Goji Berry Intake Increases Macular Pigment Optical Density in Healthy Adults: A Randomized Pilot Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Heesterbeek, T.J.; Lorés-Motta, L.; Hoyng, C.B.; Lechanteur, Y.T.E.; den Hollander, A.I. Risk Factors for Progression of Age-Related Macular Degeneration. Ophthalmic Physiol. Opt. 2020, 40, 140–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Blindness and Vision Impairment. Available online: https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment (accessed on 14 October 2021).
- Mitchell, P.; Liew, G.; Gopinath, B.; Wong, T.Y. Age-Related Macular Degeneration. Lancet 2018, 392, 1147–1159. [Google Scholar] [CrossRef]
- Eisenhauer, B.; Natoli, S.; Liew, G.; Flood, V.M. Lutein and Zeaxanthin—Food Sources, Bioavailability and Dietary Variety in Age-related Macular Degeneration Protection. Nutrients 2017, 9, 120. [Google Scholar] [CrossRef] [PubMed]
- Howells, O.; Eperjesi, F.; Bartlett, H. Measuring Macular Pigment Optical Density in Vivo: A Review of Techniques. Graefe’s Arch. Clin. Exp. Ophthalmol. 2011, 249, 315–347. [Google Scholar] [CrossRef] [Green Version]
- Arunkumar, R.; Calvo, C.M.; Conrady, C.D.; Bernstein, P.S. What Do We Know about the Macular Pigment in AMD: The Past, the Present, and the Future. Eye 2018, 32, 992–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A Global Perspective on Carotenoids: Metabolism, Biotechnology, and Benefits for Nutrition and Health. Prog. Lipid Res. 2018, 7, 62–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranard, K.M.; Jeon, S.; Mohn, E.S.; Griffiths, J.C.; Johnson, E.J.; Erdman, J.W. Dietary Guidance for Lutein: Consideration for Intake Recommendations Is Scientifically Supported. Eur. J. Nutr. 2017, 56 (Suppl. 3), S37–S42. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.J.; Maras, J.E.; Rasmussen, H.M.; Tucker, K.L. Intake of Lutein and Zeaxanthin Differ with Age, Sex, and Ethnicity. J. Am. Diet. Assoc. 2010, 110, 1357–1362. [Google Scholar] [CrossRef] [PubMed]
- Mares, J.A.; LaRowe, T.L.; Snodderly, D.M.; Moeller, S.M.; Gruber, M.J.; Klein, M.L.; Wooten, B.R.; Johnson, E.J.; Chappell, R.J. Predictors of Optical Density of Lutein and Zeaxanthin in Retinas of Older Women in the Carotenoids in Age-Related Eye Disease Study, an Ancillary Study of the Women’s Health Initiative. Am. J. Clin. Nutr. 2006, 84, 1107–1122. [Google Scholar] [CrossRef] [Green Version]
- Carpentier, S.; Knaus, M.; Suh, M. Associations between Lutein, Zeaxanthin, and Age-Related Macular Degeneration: An Overview. Crit. Rev. Food Sci. Nutr. 2009, 49, 313–326. [Google Scholar] [CrossRef]
- Hernández-Zimbrón, L.F.; Zamora-Alvarado, R.; Ochoa-De La Paz, L.; Velez-Montoya, R.; Zenteno, E.; Gulias-Cañizo, R.; Quiroz-Mercado, H.; Gonzalez-Salinas, R. Age-Related Macular Degeneration: New Paradigms for Treatment and Management of AMD. Oxid. Med. Cell. Longev. 2018, 2018, 8374647. [Google Scholar] [CrossRef]
- Potterat, O. Goji (Lycium Barbarum and L. Chinense): Phytochemistry, Pharmacology and Safety in the Perspective of Traditional Uses and Recent Popularity. Planta Med. 2010, 76, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Widomska, J.; Paul Sangiovanni, J.; Subczynski, W.K. Why Is Zeaxanthin the Most Concentrated Xanthophyll in the Central Fovea? Nutrients 2020, 12, 1333. [Google Scholar] [CrossRef] [PubMed]
- Karioti, A.; Bergonzi, M.C.; Vincieri, F.F.; Bilia, A.R. Validated Method for the Analysis of Goji Berry, a Rich Source of Zeaxanthin Dipalmitate. J. Agric. Food Chem. 2014, 62, 12529–12535. [Google Scholar] [CrossRef] [PubMed]
- Breithaupt, D.E.; Weller, P.; Wolters, M.; Hahn, A. Comparison of Plasma Responses in Human Subjects after the Ingestion of 3R,3R′-Zeaxanthin Dipalmitate from Wolfberry (Lycium Barbarum) and Non-Esterified 3R,3R′-Zeaxanthin Using Chiral High-Performance Liquid Chromatography. Br. J. Nutr. 2004, 91, 707–713. [Google Scholar] [CrossRef] [Green Version]
- Amagase, H.; Farnsworth, N.R. A Review of Botanical Characteristics, Phytochemistry, Clinical Relevance in Efficacy and Safety of Lycium Barbarum Fruit (Goji). Food Res. Int. 2011, 44, 1702–1717. [Google Scholar] [CrossRef]
- Bone, R.A.; Landrum, J.T.; Fernandez, L.; Tarsis, S.L. Analysis of the Macular Pigment by HPLC: Retinal Distribution and Age Study. Investig. Ophthalmol. Vis. Sci. 1988, 29, 843–849. [Google Scholar]
- Li, S.; Liu, N.; Lin, L.; Sun, E.D.; Da Li, J.; Li, P.K. Macular Pigment and Serum Zeaxanthin Levels with Goji Berry Supplement in Early Age-Related Macular Degeneration. Int. J. Ophthalmol. 2018, 11, 970–975. [Google Scholar] [CrossRef] [PubMed]
- USDA. FoodData Central. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/173032/nutrients (accessed on 5 November 2020).
- Jahns, L.; Johnson, L.A.K.; Conrad, Z.; Bukowski, M.; Raatz, S.K.; Jilcott Pitts, S.; Wang, Y.; Ermakov, I.V.; Gellermann, W. Concurrent Validity of Skin Carotenoid Status as a Concentration Biomarker of Vegetable and Fruit Intake Compared to Multiple 24-h Recalls and Plasma Carotenoid Concentrations across One Year: A Cohort Study. Nutr. J. 2019, 18, 78. [Google Scholar] [CrossRef] [Green Version]
- Rush, E.; Amoah, I.; Diep, T.; Jalili-Moghaddam, S. Determinants and Suitability of Carotenoid Reflection Score as a Measure of Carotenoid Status. Nutrients 2020, 12, 113. [Google Scholar] [CrossRef] [Green Version]
- Pitts, S.B.J.; Jahns, L.; Wu, Q.; Moran, N.E.; Bell, R.A.; Truesdale, K.P.; Laska, M.N. A Non-Invasive Assessment of Skin Carotenoid Status through Reflection Spectroscopy Is a Feasible, Reliable and Potentially Valid Measure of Fruit and Vegetable Consumption in a Diverse Community Sample. Public Health Nutr. 2018, 21, 1664–1670. [Google Scholar] [CrossRef] [PubMed]
- Iannaccone, A.; Carboni, G.; Forma, G.; Mutolo, M.; Jennings, B. Macular Pigment Optical Density and Measures of Macular Function: Test-Retest Variability, Cross-Sectional Correlations, and Findings from the Zeaxanthin Pilot Study of Response to Supplementation (ZEASTRESS-Pilot). Foods 2016, 5, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.Q.; Qiu, Z.Q.; Narasimhamoorthy, B.; Greaves, J.A. Development of a Rapid, High-Throughput Method for Quantification of Zeaxanthin in Chinese Wolfberry Using HPLC-DAD. Ind. Crops Prod. 2013, 47, 51–57. [Google Scholar] [CrossRef]
- Bucheli, P.; Vidal, K.; Shen, L.; Gu, Z.; Zhang, C.; Miller, L.E.; Wang, J. Goji Berry Effects on Macular Characteristics and Plasma Antioxidant Levels. Optom. Vis. Sci. 2011, 88, 257–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bovier, E.R.; Renzi, L.M.; Hammond, B.R. A Double-Blind, Placebo-Controlled Study on the Effects of Lutein and Zeaxanthin on Neural Processing Speed and Efficiency. PLoS ONE 2014, 9, e108178. [Google Scholar] [CrossRef]
- Ma, L.; Liu, R.; Du, J.H.; Liu, T.; Wu, S.S.; Liu, X.H. Lutein, Zeaxanthin and Meso-Zeaxanthin Supplementation Associated with Macular Pigment Optical Density. Nutrients 2016, 8, 426. [Google Scholar] [CrossRef] [PubMed]
- Conrady, C.D.; Bell, J.P.; Besch, B.M.; Gorusupudi, A.; Farnsworth, K.; Ermakov, I.; Sharifzadeh, M.; Ermakova, M.; Gellermann, W.; Bernstein, P.S. Correlations between Macular, Skin, and Serum Carotenoids. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3616–3627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.C.; Chang, S.C.; Inbaraj, B.S.; Chen, B.H. Isolation of Carotenoids, Flavonoids and Polysaccharides from Lycium Barbarum L. and Evaluation of Antioxidant Activity. Food Chem. 2010, 120, 184–192. [Google Scholar] [CrossRef]
- Song, M.K.; Salam, N.K.; Roufogalis, B.D.; Huang, T.H.W. Lycium Barbarum (Goji Berry) Extracts and Its Taurine Component Inhibit PPAR-γ-Dependent Gene Transcription in Human Retinal Pigment Epithelial Cells: Possible Implications for Diabetic Retinopathy Treatment. Biochem. Pharmacol. 2011, 82, 1209–1218. [Google Scholar] [CrossRef]
- Yossa Nzeuwa, I.B.; Guo, B.; Zhang, T.; Wang, L.; Ji, Q.; Xia, H.; Sun, G. Comparative Metabolic Profiling of Lycium Fruits (Lycium barbarum and Lycium chinense) from Different Areas in China and from Nepal. J. Food Qual. 2019, 2019, 4396027. [Google Scholar] [CrossRef] [Green Version]
- Bungau, S.; Abdel-Daim, M.M.; Tit, D.M.; Ghanem, E.; Sato, S.; Maruyama-Inoue, M.; Yamane, S.; Kadonosono, K. Health Benefits of Polyphenols and Carotenoids in Age-Related Eye Diseases. Oxid. Med. Cell. Longev. 2019, 2019, 9783429. [Google Scholar] [CrossRef] [PubMed]
- Neelam, K.; Dey, S.; Sim, R.; Lee, J.; Au Eong, K.G. Fructus Lycii: A Natural Dietary Supplement for Amelioration of Retinal Diseases. Nutrients 2021, 13, 246. [Google Scholar] [CrossRef]
- Trieschmann, M.; Beatty, S.; Nolan, J.M.; Hense, H.W.; Heimes, B.; Austermann, U.; Fobker, M.; Pauleikhoff, D. Changes in Macular Pigment Optical Density and Serum Concentrations of Its Constituent Carotenoids Following Supplemental Lutein and Zeaxanthin: The LUNA Study. Exp. Eye Res. 2007, 84, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Dou, H.L.; Wu, Y.Q.; Huang, Y.M.; Huang, Y.B.; Xu, X.R.; Zou, Z.Y.; Lin, X.M. Lutein and Zeaxanthin Intake and the Risk of Age-Related Macular Degeneration: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2012, 107, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Chew, E.Y.; Clemons, T.E.; SanGiovanni, J.P.; Danis, R.P.; Ferris, F.L.; Elman, M.J.; Antoszyk, A.N.; Ruby, A.J.; Orth, D.; Bressler, S.B.; et al. Secondary Analyses of the Effects of Lutein/Zeaxanthin on Age-Related Macular Degeneration Progression AREDS2 Report No. 3. JAMA Ophthalmol. 2014, 132, 142–149. [Google Scholar] [CrossRef]
- Age-Related Eye Disease Study Research Group. A Randomized, Placebo-Controlled, Clinical Trial of High-Dose Supplementation with Vitamins C and E, Beta Carotene, and Zinc for Age-Related Macular Degeneration and Vision Loss: AREDS Report No. 8. Arch. Ophthalmol. 2001, 119, 1417–1436. [Google Scholar] [CrossRef] [Green Version]
- Chew, E.Y.; Clemons, T.E.; SanGiovanni, J.P.; Danis, R.; Ferris, F.L.; Elman, M.; Antoszyk, A.; Ruby, A.; Orth, D.; Bressler, S.; et al. Lutein + Zeaxanthin and Omega-3 Fatty Acids for Age-Related Macular Degeneration: The Age-Related Eye Disease Study 2 (AREDS2) Randomized Clinical Trial. JAMA 2013, 309, 2005–2015. [Google Scholar] [CrossRef]
- Maret, W.; Sandstead, H.H. Zinc Requirements and the Risks and Benefits of Zinc Supplementation. J. Trace Elem. Med. Biol. 2006, 20, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.J.; Chang, M.L.; Zhang, F.F.; Li, T.; Gensler, G.; Schleicher, M.; Taylor, A. The Relationship of Major American Dietary Patterns to Age-Related Macular Degeneration. Am. J. Ophthalmol. 2014, 158, 118–127. [Google Scholar] [CrossRef] [Green Version]
- USDA. What We Eat in America, NHANES 2017–2018, Individuals 2 Years and Over. Available online: https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1718/Table_1_NIN_GEN_17.pdf (accessed on 14 October 2021).
- Scott, T.M.; Rasmussen, H.M.; Chen, O.; Johnson, E.J. Avocado Consumption Increases Macular Pigment Density in Older Adults: A Randomized, Controlled Trial. Nutrients 2017, 9, 919. [Google Scholar] [CrossRef] [Green Version]
- Edwards, C.G.; Walk, A.M.; Thompson, S.V.; Reeser, G.E.; Erdman, J.W.; Burd, N.A.; Holscher, H.D.; Khan, N.A. Effects of 12-Week Avocado Consumption on Cognitive Function among Adults with Overweight and Obesity. Int. J. Psychophysiol. 2020, 148, 13–24. [Google Scholar] [CrossRef]
- Van Der Made, S.M.; Kelly, E.R.; Kijlstra, A.; Plat, J.; Berendschot, T.T.J.M. Increased Macular Pigment Optical Density and Visual Acuity Following Consumption of a Buttermilk Drink Containing Lutein-Enriched Egg Yolks: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Ophthalmol. 2016, 2016, 9035745. [Google Scholar] [CrossRef]
- Vishwanathan, R.; Goodrow-Kotyla, E.F.; Wooten, B.R.; Wilson, T.A.; Nicolosi, R.J. Consumption of 2 and 4 Egg Yolks/d for 5 Wk Increases Macular Pigment Concentrations in Older Adults with Low Macular Pigment Taking Cholesterol-Lowering Statins. Am. J. Clin. Nutr. 2009, 90, 1272–1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammond, B.R.; Johnson, E.J.; Russell, R.M.; Krinsky, N.I.; Yeum, K.J.; Edwards, R.B.; Snodderly, D.M. Dietary Modification of Macular Pigment Density. Investig. Ophthalmol. Vis. Sci. 1997, 38, 1795–1801. [Google Scholar]
- Phelan, D.; Prado-Cabrero, A.; Nolan, J.M. Stability of Commercially Available Macular Carotenoid Supplements in Oil and Powder Formulations. Nutrients 2017, 9, 1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obana, A.; Gohto, Y.; Nakazawa, R.; Moriyama, T.; Gellermann, W.; Bernstein, P.S. Effect of an Antioxidant Supplement Containing High Dose Lutein and Zeaxanthin on Macular Pigment and Skin Carotenoid Levels. Sci. Rep. 2020, 10, 10262. [Google Scholar] [CrossRef]
GB | LZ | p-Value | |
---|---|---|---|
Energy (kcal) | 2146.4 ± 187.7 | 1984.3 ± 151.5 | 0.51 |
Protein (g) | 89.3 ± 10.1 | 72.7 ± 7.2 | 0.18 |
Total Fat (g) | 84.2 ± 9.3 | 84.4 ± 8.8 | 0.98 |
Carbohydrate (g) | 256 ± 26 | 241 ± 17 | 0.6 |
Vitamin A (mcg) | 807.8 ± 120.6 | 578.3 ± 58.4 | 0.07 |
Vitamin C (mg) | 120.0 ± 18 | 103.9 ± 13.8 | 0.48 |
Vitamin E (mg) 1 | 14.4 (8.6, 24.1) | 11.0 (9.0, 13.3) | 0.21 |
Zinc (mg) | 11.8 ± 0.8 | 9.5 ± 0.9 | 0.08 |
Retinol (mcg) | 307.1 ± 51.5 | 265.4 ± 40.5 | 0.52 |
β-carotene (mcg) | 5127.6 ± 874.0 | 3408.1 ± 680.4 | 0.13 |
α-carotene (mcg) 1 | 300.3 (81.3, 1109.0) | 205.9 (87.7, 483.4) | 0.58 |
β-cryptoxanthin (mcg) 1 | 156.9 (33.6, 732.2) | 91.0 (53.1, 156.0) | 0.4 |
Lycopene (mg) 1 | 7.2 (3.1, 15.0) | 3.6 (1.7, 7.3) | 0.2 |
Lutein + zeaxanthin (mg) 1 | 3.1 (1.7, 5.5) | 1.9 (1.1, 3.2) | 0.2 |
DHA (g) 1 | 44.9 (12.9, 156.4) | 37.0 (15.8, 86.5) | 0.77 |
DPA (g) 1 | 16.2 (7.1, 36.6) | 9.3 (5.1, 16.9) | 0.23 |
EPA (g) 1 | 11.8 (2.5, 56.5) | 13.5 (6.0, 30.2) | 0.86 |
Nutrient | Amount |
---|---|
Calorie (Kcal) | 95.1 |
Total Carbohydrate (g) | 21.4 |
Fat (g) | 0.4 |
Protein (g) | 2.8 |
Fiber (g) | 2.7 |
Total sugars (g) | 15.1 |
Carotenoids | |
Zeaxanthin (mg) | 28.8 |
β-carotene (µg) | 225 |
Trans β-carotene (µg) | 110 |
α-carotene (µg) | 13.8 |
Lycopene (µg) | <5.6 |
Lutein estimate * (mg) | 0.15 |
GB Group (n = 13) | LZ Group (n = 14) | p-Value | |
---|---|---|---|
Age (years) | 55.9 ± 1.7 | 55.8 ± 1.4 | 0.94 |
Sex (F), n (%) | 9 (69.2) | 10 (71.4) | - |
MPOD | |||
0.25 RE | 0.67 ± 0.06 | 0.68 ± 0.06 | 0.88 |
0.5 RE | 0.54 ± 0.07 | 0.58 ± 0.05 | 0.51 |
1 RE | 0.36 ± 0.03 | 0.39 ± 0.03 | 0.32 |
1.75 RE | 0.16 ± 0.02 | 0.16 ± 0.02 | 0.77 |
SC Score | 369.5 ± 44.9 | 397.8 ± 39.6 | 0.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Holt, R.R.; Keen, C.L.; Morse, L.S.; Yiu, G.; Hackman, R.M. Goji Berry Intake Increases Macular Pigment Optical Density in Healthy Adults: A Randomized Pilot Trial. Nutrients 2021, 13, 4409. https://doi.org/10.3390/nu13124409
Li X, Holt RR, Keen CL, Morse LS, Yiu G, Hackman RM. Goji Berry Intake Increases Macular Pigment Optical Density in Healthy Adults: A Randomized Pilot Trial. Nutrients. 2021; 13(12):4409. https://doi.org/10.3390/nu13124409
Chicago/Turabian StyleLi, Xiang, Roberta R. Holt, Carl L. Keen, Lawrence S. Morse, Glenn Yiu, and Robert M. Hackman. 2021. "Goji Berry Intake Increases Macular Pigment Optical Density in Healthy Adults: A Randomized Pilot Trial" Nutrients 13, no. 12: 4409. https://doi.org/10.3390/nu13124409