The Vitamin D Decrease in Children with Obesity Is Associated with the Development of Insulin Resistance during Puberty: The PUBMEP Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Clinical Examination and Anthropometric Measurements
2.3. Biochemical Analyses
2.4. Homeostasis Model Assessment for Insulin Resistance Cut-Off Points
2.5. Analysis and Diagnostic Criteria of Vitamin D Status
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Deficiency of Vitamin D
4.2. Insulin Resistance and Vitamin D
4.3. Puberty, Insulin Resistance, and Vitamin D
4.4. Obesity during Puberty, Insulin Resistance, and Vitamin D
4.5. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Petersen, R.A.; Dalskov, S.M.; Sorensen, L.B.; Hjorth, M.F.; Andersen, R.; Tetens, I.; Krarup, H.; Ritz, C.; Astrup, A.; Michaelsen, K.F.; et al. Vitamin D Status Is Associated with Cardiometabolic Markers in 8-11-Year-Old Children, Independently of Body Fat and Physical Activity. Br. J. Nutr. 2015, 114, 1647–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corica, D.; Zusi, C.; Olivieri, F.; Marigliano, M.; Piona, C.; Fornari, E.; Morandi, A.; Corradi, M.; Miraglia del Giudice, E.; Gatti, D.; et al. Vitamin D Affects Insulin Sensitivity and β-Cell Function in Obese Non-Diabetic Youths. Eur. J. Endocrinol. 2019, 181, 439–450. [Google Scholar] [CrossRef]
- Denova-Gutiérrez, E.; Muñoz-Aguirre, P.; López, D.; Flores, M.; Medeiros, M.; Tamborrel, N.; Clark, P. Low Serum Vitamin D Concentrations Are Associated with Insulin Resistance in Mexican Children and Adolescents. Nutrients 2019, 11, 2109. [Google Scholar] [CrossRef] [Green Version]
- Barja-Fernández, S.; Aguilera, C.M.; Martínez-Silva, I.; Vazquez, R.; Gil-Campos, M.; Olza, J.; Bedoya, J.; Cadarso-Suárez, C.; Gil, Á.; Seoane, L.M.; et al. 25-Hydroxyvitamin D Levels of Children Are Inversely Related to Adiposity Assessed by Body Mass Index. J. Physiol. Biochem. 2018, 74, 111–118. [Google Scholar] [CrossRef]
- Gutiérrez Medina, S.; Gavela-Pérez, T.; Domínguez-Garrido, M.N.; Gutiérrez-Moreno, E.; Rovira, A.; Garcés, C.; Soriano-Guillén, L. The Influence of Puberty on Vitamin D Status in Obese Children and the Possible Relation between Vitamin D Deficiency and Insulin Resistance. J. Pediatric Endocrinol. Metab. 2015, 28, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Drincic, A.T.; Armas, L.A.G.; van Diest, E.E.; Heaney, R.P. Volumetric Dilution, rather than Sequestration Best Explains the Low Vitamin D Status of Obesity. Obesity 2012, 20, 1444–1448. [Google Scholar] [CrossRef] [PubMed]
- Dix, C.F.; Barclay, J.L.; Wright, O.R.L. The Role of Vitamin D in Adipogenesis. Nutr. Rev. 2018, 76, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Gil, Á.; Plaza-Diaz, J.; Mesa, M.D. Vitamin D: Classic and Novel Actions. Ann. Nutr. Metab. 2018, 72, 87–95. [Google Scholar] [CrossRef]
- Abbas, M.A. Physiological Functions of Vitamin D in Adipose Tissue. J. Steroid Biochem. Mol. Biol. 2017, 165, 369–381. [Google Scholar] [CrossRef]
- Al-Shoumer, K.A.; Al-Essa, T.M. Is There a Relationship between Vitamin D with Insulin Resistance and Diabetes Mellitus? World J. Diabetes 2015, 6, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Zakharova, I.; Klimov, L.; Kuryaninova, V.; Nikitina, I.; Malyavskaya, S.; Dolbnya, S.; Kasyanova, A.; Atanesyan, R.; Stoyan, M.; Todieva, A.; et al. Vitamin D Insufficiency in Overweight and Obese Children and Adolescents. Front. Endocrinol. 2019, 10, 103. [Google Scholar] [CrossRef] [Green Version]
- Kardas, F.; Kendirci, M.; Kurtoglu, S. Cardiometabolic Risk Factors Related to Vitamin D and Adiponectin in Obese Children and Adolescents. Int. J. Endocrinol. 2013, 2013, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, J.P.; von Mühlen, D.; Miller, E.R.; Michos, E.D.; Appel, L.J. Vitamin D Status and Cardiometabolic Risk Factors in the United States Adolescent Population. Pediatrics 2009, 124, e371–e379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saggese, G.; Vierucci, F.; Boot, A.M.; Czech-Kowalska, J.; Weber, G.; Camargo, C.A.; Mallet, E.; Fanos, M.; Shaw, N.J.; Holick, M.F. Vitamin D in Childhood and Adolescence: An Expert Position Statement. Eur. J. Pediatrics 2015, 174, 565–576. [Google Scholar] [CrossRef]
- Blomberg Jensen, M. Vitamin D Metabolism, Sex Hormones, and Male Reproductive Function. Reproduction 2012, 144, 135–152. [Google Scholar] [CrossRef] [Green Version]
- Lorenzen, M.; Boisen, I.M.; Mortensen, L.J.; Lanske, B.; Juul, A.; Blomberg Jensen, M. Reproductive Endocrinology of Vitamin D. Mol. Cell. Endocrinol. 2017, 453, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Cediel, G.; Corvalán, C.; de Romaña, D.L.; Mericq, V.; Uauy, R. Prepubertal Adiposity, Vitamin D Status, and Insulin Resistance. Pediatrics 2016, 138, e20160076. [Google Scholar] [CrossRef] [Green Version]
- Censani, M.; Hammad, H.T.; Christos, P.J.; Schumaker, T. Vitamin D Deficiency Associated with Markers of Cardiovascular Disease in Children With Obesity. Glob. Pediatric Health 2018, 5, 2333794X1775177. [Google Scholar] [CrossRef] [Green Version]
- Filgueiras, M.S.; Rocha, N.P.; Novaes, J.F.; Bressan, J. Vitamin D Status, Oxidative Stress, and Inflammation in Children and Adolescents: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Leis, R.; Jurado-Castro, J.M.; Llorente-Cantarero, F.J.; Anguita-Ruiz, A.; Iris-Rupérez, A.; Bedoya-Carpente, J.J.; Vázquez-Cobela, R.; Aguilera, C.M.; Bueno, G.; Gil-Campos, M. Cluster Analysis of Physical Activity Patterns, and Relationship with Sedentary Behavior and Healthy Lifestyles in Prepubertal Children: Genobox Cohort. Nutrients 2020, 12, 1288. [Google Scholar] [CrossRef] [PubMed]
- Rupérez, A.I.; Mesa, M.D.; Anguita-Ruiz, A.; González-Gil, E.M.; Vázquez-Cobela, R.; Moreno, L.A.; Gil, Á.; Gil-Campos, M.; Leis, R.; Bueno, G.; et al. Antioxidants and Oxidative Stress in Children: Influence of Puberty aUnhealthy Status. Antioxidants 2020, 9, 618. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a Standard Definition for Child Overweight and Obesity Worldwide: International Survey. Br. Med. J. 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [Green Version]
- Sobradillo, B.; Aguirre, A.; Uresti, U. Curvas y Tablas de Crecimiento. In Estudios Longitudinal y Transversal; Fundación Faustino Orbegozo Eizaguirre: Bilbao, Spain, 2009; pp. 499–523. [Google Scholar]
- Tanner, J.M.; Whitehouse, R.H. Clinical Longitudinal Standards for Height, Weight, Height Velocity, Weight Velocity, and Stages of Puberty. Arch. Dis. Child. 1976, 51, 170–179. [Google Scholar] [CrossRef] [Green Version]
- McCrindle, B.W. Assessment and Management of Hypertension in Children and Adolescents. Nat. Rev. Cardiol. 2010, 7, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Anguita-Ruiz, A.; Méndez-Gutiérrez, A.; Ruperez, A.I.; Leis, R.; Bueno, G.; Gil, M.; Tofe, I.; Gomez-Llorente, C.; Moreno, L.A.; Gil, Á.; et al. The Protein S100A4 as a Novel Marker of Insulin Resistance in Prepubertal and Pubertal Children with Obesity. Metabolism 2020, 105, 154187. [Google Scholar] [CrossRef] [PubMed]
- Rupérez, A.I.; Olza, J.; Gil-Campos, M.; Leis, R.; Bueno, G.; Aguilera, C.M.; Gil, A.; Moreno, L.A. Cardiovascular Risk Biomarkers and Metabolically Unhealthy Status in Prepubertal Children: Comparison of Definitions. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 524–530. [Google Scholar] [CrossRef]
- Holick, M.F. The Vitamin D Deficiency Pandemic: Approaches for Diagnosis, Treatment and Prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef]
- Pereira-Santos, M.; Costa, P.R.F.; Assis, A.M.O.; Santos, C.A.S.T.; Santos, D.B. Obesity and Vitamin D Deficiency: A Systematic Review and Meta-Analysis. Obes. Rev. 2015, 16, 341–349. [Google Scholar] [CrossRef] [PubMed]
- González-Gross, M.; Valtueña, J.; Breidenassel, C.; Moreno, L.A.; Ferrari, M.; Kersting, M.; de Henauw, S.; Gottrand, F.; Azzini, E.; Widhalm, K.; et al. Vitamin D Status among Adolescents in Europe: The Healthy Lifestyle in Europe by Nutrition in Adolescence Study. Br. J. Nutr. 2012, 107, 755–764. [Google Scholar] [CrossRef]
- Szymczak-Pajor, I.; Śliwińska, A. Analysis of Association between Vitamin d Deficiency and Insulin Resistance. Nutrients 2019, 11, 794. [Google Scholar] [CrossRef] [Green Version]
- Pacifico, L.; Anania, C.; Osborn, J.F.; Ferraro, F.; Bonci, E.; Olivero, E.; Chiesa, C. Low 25(OH)D3 Levels Are Associated with Total Adiposity, Metabolic Syndrome, and Hypertension in Caucasian Children and Adolescents. Eur. J. Endocrinol. 2011, 165, 603–611. [Google Scholar] [CrossRef] [Green Version]
- Xiao, P.; Dong, H.; Li, H.; Yan, Y.; Cheng, H.; Liu, J.; Zhao, X.; Hou, D.; Mi, J. Adequate 25-Hydroxyvitamin D Levels Are Inversely Associated with Various Cardiometabolic Risk Factors in Chinese Children, Especially Obese Children. BMJ Open Diabetes Res. Care 2020, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Szymczak-Pajor, I.; Drzewoski, J.; Śliwińska, A. The Molecular Mechanisms by Which Vitamin d Prevents Insulin Resistance and Associated Disorders. Int. J. Mol. Sci. 2020, 21, 6644. [Google Scholar] [CrossRef] [PubMed]
- Ricca, C.; Aillon, A.; Bergandi, L.; Alotto, D.; Castagnoli, C.; Silvagno, F. Vitamin D Receptor Is Necessary for Mitochondrial Function and Cell Health. Int. J. Mol. Sci. 2018, 19, 1672. [Google Scholar] [CrossRef] [Green Version]
- Ricciardi, C.J.; Bae, J.; Esposito, D.; Komarnytsky, S.; Hu, P.; Chen, J.; Zhao, L. 1,25-Dihydroxyvitamin D3/Vitamin D Receptor Suppresses Brown Adipocyte Differentiation and Mitochondrial Respiration. Eur. J. Nutr. 2015, 54, 1001–1012. [Google Scholar] [CrossRef]
- Ke, L.; Mason, R.S.; Baur, L.A.; Cowell, C.T.; Liu, X.; Garnett, S.P.; Brock, K.E. Vitamin D Levels in Childhood and Adolescence and Cardiovascular Risk Factors in a Cohort of Healthy Australian Children. J. Steroid Biochem. Mol. Biol. 2018, 177, 270–277. [Google Scholar] [CrossRef]
- Gilbert-Diamond, D.; Baylin, A.; Mora-Plazas, M.; Marin, C.; Arsenault, J.E.; Hughes, M.D.; Willett, W.C.; Villamor, E. Vitamin D Deficiency and Anthropometric Indicators of Adiposity in School-Age Children: A Prospective Study. Am. J. Clin. Nutr. 2010, 92, 1446–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buyukinan, M.; Ozen, S.; Kokkun, S.; Saz, E.U. The Relation of Vitamin D Deficiency with Puberty and Insulin Resistance in Obese Children and Adolescents. J. Pediatric Endocrinol. Metab. 2012, 25, 83–87. [Google Scholar] [CrossRef]
- Tolppanen, A.M.; Fraser, A.; Fraser, W.D.; Lawlor, D.A. Risk Factors for Variation in 25-Hydroxyvitamin D 3 and D 2 Concentrations and Vitamin D Deficiency in Children. J. Clin. Endocrinol. Metab. 2012, 97, 1202–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khadgawat, R.; Thomas, T.; Gahlot, M.; Tandon, N.; Tangpricha, V.; Khandelwal, D.; Gupta, N. The Effect of Puberty on Interaction between Vitamin D Status and Insulin Resistance in Obese Asian-Indian Children. Int. J. Endocrinol. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Peterson, C.A.; Tosh, A.K.; Belenchia, A.M. Vitamin D Insufficiency and Insulin Resistance in Obese Adolescents; SAGE Publications: Thousand Oaks, CA, USA, 2014; Volume 5, pp. 166–189. [Google Scholar]
- Abou El Ella, S.S.; Barseem, N.F.; Tawfik, M.A.; Ahmed, A.F. BMI Relationship to the Onset of Puberty: Assessment of Growth Parameters and Sexual Maturity Changes in Egyptian Children and Adolescents of Both Sexes. J. Pediatric Endocrinol. Metab. 2020, 33, 121–128. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Guan, P.; Liu, Q.; Crabtree, D.; Peng, L.; Wang, H. The Relationship between Obesity and Body Compositions with Respect to the Timing of Puberty in Chongqing Adolescents: A Cross-Sectional Study. BMC Public Health 2017, 17, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Crocker, M.K.; Stern, E.A.; Sedaka, N.M.; Shomaker, L.B.; Brady, S.M.; Ali, A.H.; Shawker, T.H.; Hubbard, V.S.; Yanovski, J.A. Sexual Dimorphisms in the Associations of BMI and Body Fat with Indices of Pubertal Development in Girls and Boys. J. Clin. Endocrinol. Metab. 2014, 99, e1519–e1529. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Sun, M.; Ye, J.; Luo, D.; Su, X.; Zheng, D.; Feng, L.; Gao, L.; Yu, C.; Guan, Q. The Effect of Aromatase on the Reproductive Function of Obese Males. Horm. Metab. Res. 2017, 49, 572–579. [Google Scholar] [CrossRef]
- Reinehr, T.; Roth, C.L. Is There a Causal Relationship between Obesity and Puberty? Lancet Child Adolesc. Health 2019, 3, 44–54. [Google Scholar] [CrossRef]
- Nieuwenhuis, D.; Pujol-Gualdo, N.; Arnoldussen, I.A.C.; Kiliaan, A.J. Adipokines: A Gear Shift in Puberty. Obes. Rev. 2020, 21, e13005. [Google Scholar] [CrossRef] [Green Version]
- Guzzetti, C.; Ibba, A.; Casula, L.; Pilia, S.; Casano, S.; Loche, S. Cardiovascular Risk Factors in Children and Adolescents with Obesity: Sex-Related Differences and Effect of Puberty. Front. Endocrinol. 2019, 10, 591. [Google Scholar] [CrossRef] [Green Version]
- Reinehr, T.; Wabitsch, M.; Kleber, M.; de Sousa, G.; Denzer, C.; Toschke, A.M. Parental Diabetes, Pubertal Stage, and Extreme Obesity Are the Main Risk Factors for Prediabetes in Children and Adolescents: A Simple Risk Score to Identify Children at Risk for Prediabetes. Pediatric Diabetes 2009, 10, 395–400. [Google Scholar] [CrossRef]
- Xu, L.; Li, M.; Yin, J.; Cheng, H.; Yu, M.; Zhao, X.; Xiao, X.; Mi, J. Change of Body Composition and Adipokines and Their Relationship with Insulin Resistance across Pubertal Development in Obese and Nonobese Chinese Children: The BCAMS Study. Int. J. Endocrinol. 2012, 2012. [Google Scholar] [CrossRef]
- Maffeis, C.; Morandi, A. Body Composition and Insulin Resistance in Children. Eur. J. Clin. Nutr. 2018, 72, 1239–1245. [Google Scholar] [CrossRef]
- Ruiz-Ojeda, F.J.; Anguita-Ruiz, A.; Leis, R.; Aguilera, C.M. Genetic Factors and Molecular Mechanisms of Vitamin D and Obesity Relationship. Ann. Nutr. Metab. 2018, 73, 89–99. [Google Scholar] [CrossRef]
- Chang, E.; Kim, Y. Vitamin D Insufficiency Exacerbates Adipose Tissue Macrophage Infiltration and Decreases AMPK/SIRT1 Activity in Obese Rats. Nutrients 2017, 9, 338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durá-Travé, T.; Gallinas-Victoriano, F.; Peñafiel-Freire, D.M.; Urretavizcaya-Martinez, M.; Moreno-González, P.; Chueca-Guindulain, M.J. Hypovitaminosis D and Cardiometabolic Risk Factors in Adolescents with Severe Obesity. Children 2020, 7, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiamenghi, V.I.; de Mello, E.D. Vitamin D Deficiency in Children and Adolescents with Obesity: A Meta-Analysis. J. Pediatr. 2021, 97, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Hajhashemy, Z.; Shahdadian, F.; Ziaei, R.; Saneei, P. Serum Vitamin D Levels in Relation to Abdominal Obesity: A Systematic Review and Dose–Response Meta-Analysis of Epidemiologic Studies. Obes. Rev. 2021, 22, e13134. [Google Scholar] [CrossRef]
- Aypak, C.; Türedi, Ö.; Yüce, A. The Association of Vitamin D Status with Cardiometabolic Risk Factors, Obesity and Puberty in Children. Eur. J. Pediatrics 2014, 173, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.M.; Fraser, A.; Sayers, A.; Fraser, W.D.; Hingorani, A.; Deanfield, J.; Smith, G.D.; Sattar, N.; Lawlor, D.A. Associations of 25-Hydroxyvitamin D 2 and D 3 with Cardiovascular Risk Factors in Childhood: Cross-Sectional Findings from the Avon Longitudinal Study of Parents and Children. J. Clin. Endocrinol. Metab. 2012, 97, 1563–1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
T0 (Prepubertal) | T1 (Pubertal) | p-Value * | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
All (n = 76) | Optimal (n = 14) | Insufficiency (n = 26) | Deficiency (n = 36) | p-Value | All (n = 76) | Optimal (n = 6) | Insufficiency (n = 23) | Deficiency (n = 47) | p-Value | ||
Age (years) | 7.8 (1.9) | 6.3 (1.6) | 8.0 (1.9) | 8.2 (1.7) | 0.002 | 13.9 (2.2) | 15.2 (1.6) | 14.2 (2.4) | 13.7 (2.2) | 0.229 | <0.001 |
Weight (kg) | 37.9 (12.1) | 32.0 (9.3) | 38.4 (15.0) | 39.9 (10.1) | 0.07 | 68.0 (21.2) | 72.7 (16.9) | 69.1 (13.5) | 66.8 (24.6) | 0.619 | <0.001 |
BMI (kg/m2) | 22.8 [14.3–36.0] | 22.8 [14.8–26.8] | 22.4 [14.7–36.0] | 22.9 [14.3–35.5] | 0.519 | 26.2 [15.0–45.5] | 25.9 [18.8–37.6] | 25.9 [17.9–32.6] | 26.5 [15.0–45.5] | 0.997 | <0.001 ¥ |
BMI z-score | 2.1 (1.8) | 2.4 (2.4) | 2.0 (1.8) | 2.1 (1.6) | 0.785 | 1.7 (1.6) | 1.5 (2.0) | 1.5 (1.2) | 1.8 (1.7) | 0.799 | 0.003 |
Waist circumference (cm) | 74.4 (13.1) | 67.8 (11.2) | 75.5 (15.1) | 76.3 (11.9) | 0.107 | 87.1 (15.5) | 90.5 (19.9) | 86.6 (11.7) | 86.9 (16.7) | 0.850 | <0.001 |
SBP (mmHg) | 104.3 (11.8) | 100.1 (15.4) | 104.9 (12.2) | 105.5 (9.6) | 0.333 | 116.2 (15.8) | 118.9 (9.9) | 114.6 (11.5) | 115.7 (18.6) | 0.841 | <0.001 |
DBP (mmHg) | 62.0 [45.0–100.0] | 59.5 [46.0–79.0] | 62.5 [49.0–77.0] | 63.0 [45.0–100.0] | 0.671 | 67.0 [49.5–94.5] | 72.7 [63.0–82.0] | 68.0 [55.0–85.0] | 65.5 [49.5–94.5] | 0.266 | <0.001 ¥ |
25(OH)D (ng/mL) | 23.0 (10.6) | 40.9 (8.6) | 24.4 (2.6) | 15.1 (3.5) | <0.001 | 19.0 (7.6) | 35.7 (6.9) | 24.4 (2.5) | 14.3 (3.6) | <0.001 | 0.004 |
Fasting glucose (mg/dL) | 81.0 (8.2) | 83.6 (6.7) | 80.6 (8.4) | 80.3 (8.6) | 0.415 | 81.2 (7.4) | 80.5 (5.0) | 80.7 (7.7) | 81.6 (7.6) | 0.872 | 0.867 |
Fasting insulin (mUI/L) | 8.0 (6.0) | 6.4 (4.6) | 7.4 (5.4) | 9.1 (6.9) | 0.245 | 14.2 (9.4) | 15.9 (14.1) | 11.4 (7.6) | 15.4 (9.5) | 0.123 | <0.001 |
HOMA-IR | 1.6 (1.2) | 1.3 (0.9) | 1.5 (1.1) | 1.8 (1.4) | 0.327 | 2.9 (2.0) | 3.1 (1.9) | 2.4 (2.0) | 3.2 (3.0) | 0.131 | <0.001 |
QUICKI | 0.4 (0.05) | 0.4 (0.05) | 0.4 (0.05) | 0.4 (0.04) | 0.409 | 0.3 (0.03) | 0.3 (0.05) | 0.3 (0.03) | 0.3 (0.03) | 0.115 | <0.001 |
TAG (mg/dL) | 56.2 (27.0) | 48.1 (20.0) | 51.7 (20.9) | 62.6 (32.0) | 0.211 | 70.7 (31.7) | 56.8 (20.6) | 64.1 (20.2) | 75.7 (36.4) | 0.222 | <0.001 |
Cholesterol (mg/dL) | 164.0 [102.0–298.0] | 168.0 [112.0–221.0] | 168.0 [102.0–225.0] | 162.5 [104.0–298.0] | 0.849 | 157.0 [101.0–271.0] | 157.5 [126.0–200.0] | 152.0 [101.0–210.0] | 157.0 [103.0–271.0] | 0.382 | 0.053 ¥ |
HDL-c (mg/dL) | 52.6 (12.6) | 53.3 (9.8) | 52.1 (11.3) | 52.7 (14.6) | 0.958 | 50.6 (15.1) | 49.5 (13.3) | 45.5 (9.6) | 53.2 (17.0) | 0.163 | 0.180 |
LDL-c (mg/dL) | 92.0 [52.0–224.0] | 101.0 [52.0–155.0] | 99.0 [56.0–139.0] | 92.0 [56.0–224.0] | 0.822 | 87.0 [50.0–187.0] | 82.5 [71.0–113.0] | 87.0 [50.6–147.0] | 90.0 [50.0–187.0] | 0.875 | 0.026 ¥ |
Adiponectin (mg/L) | 17.9 (12.0) | 24.9 (14.4) | 16.9 (11.6) | 14.6 (9.8) | 0.036 | 12.0 (8.5) | 12.5 (9.5) | 9.6 (5.3) | 13.2 (9.5) | 0.582 | 0.001 |
Leptin (μg/L) | 13.8 (13.4) | 10.1 (7.9) | 15.2 (17.1) | 14.3 (12.1) | 0.515 | 10.4 (7.5) | 10.7 (12.2) | 8.3 (6.2) | 11.3 (7.4) | 0.322 | 0.047 |
Cardiometabolic Variables (T1) | 25(OH)D Levels (T1) (ng/mL) | |||||
---|---|---|---|---|---|---|
Unadjusted Model 1 | Adjusted Model 2 | |||||
B | 95% CI | p-Value | B | 95% CI | p-Value | |
Waist circumference (cm) | −0.007 | −0.013 to −0.001 | 0.021 | −0.002 | −0.016 to 0.012 | 0.759 |
SBP (mmHg) | −0.006 | −0.012 to 0.000 | 0.065 | −0.002 | −0.010 to 0.006 | 0.580 |
DBP (mmHg) | −0.059 | −0.249 to 0.130 | 0.535 | 0.082 | −0.138 to 0.302 | 0.459 |
Glucose (mg/dL) | −0.001 | −0.014 to 0.012 | 0.859 | −0.003 | −0.016 to 0.010 | 0.652 |
Insulin (mUI/L) | −0.283 | −0.437 to −0.128 | 0.001 | −0.250 | −0.446 to −0.054 | 0.013 |
HOMA-IR | −0.256 | −0.404 to −0.108 | 0.001 | −0.219 | −0.400 to −0.038 | 0.019 |
QUICKI | 1.817 | 0.795 to 2.839 | 0.001 | 1.574 | 0.337 to 2.811 | 0.013 |
TAG (mg/dL) | −0.349 | −0.563 to −0.135 | 0.002 | −0.274 | −0.525 to −0.024 | 0.032 |
Cholesterol (mg/dL) | −0.018 | −0.098 to 0.061 | 0.653 | −0.041 | −0.121 to 0.038 | 0.303 |
HDL-c (mg/dL) | −0.015 | −0.107 to 0.077 | 0.748 | −0.098 | −0.201 to 0.005 | 0.061 |
LDL-c (mg/dL) | −0.011 | −0.075 to 0.053 | 0.727 | −0.019 | −0.083 to 0.044 | 0.551 |
Adiponectin (mg/L) | 0.062 | −0.071 to 0.196 | 0.356 | 0.003 | −0.155 to 0.161 | 0.973 |
Leptin (μg/L) | −0.080 | −0.153 to −0.007 | 0.032 | −0.014 | −0.160 to 0.132 | 0.850 |
Cardiometabolic Variables (T0) | 25(OH)D Levels (T1) (ng/mL) | |||||
---|---|---|---|---|---|---|
Unadjusted Model 1 | Adjusted Model 2 | |||||
B | 95% CI | p-Value | B | 95% CI | p-Value | |
Waist circumference (cm) | −0.004 | −0.011 to 0.003 | 0.272 | 0.004 | −0.005 to 0.013 | 0.398 |
SBP (mmHg) | −0.007 | −0.015 to 0.002 | 0.110 | −0.004 | −0.012 to 0.005 | 0.394 |
DBP (mmHg) | −0.136 | −0.295 to 0.023 | 0.093 | −0.076 | −0.238 to 0.086 | 0.352 |
Glucose (mg/dL) | −0.001 | −0.012 to 0.011 | 0.875 | 0.002 | −0.011 to 0.014 | 0.774 |
Insulin (mUI/L) | −0.136 | −0.258 to −0.014 | 0.030 | −0.097 | −0.228 to 0.034 | 0.144 |
HOMA-IR | −0.132 | −0.252 to −0.012 | 0.032 | −0.088 | −0.214 to 0.039 | 0.172 |
QUICKI | 0.783 | 0.025 to 1.541 | 0.043 | 0.534 | −0.254 to 1.321 | 0.181 |
TAG (mg/dL) | −0.137 | −0.344 to 0.071 | 0.193 | −0.007 | −0.227 to 0.214 | 0.953 |
Cholesterol (mg/dL) | −0.008 | −0.080 to 0.065 | 0.836 | −0.004 | −0.078 to 0.071 | 0.917 |
HDL-c (mg/dL) | −0.006 | −0.112 to 0.100 | 0.910 | −0.077 | −0.184 to 0.030 | 0.157 |
LDL-c (mg/dL) | −0.004 | −0.067 to 0.058 | 0.888 | 0.003 | −0.060 to 0.065 | 0.935 |
Adiponectin (mg/L) | 0.140 | 0.000 to 0.279 | 0.049 | 0.070 | −0.085 to 0.225 | 0.373 |
Leptin (μg/L) | −0.006 | −0.061 to 0.049 | 0.835 | 0.046 | −0.015 to 0.108 | 0.136 |
Variables | NW Non-IR No Change Group 1 (n = 16) | OW/OB Non-IR to NW Non-IR Group 2 (n = 6) | OW/OB Non-IR No Change Group 3 (n = 26) | OW/OB—IR to Non-IR Group 4 (n = 9) | OW/OB—Non-IR to IR Group 5 (n = 13) | OW/OB IR No Change Group 6 (n = 6) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T0 | ∆ | T0 | ∆ | T0 | ∆ | T0 | ∆ | T0 | ∆ | T0 | ∆ | |
Sex, F/M | 4/12 | 4/2 | 8/18 | 6/3 | 8/5 | 4/2 | ||||||
Age (years) | 7.5 (2.1) | 7.3 (3.2) ** | 8.4 (1.6) | 6.4 (2.5) ** | 7.8 (1.9) | 5.9 (2.5) ** | 8.1 (1.9) | 5.1 (3.1) ** | 7.1 (1.9) | 6.5 (2.8) ** | 8.6 (0.8) | 4.9 (1.9) ** |
BMI z-score | −0.3 (0.6) | 0.1 (0.5) | 1.3 (0.6) | −1.4 (0.4) ** | 3.0 (1.3) | −1.0 (1.5) ** | 3.1 (1.9) | −1.0 (1.7) | 2.5 (1.1) | 0.4 (1.3) | 3.5 (1.6) | 0.4 (0.9) |
BMI (kg/m2) ¥ | 15.9 [14.3; 20.2] | 3.4 [0.5; 8.7] ** | 21.6 [17.7; 24.1] | −0.6 [−3.9; 2.8] | 23.6 [19.6; 29.8] | 3.07 [−3.9; 10.7] ** | 25.4 [21.4; 36.0] | 0.8 [−5.2; 11.3] | 23.3 [17.9; 25.1] | 5.1 [2.5; 15.6] ** | 26.2 [23.0; 35.5] | 7.1 [2.0; 12.5] * |
Waist circumference (cm) | 58.3 (6.1) | 13.2 (7.2) ** | 75.7 (9.4) | −0.2 (9.9) | 78.0 (10.2) | 10.8 (11.7) ** | 81.6 (13.1) | 10.2 (16.3) | 75.4 (8.5) | 18.9 (11.1) ** | 89.5 (12.4) | 22.4 (13.6) * |
SBP (mmHg) | 100.7 (11.9) | 7.2 (15.2) | 105.0 (10.6) | 7.8 (17.9) | 103.8 (13.5) | 12.5 (16.1) ** | 109.2 (13.6) | 11.8 (15.0) | 102.5 (9.0) | 13.8 (12.8) ** | 111.5 (7.3) | 24.1 (29.6) |
DBP (mmHg) | 59.5 [50.0–72.0] | 6.0 [−13.5; 20.5] | 68.5 [58.0; 76.0] | −6.0 [−18.0; 3.0] | 62.0 [46.0; 81.0] | 7.0 [−11.0; 21.0] ** | 66.0 [50; 79] | 0.5 [−11.0; 31.5] | 63.0 [45; 71.0] | 9.0 [−4.0; 24.0] ** | 64.5 [56.0; 100.0] | 7.7 [−20.0; 21.5] |
25(OH)D (ng/mL) | 27.1 (15.2) | −7.6 (13.4) | 21.5 (6.8) | −0.5 (12.0) | 22.2 (8.1) | −1.2 (10.8) | 24.4 (9.4) | −6.3 (9.4) | 23.0 (10.8) | −7.0 (12.4) * | 15.0 (6.3) | 0.1 (10.3) |
Fasting glucose (mg/dL) | 80.0 (9.2) | 0.6 (10.5) | 83.3 (8.1) | −3.0 (9.0) | 80.4 (7.9) | −0.5 (10.2) | 81.1 (7.9) | −3.3 (7.8) | 79.4 (6.9) | 5.5 (11.8) | 87.5 (9.9) | −0.5 (17.8) |
Fasting insulin (mUI/L) | 4.7 (2.8) | 5.3 (3.3) ** | 5.6 (3.3) | 2.7 (3.1) | 5.3 (3.2) | 4.3 (4.7) ** | 17.0 (6.3) | −4.2 (7.2) | 7.8 (3.2) | 17.3 (8.0) ** | 18.1 (5.3) | 11.9 (11.7) * |
HOMA-IR | 0.9 (0.5) | 1.1 (0.7) ** | 1.1 (0.6) | 0.5 (0.7) | 1.1 (0.7) | 0.8 (0.9) ** | 3.3 (0.9) | −0.9 (1.4) | 1.5 (0.7) | 3.8 (2.2) ** | 3.9 (1.1) | 2.3 (1.8) ** |
QUICKI | 0.4 (0.04) | −0.05 (0.04) ** | 0.4 (0.04) | −0.03 (0.04) | 0.4 (0.04) | −0.05 (0.05) ** | 0.3 (0.01) | 0.02 (0.03) | 0.4 (0.03) | −0.06 (0.03) ** | 0.3 (0.01) | −0.02 (0.01) ** |
TAG (mg/dL) | 44.8 (19.9) | 12.8 (20.5) * | 57.7 (24.4) | −3.0 (14.1) | 52.7 (21.3) | 13.6 (26.0) ** | 71.7 (26.5) | −10.1 (27.1) | 55.7 (36.1) | 43.8 (31.0) ** | 77.8 (34.3) | 13.5 (36.6) |
Cholesterol (mg/dL) ¥ | 175.0 [112.0–231.0] | −5.0 [−28.0; 43.0] | 160.0 [119.0; 246.0] | 9.5 [−36.0; 25.0] | 173.0 [104.0; 298.0] | −7.0 [−101.0; 30.0] | 164.0 [141.0; 221.0] | −14.0 [–39.0; 0.0] * | 158.0 [102.0; 185.0] | 7.0 [−30.0; 33.0] | 171.0 [135.0; 203. 0] | −11.5 [−36.0; 29.0] |
LDL-c (mg/dL) ¥ | 102.0 [54.0–140.0] | −1.5 [−32.0; 25.0] | 99.5 [56.0; 184.0] | 3.0 [−30.0; 9.0] | 101.0 [56.0; 224.0] | −5.0 [−81.0; 24.0] | 83.0 [66.0; 155.0] | −5.0 [−35.0; 10.0] | 92.0 [52.0; 114.0] | 2.0 [−31.0; 28.0] | 96.0 [62.0; 149.0] | −8.0 [−29.0; 15.0] |
HDL-c (mg/dL) | 59.7 (13.4) | 0.2 (11.6) | 51.3 (7.9) | 6.7 (10.6) | 53.7 (12.9) | −6.0 (15.1) | 51.0 (11.9) | 2.3 (28.9) | 46.0 (9.8) | −3.7 (5.0) * | 46.8 (12.8) | −2.3 (12.0) |
Adiponectin (mg/L) | 23.3 (14.6) | −9.0 (15.4) * | 17.4 (11.4) | 0.1 (15.6) | 17.6 (13.1) | −6.5 (15.1) * | 15.3 (10.0) | −1.9 (11.4) | 11.4 (4.3) | −3.6 (6.2) | 18.2 (11.6) | −0.8 (8.8) |
Leptin (μg/L) | 3.7 (6.2) | −0.1 (5.8) | 9.4 (5.1) | −5.5 (4.22) * | 14.2 (11.3) | −4.2 (12.3) | 22.2 (22.0) | −11.4 (21.6) | 13.5 (4.2) | 3.0 (6.2) | 34.5 (9.3) | −11.2 (11.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pires, L.V.; González-Gil, E.M.; Anguita-Ruiz, A.; Bueno, G.; Gil-Campos, M.; Vázquez-Cobela, R.; Pérez-Ferreirós, A.; Moreno, L.A.; Gil, Á.; Leis, R.; et al. The Vitamin D Decrease in Children with Obesity Is Associated with the Development of Insulin Resistance during Puberty: The PUBMEP Study. Nutrients 2021, 13, 4488. https://doi.org/10.3390/nu13124488
Pires LV, González-Gil EM, Anguita-Ruiz A, Bueno G, Gil-Campos M, Vázquez-Cobela R, Pérez-Ferreirós A, Moreno LA, Gil Á, Leis R, et al. The Vitamin D Decrease in Children with Obesity Is Associated with the Development of Insulin Resistance during Puberty: The PUBMEP Study. Nutrients. 2021; 13(12):4488. https://doi.org/10.3390/nu13124488
Chicago/Turabian StylePires, Liliane Viana, Esther M. González-Gil, Augusto Anguita-Ruiz, Gloria Bueno, Mercedes Gil-Campos, Rocío Vázquez-Cobela, Alexandra Pérez-Ferreirós, Luis A. Moreno, Ángel Gil, Rosaura Leis, and et al. 2021. "The Vitamin D Decrease in Children with Obesity Is Associated with the Development of Insulin Resistance during Puberty: The PUBMEP Study" Nutrients 13, no. 12: 4488. https://doi.org/10.3390/nu13124488
APA StylePires, L. V., González-Gil, E. M., Anguita-Ruiz, A., Bueno, G., Gil-Campos, M., Vázquez-Cobela, R., Pérez-Ferreirós, A., Moreno, L. A., Gil, Á., Leis, R., & Aguilera, C. M. (2021). The Vitamin D Decrease in Children with Obesity Is Associated with the Development of Insulin Resistance during Puberty: The PUBMEP Study. Nutrients, 13(12), 4488. https://doi.org/10.3390/nu13124488