Influence of Elicitation and Drying Methods on Anti-Metabolic Syndrome, and Antimicrobial Properties of Extracts and Hydrolysates Obtained from Elicited Lovage (Levisticum officinale Koch)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Material
2.1.1. Plant Growth Conditions
2.1.2. Drying Method
2.2. Preparation of Samples
2.2.1. Ethanolic Extracts
2.2.2. PBS Extracts
2.2.3. Hydrolysates
2.3. Total Phenolic Content (TPC)
2.4. Inhibitory Effect of Samples on Enzymes Involved in Metabolic Syndrome
2.4.1. ACE Inhibition
2.4.2. Pancreatic Lipase Inhibitory
2.4.3. Potential Anti-Diabetic Effect
α-Amylase Inhibitory Activity
α-Glucosidase Inhibitory Activity
2.5. Antimicrobial Effect
2.5.1. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Lethal Concentrations (MLC)
2.5.2. Biotoxicity Assay Using Resazurin Reduction Method
2.6. Statistical Analysis
3. Results
3.1. Phenolic Content in Samples
3.2. ACE and Lipase Inhibitory Activity of Samples
3.3. α-Amylase and α-Glucosidase Inhibitory Activity of Samples
3.4. Antimicrobial Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wójcik, M.; Dziki, D.; Gawlik-Dziki, U.; Różyło, R. Development of no-salt herbal bread using a method based on scalded flour. LWT 2021, 145, 111329. [Google Scholar] [CrossRef]
- Kemzūraitė, A.; Venskutonis, P.R.; Baranauskienė, R.; Navikienė, D. Optimization of supercritical CO2 extraction of different anatomical parts of lovage (Levisticum officinale Koch.) using response surface methodology and evaluation of extracts composition. J. Supercrit. Fluids 2014, 87, 93–103. [Google Scholar] [CrossRef]
- Spréa, R.M.; Fernandes, Â.; Finimundy, T.C.; Pereira, C.; Alves, M.J.; Calhelha, R.C.; Canan, C.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Lovage (Levisticum Officinale W.D.J. Koch) Roots: A Source of Bioactive Compounds towards a Circular Economy. Resources 2020, 9, 81. [Google Scholar] [CrossRef]
- Jakubczyk, A.; Złotek, U.; Szymanowska, U.; Rybczyńska-Tkaczyk, K.; Jęderka, K.; Lewicki, S. In VitroAntioxidant, Anti-Inflammatory, Anti-Metabolic Syndrome, Antimicrobial, and Anticancer Effect of Phenolic Acids Isolated from Fresh Lovage Leaves [Levisticum officinale Koch] Elicited with Jasmonic Acid and Yeast Extract. Antioxidants 2020, 9, 554. [Google Scholar] [CrossRef]
- Belete, R.; Ataro, Z.; Abdu, A.; Sheleme, M. Global prevalence of metabolic syndrome among patients with type I diabetes mellitus: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2021, 13, 25. [Google Scholar] [CrossRef] [PubMed]
- Hiremath, C.R.; Ravikiran, K. Experimental analysis of low-temperature grain drying performance of vertical packed clay and clay-additives composite desiccant beds. Sadhana 2021, 46, 1–16. [Google Scholar] [CrossRef]
- Złotek, U.; Szymanowska, U.; Pecio, Ł.; Kozachok, S.; Jakubczyk, A. Antioxidative and Potentially Anti-inflammatory Activity of Phenolics from Lovage Leaves Levisticum officinale Koch Elicited with Jasmonic Acid and Yeast Extract. Molecules 2019, 24, 1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gawlik-Dziki, U.; Dziki, D.; Baraniak, B.; Lin, R. The effect of simulated digestion in vitro on bioactivity of wheat bread with Tartary buckwheat flavones addition. LWT-Food Sci. Technol. 2009, 42, 137–143. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Oxidants and Antioxidants Part A. Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, ISBN 9780121822002. [Google Scholar]
- Karaś, M.; Jakubczyk, A.; Szymanowska, U.; Jęderka, K.; Lewicki, S.; Złotek, U. Different Temperature Treatments of Millet Grains Affect the Biological Activity of Protein Hydrolyzates and Peptide Fractions. Nutrients 2019, 11, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakubczyk, A.; Karaś, M.; Złotek, U.; Szymanowska, U.; Baraniak, B.; Bochnak, J. Peptides obtained from fermented faba bean seeds (Vicia faba) as potential inhibitors of an enzyme involved in the pathogenesis of metabolic syndrome. LWT-Food Sci. Technol. 2019, 105, 306–313. [Google Scholar] [CrossRef]
- Świeca, M.; Baraniak, B.; Gawlik-Dziki, U. In vitro digestibility and starch content, predicted glycemic index and potential in vitro antidiabetic effect of lentil sprouts obtained by different germination techniques. Food Chem. 2013, 138, 1414–1420. [Google Scholar] [CrossRef]
- Rajbhar, K.; Dawda, H.; Mukundan, U. Polyphenols: Methods of Extraction. Sci. Revs. Chem. Commun. 2015, 5, 1–6. [Google Scholar]
- Oreopoulou, A.; Tsimogiannis, D.; Oreopoulou, V. Extraction of Polyphenols from Aromatic and Medicinal Plants: An Overview of the Methods and the Effect of Extraction Parameters. Polyphen. Plants 2019, 243–259. [Google Scholar] [CrossRef]
- Jovanović, A.A.; Djordjević, V.B.; Petrović, P.M.; Pljevljakušić, D.S.; Zdunić, G.M.; Šavikin, K.P.; Bugarski, B.M. The influence of different extraction conditions on polyphenol content, antioxidant and antimicrobial activities of wild thyme. J. Appl. Res. Med. Aromat. Plants 2021, 25, 100328. [Google Scholar] [CrossRef]
- Dirar, A.I.A.I.; Alsaadi, D.; Wada, M.; Mohamed, M.; Watanabe, T.; Devkota, H. Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. S. Afr. J. Bot. 2019, 120, 261–267. [Google Scholar] [CrossRef]
- Barros, N.V.D.A.; de Abreu, B.B.; Rocha, M.D.M.; Araújo, M.A.D.M.; Moreira-Araújo, R.S.D.R. Bioacessibilidade in vitro de compostos fenólicos e atividade antioxidante em cultivares biofortificadas de feijão-caupi. Rev. Ciência Agronômica 2021, 52, 1–9. [Google Scholar] [CrossRef]
- Zhang, Q.; Xing, B.; Sun, M.; Zhou, B.; Ren, G.; Qin, P. Changes in bio-accessibility, polyphenol profile and antioxidants of quinoa and djulis sprouts during in vitro simulated gastrointestinal digestion. Food Sci. Nutr. 2020, 8, 4232–4241. [Google Scholar] [CrossRef]
- Tarko, T.; Duda-Chodak, A.; Soszka, A. Changes in Phenolic Compounds and Antioxidant Activity of Fruit Musts and Fruit Wines during Simulated Digestion. Molecules 2020, 25, 5574. [Google Scholar] [CrossRef] [PubMed]
- Kwaśniewska-Karolak, I.; Mostowski, R. Effect of different drying processes on an antioxidant potential of three species of the Lamiaceae family. Herba Pol. 2021, 67, 8–17. [Google Scholar] [CrossRef]
- Anuar, T.A.F.T.; Ismail, A. Southeast Asian Medicinal Plants with Angiotensin Converting Enzyme (ACE) Inhibition Properties. Pharmacogn. J. 2020, 12, 1429–1439. [Google Scholar] [CrossRef]
- Le, X.T.; Phi, X.T.; Nguyen, D.T.T.; Pham, H.T.N.; Van, T.N.; O., O.S.; Matsumoto, K. Angiotensin-converting enzyme inhibitory activity of some Vietnamese medicinal plants. Vietnam. J. Sci. Technol. Eng. 2020, 62, 77–82. [Google Scholar] [CrossRef]
- Sultana, R.; Alashi, A.M.; Islam, K.; Saifullah, M.; Haque, C.E.; Aluko, R.E. Inhibitory Activities of Polyphenolic Extracts of Bangladeshi Vegetables against α-Amylase. Foods 2020, 9, 844. [Google Scholar] [CrossRef]
- Gao, X.; Cai, X.; Yang, W.; Chen, Y.; Han, X.; Ji, L. Meta-analysis and critical review on the efficacy and safety of alpha-glucosidase inhibitors in Asian and non-Asian populations. J. Diabetes Investig. 2018, 9, 321–331. [Google Scholar] [CrossRef]
- Zayapor, M.N.; Abdullah, A.; Mustapha, W.A.W. The antioxidant analysis and α-glucosidase inhibition activities of spices and herbs (22 species) in Asian traditional beverages. J. Food Meas. Charact. 2021, 15, 1703–1718. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Eshraghi, A.; Mahzoonieh, M.R.; Lotfalian, S. Antibacterial and Antibiotic-Potentiation Activities of Levisticum officinale L. Extracts on Pathogenic Bacteria. Int. J. Infect. 2016, 4, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Bintsis, T. Foodborne pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef] [PubMed]
- Jahani, S.; Bazi, S.; Shahi, Z.; Asadi, M.S.; Mosavi, F.; Baigi, G.S. Antifungal Effect of the Extract of the Plants Against Candida albicans. Int. J. Infect. 2016, 4, e36807. [Google Scholar] [CrossRef]
- Złotek, U.; Lewicki, S.; Markiewicz, A.; Szymanowska, U.; Jakubczyk, A. Effects of Drying Methods on Antioxidant, Anti-Inflammatory, and Anticancer Potentials of Phenolic Acids in Lovage Elicited by Jasmonic Acid and Yeast Extract. Antioxidants 2021, 10, 662. [Google Scholar] [CrossRef] [PubMed]
Elicitor | C | JA | YE | |
---|---|---|---|---|
Drying Method | ||||
Ehanolic extract (mg/gDW) | ||||
natural | 11.47 ± 2.16 aA | 12.69 ± 1.53 aA | 18.09 ± 0.97 bB | |
convection | 16.35 ± 1.30 abB | 17.92 ± 1.72 bB | 14.12 ± 1.83 aA | |
microwave | 14.56 ± 1.41 abAB | 17.58 ± 2.25 bB | 13.22 ± 0.82 aA | |
freeze-drying | 14.20 ± 0.75 aAB | 18.48 ± 1.66 bB | 15.76 ± 1.13 aAB | |
PBS extract (mg/gDW) | ||||
natural | 11.93 ± 1.29 aAB | 11.87 ± 0.25 aB | 9.99 ± 0.25 aA | |
convection | 9.46 ± 3.02 aA | 14.52 ± 1.00 bAB | 12.31 ± 1.68 abA | |
microwave | 11.70 ± 0.44 aAB | 12.48 ± 0.44 aA | 12.49 ± 1.53 aA | |
freeze-drying | 14.18 ± 1.21 bB | 13.77 ± 0.30 bAB | 10.59 ± 0.6 aA | |
Hydrolysates (mg/gDW) | ||||
natural | 19.98 ± 1.5 bA | 21.35 ± 0.89 bA | 15.90 ± 2.12 aA | |
convection | 22.34 ± 0.89 aA | 22.62 ± 0.78 aAB | 21.91 ± 2.65 aB | |
microwave | 21.50 ± 1.74 bA | 24.96 ± 0.83 cC | 18.44 ± 0.49 aAB | |
freeze-drying | 22.25 ± 0.58 bA | 23.76 ± 1.67 bBC | 18.77 ± 1.50 aAB |
Sample | C | JA | YE | ||||
---|---|---|---|---|---|---|---|
Inhibitor of Enzyme | ACE | Lipase | ACE | Lipase | ACE | Lipase | |
Drying Method | |||||||
Ehanolic Extract (EC50 mg/mL) | |||||||
natural | 0.43 ± 0.06 aA | nd | 0.18 ± 0.02 aA | nd | 0.61 ± 0.06 bA | nd | |
convection | 1.32 ± 0.05 aB | nd | 0.96 ± 0.01 aB | nd | nd | 0.15 ± 0.008 A | |
microwave | 0.37 ± 0.01 abA | 0.17 ± 0.01 a | 0.49 ± 0.03 bAC | 0.51 ± 0.06 bA | 0.25 ± 0.03 aB | nd | |
freeze-drying | 0.41 ± 0.04 aA | nd | 0.61 ± 0.03 bC | 0.25 ± 0.03 aB | 0.38 ± 0.02 aC | 0.24 ± 0.04 aB | |
PBS Extract (EC50 mg/mL) | |||||||
natural | nd | 0.22 ± 0.03 aAB | nd | 0.44 ± 0.06 bB | nd | 0.17 ± 0.01 aA | |
convection | nd | 0.14 ± 0.008 aA | nd | 0.20 ± 0.01 aA | nd | 0.44 ± 0.05 bB | |
microwave | 0.25 ± 0.01 b | 0.18 ± 0.01 aB | 0.16 ± 0.03 a | 0.12 ± 0.02 bA | 0.30 ± 0.01 b | 0.23 ± 0.02 aAB | |
freeze-drying | nd | 0.26 ± 0.05 aAB | nd | 0.19 ± 0.01 aA | nd | 0.22 ± 0.01 aAB | |
Hydrolysates (EC50 mg/mL) | |||||||
natural | nd | 0.17 ± 0.005 aA | nd | 0.47 ± 0.07 bA | nd | 0.47 ± 0.02 bB | |
convection | nd | 0.69 ± 0.04 aB | 1.14 ± 0.03 A | 0.67 ± 0.01 aA | nd | 0.26 ± 0.006 bA | |
microwave | 3.87 ± 0.85 a | 0.69 ± 0.04 bB | 0.74 ± 0.02b B | 0.75 ± 0.01 bA | 0.51 ± 0.04 bA | 0.44 ± 0.05 aB | |
freeze-drying | nd | 0.83 ± 0.09 cB | 1.32 ± 0.12 aA | 0.57 ± 0.06 bA | 0.63 ± 0.03 bA | 0.30 ± 0.03 aA |
Sample | C | JA | YE | ||||
---|---|---|---|---|---|---|---|
Inhibition of Enzyme | α-Amylase | α-Glucosidase | α-Amylase | α-Glucosidase | α-Amylase | α-Glucosidase | |
Drying Methods | |||||||
Ehanolic extract (EC50 mg/mL) | |||||||
natural | 4.73 ± 0.20 aA | 2.92 ± 0.03 bA | 4.79 ± 0.65 aA | 2.83 ± 0.03 aA | 5.90 ± 0.97 aA | 2.83 ± 0.05 aA | |
convection | 14.00 ± 0.73 bB | 2.88 ± 0.08 aA | 4.01 ± 0.20 aA | 2.78 ± 0.05 aA | 3.92 ± 0.20 aA | 2.82 ± 0.03 aA | |
microwave | 4.34 ± 0.81 aA | 3.31 ± 0.17 bB | 3.92 ± 0.81 aA | 2.84 ± 0.07 aA | 4.03 ± 0.66 aA | 2.78 ± 0.02 aA | |
freeze-drying | 22.82 ± 2.32 cC | 2.78 ± 0.01 aA | 3.63 ± 0.81 aA | 2.85 ± 0.05 aA | 11.88 ± 2.47 bB | 2.85 ± 0.08 aA | |
PBS extract (EC50 mg/mL) | |||||||
natural | 56.43 ± 4.55 cB | nd | 26.16 ± 1.19 bB | 59.05 ± 9.17 bB | 14.89 ± 0.87 aA | nd | |
convection | 23.84 ± 2.72 aA | nd | 67.54 ± 1.73 bC | 13.59 ± 0.88 aA | 24.77 ± 1.01 aB | 25.42 ± 3.39 bA | |
microwave | 101.88 ± 7.75 bC | nd | 14.33 ± 0.42 aA | 73.14 ± 3.55 bC | 17.79 ± 2.3 aA | nd | |
freeze-drying | 18.13 ± 2.01 bA | 32.96 ± 3.33 b | 11.32 ± 2.32 aA | 17.36 ± 0.94 aA | 16.68 ± 0.12 abA | 26.38 ± 3.68 bA | |
Hydrolysates (EC50 mg/mL) | |||||||
natural | 17.25 ± 3.22 bB | 1.98 ± 0.12 aB | 11.80 ± 0.25 aA | 1.77 ± 0.24 aA | 10.89 ± 0.59 aA | 1.94 ± 0.08 aB | |
convection | 10.17 ± 0.83 aA | 1.45 ± 0.01 aA | 11.35 ± 0.22 aA | 1.49 ± 0.04 aA | 21.15 ± 2.97 bB | 1.57 ± 0.04 aA | |
microwave | 22.95 ± 1.31 bC | 1.89 ± 0.01 bB | 21.96 ± 1.65 bB | 1.54 ± 0.07 aA | 12.50 ± 2.12 aA | 1.45 ± 0.04 aA | |
freeze-drying | 11.07 ± 1.12 aA | 1.43 ± 0.02 aA | 10.82 ± 1.57 aA | 1.45 ± 0.06 aA | 16.46 ± 1.13 bB | 1.55 ± 0.02 bA |
Microorganism | E. coli ATCC 25922 | S. aureus ATCC 29737 | S. enterica ATCC 4931 | B. cereus ATCC 14579 | L. monocytogenes ATCC BAA-2660 | C. albicans ATCC 90028 | |
---|---|---|---|---|---|---|---|
Sample | |||||||
Dry Method | Elicitors | MIC/MLC (mg mL−1) | |||||
Ethanolic extracts | |||||||
natural | control | 2.5/5.0 | 5.0/>5.0 | 2.5/5.0 | 2.5/5.0 | 2.5/5.0 | 1.25/2.5 |
JA | 2.5/5.0 | 5.0/>5.0 | 2.5/5.0 | 2.5/5.0 | 2.5/5.0 | 1.25/2.5 | |
YE | 2.5/5.0 | 5.0/>5.0 | 5.0/>5.0 | 2.5/5.0 | 2.5/5.0 | 1.25/2.5 | |
convection | control | 2.5/5.0 | 2.5/5.0 | 5.0/>5.0 | 5.0/>5.0 | 2.5/5.0 | 2.5/5.0 |
JA | 2.5/5.0 | 2.5/5.0 | 2.5/5.0 | 5.0/>5.0 | 2.5/5.0 | 1.25/2.5 | |
YE | 2.5/5.0 | 2.5/5.0 | 5.0/>5.0 | 5.0/>5.0 | 2.5/5.0 | 2.5/5.0 | |
microwave | control | 2.5/5.0 | 2.5/5.0 | 2.5/5.0 | 5.0/>5.0 | 2.5/5.0 | 0.62/1.25 |
JA | 2.5/5.0 | 2.5/5.0 | 2.5/5.0 | 5.0/>5.0 | 2.5/5.0 | 0.62/1.25 | |
YE | 2.5/5.0 | 2.5/5.0 | 2.5/5.0 | 5.0/>5.0 | 2.5/5.0 | 0.62/1.25 | |
freeze-drying | control | 2.5/5.0 | 2.5/5.0 | 2.5/5.0 | 2.5/5.0 | 2.5/5.0 | 1.25/2.5 |
JA | 2.5/5.0 | 2.5/5.0 | 2.5/5.0 | 2.5/5.0 | 2.5/5.0 | 1.25/2.5 | |
YE | 2.5/5.0 | 2.5/5.0 | 2.5/5.0 | 2.5/5.0 | 2.5/5.0 | 1.252.5 | |
PBS extracts | |||||||
natural | control | nd | nd | nd | nd | nd | nd |
JA | nd | nd | nd | nd | nd | nd | |
YE | nd | nd | nd | nd | nd | nd | |
convection | control | nd | nd | nd | nd | nd | nd |
JA | nd | nd | nd | nd | nd | nd | |
YE | nd | nd | nd | nd | nd | nd | |
microwave | control | nd | nd | nd | nd | nd | nd |
JA | nd | nd | nd | nd | nd | nd | |
YE | nd | nd | nd | nd | nd | nd | |
freeze-drying | control | nd | nd | nd | nd | nd | nd |
JA | nd | nd | nd | nd | nd | nd | |
YE | nd | nd | nd | nd | nd | nd | |
Hydrolysates | |||||||
natural | control | 2.5/5.0 | nd | nd | 2.5/5.0 | 5.0 | 5.0/>5.0 |
JA | 2.5/5.0 | nd | nd | 5.0/>5.0 | nd | 5.0/>5.0 | |
YE | 2.55.0 | nd | nd | 5.0/>5.0 | nd | 5.0/>5.0 | |
convection | control | 1.25/2.5 | nd | nd | 2.5/5.0 | 5.0 | 1.25/2.5 |
JA | 5.0/>5.0 | nd | nd | 5.0/>5.0 | nd | 5.0/>5.0 | |
YE | 1.25/2.5 | nd | nd | 2.5/5.0 | nd | 1.25/2.5 | |
microwave | control | 5.0/>5.0 | nd | nd | 1.25/2.5 | 5.0 | 5.0/>5.0 |
JA | 5.0/>5.0 | nd | nd | 2.5/5.0 | nd | 1.25/2.5 | |
YE | 5.0/>5.0 | nd | nd | 2.5/5.0 | nd | 1.25/2.5 | |
freeze-drying | control | 1.25/2.5 | nd | nd | 2.5/5.0 | nd | 5.0/>5.0 |
JA | 5.0/>5.0 | nd | nd | 5.0/>5.0 | nd | 5.0/>5.0 | |
YE | 1.25/2.5 | nd | nd | 1.25/2.5 | 5.0 | 5.0/>5.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubczyk, A.; Złotek, U.; Rybczyńska-Tkaczyk, K. Influence of Elicitation and Drying Methods on Anti-Metabolic Syndrome, and Antimicrobial Properties of Extracts and Hydrolysates Obtained from Elicited Lovage (Levisticum officinale Koch). Nutrients 2021, 13, 4365. https://doi.org/10.3390/nu13124365
Jakubczyk A, Złotek U, Rybczyńska-Tkaczyk K. Influence of Elicitation and Drying Methods on Anti-Metabolic Syndrome, and Antimicrobial Properties of Extracts and Hydrolysates Obtained from Elicited Lovage (Levisticum officinale Koch). Nutrients. 2021; 13(12):4365. https://doi.org/10.3390/nu13124365
Chicago/Turabian StyleJakubczyk, Anna, Urszula Złotek, and Kamila Rybczyńska-Tkaczyk. 2021. "Influence of Elicitation and Drying Methods on Anti-Metabolic Syndrome, and Antimicrobial Properties of Extracts and Hydrolysates Obtained from Elicited Lovage (Levisticum officinale Koch)" Nutrients 13, no. 12: 4365. https://doi.org/10.3390/nu13124365
APA StyleJakubczyk, A., Złotek, U., & Rybczyńska-Tkaczyk, K. (2021). Influence of Elicitation and Drying Methods on Anti-Metabolic Syndrome, and Antimicrobial Properties of Extracts and Hydrolysates Obtained from Elicited Lovage (Levisticum officinale Koch). Nutrients, 13(12), 4365. https://doi.org/10.3390/nu13124365