Home-Based Monitoring of Eating in Adolescents: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Analysis
2.2. Validation Procedure and Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Strengths of the Study
6. Study Limitations
7. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Po, J.M.; Kieser, J.A.; Gallo, L.M.; Tesenyi, A.J.; Herbison, P.; Farella, M. Time-frequency analysis of chewing activity in the natural environment. J. Dent. Res. 2011, 90, 1206–1210. [Google Scholar] [CrossRef] [PubMed]
- Pedroni-Pereira, A.; Araujo, D.S.; Scudine, K.G.; Prado, D.G.; Lima, D.A.; Castelo, P.M. Chewing in adolescents with overweight and obesity: An exploratory study with behavioral approach. Appetite 2016, 107, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Yeomans, M.R. Rating changes over the course of meals: What do they tell us about motivation to eat? Neurosci. Biobehav. Rev. 2000, 24, 249–259. [Google Scholar] [CrossRef]
- French, S.J.; Cecil, J.E. Oral, gastric and intestinal influences on human feeding. Physiol. Behav. 2001, 74, 729–734. [Google Scholar] [CrossRef]
- Smit, H.J.; Kemsley, E.K.; Tapp, H.S.; Henry, C.J. Does prolonged chewing reduce food intake? Fletcherism revisited. Appetite 2011, 57, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, N.; Hu, L.; Li, Z.; Li, R.; Li, C.; Wang, S. Improvement in chewing activity reduces energy intake in one meal and modulates plasma gut hormone concentrations in obese and lean young Chinese men. Am. J. Clin. Nutr. 2011, 94, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Viskaal-van Dongen, M.; Kok, F.J.; de Graaf, C. Eating rate of commonly consumed foods promotes food and energy intake. Appetite 2011, 56, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Plesh, O.; Bishop, B.; McCall, W.D., Jr. Comparison of automatic and voluntary chewing patterns and performance. Exp. Neurol. 1988, 99, 326–341. [Google Scholar] [CrossRef]
- Kibayashi, M. The relationships among child’s ability of mastication, dietary behaviour and physical fitness. Int. J. Dent. Hyg. 2011, 9, 127–131. [Google Scholar] [CrossRef]
- Orlet Fisher, J.; Rolls, B.J.; Birch, L.L. Children’s bite size and intake of an entrée are greater with large portions than with age-appropriate or self-selected portions. Am. J. Clin. Nutr. 2003, 77, 1164–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, J.O.; Birch, L.L.; Zhang, J.; Grusak, M.A.; Hughes, S.O. External influences on children’s self-served portions at meals. Int. J. Obes. 2013, 37, 954–960. [Google Scholar] [CrossRef] [Green Version]
- Berkowitz, R.I.; Moore, R.H.; Faith, M.S.; Stallings, V.A.; Kral, T.V.; Stunkard, A.J. Identification of an obese eating style in 4-year-old children born at high and low risk for obesity. Obesity 2010, 18, 505–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop-Gilyard, C.T.; Berkowitz, R.I.; Wadden, T.A.; Gehrman, C.A.; Cronquist, J.L.; Moore, R.H. Weight reduction in obese adolescents with and without binge eating. Obesity 2011, 19, 982–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Cai, L.; Ma, L.; Jing, J.; Chen, Y.; Ma, J. The prevalence of obesity and influence of early life and behavioral factors on obesity in Chinese children in Guangzhou. BMC Public Health 2016, 16, 954. [Google Scholar] [CrossRef] [Green Version]
- Ochiai, H.; Shirasawa, T.; Nanri, H.; Nishimura, R.; Matoba, M.; Hoshino, H.; Kokaze, A. Eating quickly is associated with waist-to-height ratio among Japanese adolescents: A cross-sectional survey. Arch. Public Health Arch. Belg. Sante Publique 2016, 74, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honorio, R.F.; Costa Monteiro Hadler, M.C. Factors associated with obesity in brazilian children enrolled in the school health program: A case-control study. Nutr. Hosp. 2014, 30, 526–534. [Google Scholar]
- van der Bilt, A.; Weijnen, F.G.; Ottenhoff, F.A.; van der Glas, H.W.; Bosman, F. The role of sensory information in the control of rhythmic open-close movements in humans. J. Dent. Res. 1995, 74, 1658–1664. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, L.; Rodin, J. Human Eating Behavior: A Critical Review of Studies in Normal Weight and Overweight Individuals. Appetite 1981, 2, 293–329. [Google Scholar] [CrossRef]
- Kerr, J.; Marshall, S.J.; Godbole, S.; Chen, J.; Legge, A.; Doherty, A.R.; Kelly, P.; Oliver, M.; Badland, H.M.; Foster, C. Using the SenseCam to improve classifications of sedentary behavior in free-living settings. Am. J. Prev. Med. 2013, 44, 290–296. [Google Scholar] [CrossRef]
- Smith, C.; Galland, B.C.; de Bruin, W.E.; Taylor, R.W. Feasibility of Automated Cameras to Measure Screen Use in Adolescents. Am. J. Prev. Med. 2019, 57, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Leask, C.F.; Harvey, J.A.; Skelton, D.A.; Chastin, S.F. Exploring the context of sedentary behaviour in older adults (what, where, why, when and with whom). Eur. Rev. Aging Phys. Act 2015, 12, 4. [Google Scholar] [CrossRef] [Green Version]
- Doherty, A.; Kelly, P.; Kerr, J.; Marshall, S.J.; Oliver, M.; Badland, H.; Hamilton, A.; Foster, C. Using wearable cameras to categorise type and of accelerometer-identified episodes of physical activity. Int. J. Behav. Nutr. Phys. Act 2013, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Beltran, A.; Dadabhoy, H.; Chen, T.; Lin, C.; Jia, W.; Baronowski, J.; Yan, G.; Sun, M.; Baranowski, T. Adapting the eButton to the abilities of children for diet assessment. Proc. Meas. Behav. 2016, 72–81. [Google Scholar]
- Gage, R.; Girling-Butcher, M.; Joe, E.; Smith, M.; Ni Mhurchu, C.; McKerchar, C.; Puloka, V.; McLean, R.; Signal, L. The Frequency and Context of Snacking among Children: An Objective Analysis Using Wearable Cameras. Nutrients 2020, 13, 103. [Google Scholar] [CrossRef] [PubMed]
- Gemming, L.; Rush, E.; Maddison, R.; Doherty, A.; Gant, N.; Utter, J.; Ni Mhurchu, C. Wearable cameras can reduce dietary under-reporting: Doubly labelled water validation of a camera-assisted 24 h recall. Br. J. Nutr. 2015, 113, 284–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettitt, C.; Liu, J.; Kwasnicki, R.M.; Yang, G.Z.; Preston, T.; Frost, G. A pilot study to determine whether using a lightweight, wearable micro-camera improves dietary assessment accuracy and offers information on macronutrients and eating rate. Br. J. Nutr. 2016, 115, 160–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, A.; Chan, V.; Bauman, A.; Signal, L.; Hosking, C.; Gemming, L.; Allman-Farinelli, M. Using wearable cameras to monitor eating and drinking behaviours during transport journeys. Eur. J. Nutr. 2021, 60, 1875–1885. [Google Scholar] [CrossRef] [PubMed]
- Idris, G. Eating Fast and Body Mass Index in Young Adolescents. Is There a Relationship? Ph.D. Thesis, University of Otago Dunedin, Dunedin, New Zealand, 2019. [Google Scholar]
- Van der Horst, K.; Deming, D.M.; Lesniauskas, R.; Carr, B.T.; Reidy, K.C. Picky eating: Associations with child eating characteristics and food intake. Appetite 2016, 103, 286–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- White, A.K.; Venn, B.; Lu, L.W.; Rush, E.; Gallo, L.M.; Yong, J.L.; Farella, M. A comparison of chewing rate between overweight and normal BMI individuals. Physiol. Behav. 2015, 145, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Paulin, M.; Cannon, R.D.; Palla, S.; Farella, M. Smartphone-assisted monitoring of masticatory muscle activity in freely moving individuals. Clin. Oral Investig. 2019, 23, 3601–3611. [Google Scholar] [CrossRef] [PubMed]
- Idris, G.; Smith, C.; Galland, B.; Taylor, R.; Robertson, C.J.; Bennani, H.; Farella, M. Relationship between chewing features and body mass index in young adolescents. Pediatr. Obes. 2021, 16, e12743. [Google Scholar] [CrossRef] [PubMed]
- Farella, M.; Palla, S.; Gallo, L.M. Time-frequency analysis of rhythmic masticatory muscle activity. Muscle Nerve 2009, 39, 828–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hugger, S.; Schindler, H.J.; Kordass, B.; Hugger, A. Clinical relevance of surface EMG of the masticatory muscles. (Part 1): Resting activity, maximal and submaximal voluntary contraction, symmetry of EMG activity. Int. J. Comput. Dent. 2012, 15, 297–314. [Google Scholar]
- Lund, J.P.; Widmer, C.G. Evaluation of the use of surface electromyography in the diagnosis, documentation, and treatment of dental patients. J. Craniomandib. Disord. 1989, 3, 125–137. [Google Scholar] [PubMed]
- Track, S. Review of Bruxism Devices on the Market. Available online: https://sleeptrack.io/2016/02/23/review-of-bruxism-devices/ (accessed on 1 November 2019).
- Gallo, L.M.; Gross, S.S.; Palla, S. Nocturnal masseter EMG activity of healthy subjects in a natural environment. J. Dent. Res. 1999, 78, 1436–1444. [Google Scholar] [CrossRef] [PubMed]
- Lavigne, G.J.; Guitard, F.; Rompre, P.H.; Montplaisir, J.Y. Variability in sleep bruxism activity over time. J. Sleep Res. 2001, 10, 237–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baba, K.; Haketa, T.; Sasaki, Y.; Ohyama, T.; Clark, G.T. Association between masseter muscle activity levels recorded during sleep and signs and symptoms of temporomandibular disorders in healthy young adults. J. Orofac. Pain 2005, 19, 226–231. [Google Scholar]
- Queiroz, J.D.N.; Macedo, R.C.O.; Tinsley, G.M.; Reischak-Oliveira, A. Time-restricted eating and circadian rhythms: The biological clock is ticking. Crit. Rev. Food Sci. Nutr. 2021, 61, 2863–2875. [Google Scholar] [CrossRef]
- Maurer, J.; Taren, D.L.; Teixeira, P.J.; Thomson, C.A.; Lohman, T.G.; Going, S.B.; Houtkooper, L.B. The psychosocial and behavioral characteristics related to energy misreporting. Nutr. Rev. 2006, 64, 53–66. [Google Scholar] [CrossRef]
- Poppitt, S.D.; Swann, D.; Black, A.E.; Prentice, A.M. Assessment of selective under-reporting of food intake by both obese and non-obese women in a metabolic facility. Int. J. Obes. Relat. Metab. Disord. 1998, 22, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Johansson, G.; Wikman, A.; Ahren, A.M.; Hallmans, G.; Johansson, I. Underreporting of energy intake in repeated 24-hour recalls related to gender, age, weight status, day of interview, educational level, reported food intake, smoking habits and area of living. Public Health Nutr. 2001, 4, 919–927. [Google Scholar] [CrossRef] [Green Version]
- Cowburn, G.; Matthews, A.; Doherty, A.; Hamilton, A.; Kelly, P.; Williams, J.; Foster, C.; Nelson, M. Exploring the opportunities for food and drink purchasing and consumption by teenagers during their journeys between home and school: A feasibility study using a novel method. Public Health Nutr. 2016, 19, 93–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Signal, L.N.; Smith, M.B.; Barr, M.; Stanley, J.; Chambers, T.J.; Zhou, J.; Duane, A.; Jenkin, G.L.S.; Pearson, A.L.; Gurrin, C.; et al. Kids’Cam: An Objective Methodology to Study the World in Which Children Live. Am. J. Prev. Med. 2017, 53, e89–e95. [Google Scholar] [CrossRef]
- Barr, M.; Signal, L.; Jenkin, G.; Smith, M. Capturing exposures: Using automated cameras to document environmental determinants of obesity. Health Promot. Int. 2015, 30, 56–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, D.; Signal, L.; Elder, D.; Gander, P. Environmental and behavioural factors associated with school children’s sleep in Aotearoa/New Zealand. J. Paediatr. Child Health 2017, 53, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Lowe, B. Assessing the Nature and Extent of Children’s Screen Time. Master’s Thesis, University of Otago, Wellington, New Zealand, 2016. [Google Scholar]
- Loveday, A.; Sherar, L.B.; Sanders, J.P.; Sanderson, P.W.; Esliger, D.W. Novel technology to help understand the context of physical activity and sedentary behaviour. Physiol. Meas. 2016, 37, 1834–1851. [Google Scholar] [CrossRef] [Green Version]
- Ptomey, L.T.; Willis, E.A.; Goetz, J.R.; Lee, J.; Sullivan, D.K.; Donnelly, J.E. Digital photography improves estimates of dietary intake in adolescents with intellectual and developmental disabilities. Disabil. Health J. 2015, 8, 146–150. [Google Scholar] [CrossRef]
- Casperson, S.L.; Sieling, J.; Moon, J.; Johnson, L.; Roemmich, J.N.; Whigham, L. A mobile phone food record app to digitally capture dietary intake for adolescents in a free-living environment: Usability study. JMIR Mhealth Uhealth 2015, 3, e30. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Chen, H.C.; Yue, Y.; Li, Z.; Fernstrom, J.; Bai, Y.; Li, C.; Sun, M. Accuracy of food portion size estimation from digital pictures acquired by a chest-worn camera. Public Health Nutr. 2014, 17, 1671–1681. [Google Scholar] [CrossRef] [Green Version]
- Rollo, M.E.; Ash, S.; Lyons-Wall, P.; Russell, A.W. Evaluation of a Mobile Phone Image-Based Dietary Assessment Method in Adults with Type 2 Diabetes. Nutrients 2015, 7, 4897–4910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Mean | SD | Min–Max |
---|---|---|---|
Age (years) | 15.5 | 1.3 | 13.6–17.6 |
BMI (kg/m2) | 23.1 | 4.6 | 17.8–33.6 |
BMI (z score) | 0.73 | 1.06 | −0.95–2.94 |
BMI distribution | Normal | Overweight | Obese |
N (%) | 8 (53.3) | 5 (33.3) | 2 (13.3) |
Sex distribution | Female | Male | |
N (%) | 7 (46.7) | 8 (53.3) |
Measure | Mean | SD | SE | 25th Pctile | Median | 75th Pctile | Min | Max |
---|---|---|---|---|---|---|---|---|
Chewing pace (Hz) | 1.64 | 0.2 | 0.1 | 1.5 | 1.7 | 1.9 | 1.3 | 2.07 |
Chewing power (%) | 32.1 | 4.3 | 1.1 | 21.8 | 29.9 | 40.1 | 23.9 | 40.4 |
Chewing episodes count (n) | 56.8 | 39.0 | 10.1 | 33.0 | 52.0 | 61.0 | 15.0 | 185.0 |
Chewing time (min) | 10.5 | 10.4 | 2.7 | 4.0 | 7.3 | 12.8 | 1.6 | 40.1 |
Participants | Eating Episodes (EMG) | Eating Episodes (Camera) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | 25th Pctile | Median | 75th Pctile | Min–Max | Mean | SD | 25th Pctile | Median | 75th Pctile | Min–Max | |
Number | 5.4 | 1.8 | 4.75 | 5 | 6.25 | 2–9 | 2.4 | 2.1 | 1 | 1 | 3.25 | 1–8 |
Total eating time (min: s) | 27:51 | 16:14 | 16:27 | 23:19 | 40:00 | 4:35–67:38 | 14:49 | 11:18 | 01:30 | 12:45 | 23:41 | 00:30–34:15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idris, G.; Smith, C.; Galland, B.; Taylor, R.; Robertson, C.J.; Farella, M. Home-Based Monitoring of Eating in Adolescents: A Pilot Study. Nutrients 2021, 13, 4354. https://doi.org/10.3390/nu13124354
Idris G, Smith C, Galland B, Taylor R, Robertson CJ, Farella M. Home-Based Monitoring of Eating in Adolescents: A Pilot Study. Nutrients. 2021; 13(12):4354. https://doi.org/10.3390/nu13124354
Chicago/Turabian StyleIdris, Ghassan, Claire Smith, Barbara Galland, Rachael Taylor, Christopher John Robertson, and Mauro Farella. 2021. "Home-Based Monitoring of Eating in Adolescents: A Pilot Study" Nutrients 13, no. 12: 4354. https://doi.org/10.3390/nu13124354
APA StyleIdris, G., Smith, C., Galland, B., Taylor, R., Robertson, C. J., & Farella, M. (2021). Home-Based Monitoring of Eating in Adolescents: A Pilot Study. Nutrients, 13(12), 4354. https://doi.org/10.3390/nu13124354