. Eur. Union 2014. [Google Scholar]
- Tucker, K.A.; Thomas, K.S. Increasing total fiber intake reduces risk of weight and fat gains in women. J. Nutr. 2009, 139, 57–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, K.A.; Kushi, L.H.; Jacobs, D.R., Jr.; Slavin, J.; Sellers, T.A.; Folsom, A.R. Carbohydrates, dietary fiber and incident type 2 diabetes in older women. Am. J. Clin. Nutr 2000, 71, 921–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streppel, M.T.; Ocke, M.C.; Boshuizen, A.F.; Kok, F.J.; Kromhout, D. Dietary fiber intake in relation to coronary heart disease and all-cause mortality over 40 y:the Zutphen Study. Am. J. Clin. Nutr. 2008, 83, 119–125. [Google Scholar]
- Story, J.A.; Furumoto, F.J.; Buhman, K.K. Dietary fiber and bile metabolism—An update. Adv. Exp. Med. Biol. 1997, 427, 259–266. [Google Scholar]
- Ma, Y.; Griffith, J.A.; Chasan-Taber, L.; Olendzki, B.; Jackson, E.; Stanek, E.J., 3rd; Li, W.; Pagoto, S.; Hafner, A.R.; Ockene, I.S. Association between dietary fiber and serum C-reactive protein. Am. J. Clin. Nutr. 2006, 83, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration FDA. Code of Federal Reguation: Heath Claims: Fiber-Contaning Grain Products, Fruits and Vegetables and Cancer; Food and Drug Administration: Silver Spring, MD, USA, 2008; Volume 2.
- Food and Drug Administration FDA. Code of Federal Reguation: Heath Claims: Fruits, Vegetables and Grain Products That Contain Fiber, Particularly Soluble Fiber, and Risk of Coronary Heart Disease; Food and Drug Administration: Silver Spring, MD, USA, 2008; Volume 2.
- Lattimer, J.M.; Haub, M.D. Effects of dietary fiber and its components on metabolic health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salminen, A.; Kauppinen, A.; Kaarnirnta, K. Phytochemicals suppress nuclear factor-kappaB signaling impact on health span and aging process. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Krikorian, R.; Boespflug, E.L.; Fleck, D.E.; Stein, A.L.; Wightman, J.D.; Shidler, M.D.; Sadat-Hossieny, S. Concord grape juice supplementation and neurocognitive function in human aging. J. Agric. Food Chem. 2012, 60, 5736–5742. [Google Scholar] [CrossRef] [PubMed]
- Witte, A.V.; Kerti, L.; Margulies, D.; Flöel, A. Efffects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J. Neurosci. 2014, 34, 7862–7870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Suzuki, T.; Sairo, K.; Yoshida, H.; Kojima, N.; Kim, M.; Sudo, M.; Yamashiro, Y.; Tokimitsu, I. Effects of exercize and tea catechism on muscle mass, strength and walking abiliry in community-dwelling elderly Japanese sarcopenia women: A randomized controlled trial. Geriatr. Gerontol. Int. 2013, 13, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Ebihara, S.; Maruyama, Y.; Ebihara, T.; Ochiro, T.; Kohzuki, M. Red wine poliphenols and swallowing reflex in dysphagia. Geriatr. Gerontol. Int. 2010, 10, 329–330. [Google Scholar] [CrossRef]
- Welch, A.A.; Hardcastle, A.C. The effects of flavonoids on bone. Curr. Osteoporos. Rep. 2014, 12, 205–210. [Google Scholar] [CrossRef]
- Egert, S.; Wolffram, S.; Schulze, B.; Languth, P.; Hubbermann, E.M.; Schwarz, K.; Adolphi, B.; Bosy-Westphal, A.; Rimbach, G.; Muller, J.M. Enriched cereal bars are more effective in increasing plasma quercetin compared wit quercetin from power-filled hard capsules. Br. J. Nutr. 2012, 107, 539–546. [Google Scholar] [CrossRef] [Green Version]
- Godfrey, H.; Cloete, J.; Dymond, E.; Long, A. An exploration of the hydratation care of older people: A qualitative study. Int. J. Nurs. Stud. 2012, 49, 1200–1211. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.; Bunn, D.; Jimoh, F.O.; Fairweather-Tai, S.J. Water-loss dehydration and ging. Mech. Ageing Dev. 2014, 136–137, 50–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, T.; Haboubi, N. Assessment and management of nutrition in older people and its importance to health. Clin. Interv. Aging 2010, 5, 207–216. [Google Scholar]
- Schols, J.M.; de Groot, C.P.; van der Cammen, J.; Olde Rikkert, M.G. Preventing and treating dehydratiation in the elderly during periods of illness and warm weather. J. Nutr. Health Aging 2009, 13, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Bunn, D.; Jimoh, F.; Wilsher, S.H.; Hooper, L. Increasing Fluid Intake and Reducing Dehydratation Risk in Older People Libving in Long-Term Care: A Systematic Review. J. Am. Med. Dir. Assoc. 2015, 16, 101–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashidi Pour Fard, N.; Amirabdollahian, F.; Haghighatdoost, F. Dietary patterns and frailty: A systematic review and metaanalysis. Nutr. Rev. 2019, 77, 498–513. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, A.; Jennings, A.; Hayhoe, R.P.G.; Awuzudike, V.E.; Welch, A.A. High variability of food and nutrient intake exists across the Mediterranean Dietary Pattern—A systematic review. Food Sci. Nutr. 2020, 8, 4907–4918. [Google Scholar] [CrossRef] [PubMed]
- Tsigalou, C.; Konstantinidis, T.; Paraschaki, A.; Stavropoulou, E.; Voidarou, C.; Bezirtzoglou, E. Mediterranean Diet as a Tool to Combat Inflammation and Chronic Diseases. An Overview. Biomedicines 2020, 8, 201. [Google Scholar] [CrossRef] [PubMed]
- Capurso, C.; Bellanti, F.; Buglio, A.L.; Vendemiale, G. The mediterranean diet slows down the progression of aging and helps to prevent the onset of frailty: A narrative review. Nutrients 2020, 12, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Physiological Causes |
• Gastrointestinal diseases |
• Dysphagia |
• Malabsorption |
• Oral problems (poor oral hygiene)/loss of smell or taste |
• Respiratory diseases |
• Endocrine diseases (diabetes mellitus) |
• Neurological/psychiatric diseases |
• Loss of autonomy with physical disability to feed self |
• Infections |
• Drugs interactions |
• Cancer |
• Poor appetite and poor diet |
Psychological Factors |
• Depression/anxiety |
• Dementia/Confusion |
• Alcoholism |
Social Factors |
• Loneliness and isolation |
• Inability to prepare food and/or to shop |
• Poverty |
Organ Function | Change with Aging | Nutrient Alteration |
---|---|---|
Gastric acid secretion | Decreased with atrophic gastritis | Decreased absorption of folate and protein-bound vitamin B 12 |
Gastric motility | Slow liquid and mixed solid–liquid emptying. Preserved solid emptying | Decreased bioavailability of mineral, vitamins and protein |
Small intestine structure and motility | Minor changes in structure. | No clinical significance |
Small intestine microflora | Bacterial overgrowth in small bowel owing to atrophic gastritis | Increased bacterial synthesis of folate. Possible decrease fat-soluble vitamin absorption |
Pancreatic secretion | Reduced capacity for bicarbonate and enzyme production | No clinical significance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cristina, N.M.; Lucia, d. Nutrition and Healthy Aging: Prevention and Treatment of Gastrointestinal Diseases. Nutrients 2021, 13, 4337. https://doi.org/10.3390/nu13124337
Cristina NM, Lucia d. Nutrition and Healthy Aging: Prevention and Treatment of Gastrointestinal Diseases. Nutrients. 2021; 13(12):4337. https://doi.org/10.3390/nu13124337
Chicago/Turabian StyleCristina, Neri Maria, and d’Alba Lucia. 2021. "Nutrition and Healthy Aging: Prevention and Treatment of Gastrointestinal Diseases" Nutrients 13, no. 12: 4337. https://doi.org/10.3390/nu13124337
APA StyleCristina, N. M., & Lucia, d. (2021). Nutrition and Healthy Aging: Prevention and Treatment of Gastrointestinal Diseases. Nutrients, 13(12), 4337. https://doi.org/10.3390/nu13124337