Inverse Association of Plasma Molybdenum with Metabolic Syndrome in a Chinese Adult Population: A Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definition of MetS
2.3. Data Collection
2.4. Laboratory Measurements
2.5. Measurement of Plasma Essential Elements Concentrations
2.6. Statistical Analysis
3. Results
3.1. Characteristics of the Participants
3.2. Associations of Molybdenum with MetS and Its Components
3.3. Restricted Cubic Spline Analysis
3.4. BKMR Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Aguilar, M.; Bhuket, T.; Torres, S.; Liu, B.; Wong, R.J. Prevalence of the Metabolic Syndrome in the United States, 2003–2012. JAMA 2015, 313, 1973–1974. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andy Menke, L.G.; Atherine, C. COWIE 2016. Metals in Urine and Diabetes in U.S. Adults. Diabetes 2016, 65, 164–171. [Google Scholar]
- Biego, G.H.; Joyeux, M.; Hartemann, P.; DeBry, G. Daily intake of essential minerals and metallic micropollutants from foods in France. Sci. Total Environ. 1998, 217, 27–36. [Google Scholar] [CrossRef]
- Bueno, M.; Wang, J.; Mora, A.L.; Gladwin, M.T. Nitrite Signaling in Pulmonary Hypertension: Mechanisms of Bioactivation, Signaling, and Therapeutics. Antioxid. Redox Signal. 2013, 18, 1797–1809. [Google Scholar] [CrossRef] [Green Version]
- Bulka, C.M.; Persky, V.W.; Daviglus, M.L.; Durazo-Arvizu, R.A.; Argos, M. Multiple metal exposures and metabolic syndrome: A cross-sectional analysis of the National Health and Nutrition Examination Survey 2011–2014. Environ. Res. 2019, 168, 397–405. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, L.; Guo, Q.; Fang, C.; Wang, M.; Peng, X.; Yin, J.; Li, S.; Zhu, Y.; Yang, W.; et al. Association of plasma chromium with metabolic syndrome among Chinese adults: A case-control study. Nutr. J. 2020, 19, 107. [Google Scholar] [CrossRef]
- Choi, M.-K.; Kang, M.-H.; Kim, M.-H. The Analysis of Copper, Selenium, and Molybdenum Contents in Frequently Consumed Foods and an Estimation of Their Daily Intake in Korean Adults. Biol. Trace Elem. Res. 2008, 128, 104–117. [Google Scholar] [CrossRef]
- Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z. The metabolic syndrome. Lancet 2005, 365, 1415–1428. [Google Scholar] [CrossRef]
- Everson, T.M.; Niedzwiecki, M.M.; Toth, D.; Tellez-Plaza, M.; Liu, H.; Barr, D.B.; Gribble, M.O. Metal biomarker mixtures and blood pressure in the United States: Cross-sectional findings from the 1999–2006 National Health and Nutrition Examination Survey (NHANES). Environ. Health 2021, 20, 15. [Google Scholar] [CrossRef]
- Hays, S.M.; Macey, K.; Poddalgoda, D.; Lu, M.; Nong, A.; Aylward, L. Biomonitoring Equivalents for molybdenum. Regul. Toxicol. Pharmacol. 2016, 77, 223–229. [Google Scholar] [CrossRef]
- Kapil, V.; Milsom, A.B.; Okorie, M.; Maleki-Toyserkani, S.; Akram, F.; Rehman, F.; Arghandawi, S.; Pearl, V.; Benjamin, N.; Loukogeorgakis, S.; et al. Inorganic Nitrate Supplementation Lowers Blood Pressure in Humans. Hypertension 2010, 56, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Kaur, J. A Comprehensive Review on Metabolic Syndrome. Cardiol. Res. Pract. 2014, 2014, 943162. [Google Scholar] [CrossRef]
- Kisker, C.; Schindelin, H.; Rees, D.C. Molybdenum-COFACTOR–CONTAINING ENZYMES: Structure and Mechanism. Annu. Rev. Biochem. 1997, 66, 233–267. [Google Scholar] [CrossRef] [Green Version]
- La, S.A.; Lee, J.Y.; Kim, D.H.; Song, E.L.; Park, J.H.; Ju, S.Y. Low Magnesium Levels in Adults with Metabolic Syndrome: A Meta-Analysis. Biol. Trace Elem. Res. 2015, 170, 33–42. [Google Scholar] [CrossRef]
- Lan, C.; Liu, Y.; Li, Q.; Wang, B.; Xue, T.; Chen, J.; Jiangtulu, B.; Ge, S.; Wang, X.; Gao, M.; et al. Internal metal(loid)s are potentially involved in the association between ambient fine particulate matter and blood pressure: A repeated-measurement study in north China. Chemosphere 2021, 267, 129146. [Google Scholar] [CrossRef]
- Lee, S.; Nam, K.-H.; Seong, J.K.; Ryu, D.-Y. Molybdate Attenuates Lipid Accumulation in the Livers of Mice Fed a Diet Deficient in Methionine and Choline. Biol. Pharm. Bull. 2018, 41, 1203–1210. [Google Scholar] [CrossRef]
- Liu, H.-K.; Green, B.D.; McClenaghan, N.H.; McCluskey, J.T.; Flatt, P. Long-Term Beneficial Effects of Vanadate, Tungstate, and Molybdate on Insulin Secretion and Function of Cultured Beta Cells. Pancreas 2004, 28, 364–368. [Google Scholar] [CrossRef]
- Lu, J.; Wang, L.; Li, M.; Xu, Y.; Jiang, Y.; Wang, W.; Li, J.; Mi, S.; Zhang, M.; Li, Y.; et al. Metabolic Syndrome among Adults in China—The 2010 China Noncommunicable Disease Surveillance. J. Clin. Endocrinol. Metab. 2017, 102, 507–515. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Zhou, Y.; Wang, D.; Guo, Y.; Wang, B.; Xu, Y.; Chen, W. Associations between essential metals exposure and metabolic syndrome (MetS): Exploring the mediating role of systemic inflammation in a general Chinese population. Environ. Int. 2020, 140, 105802. [Google Scholar] [CrossRef]
- Malik, S.; Wong, N.D.; Franklin, S.S.; Kamath, T.V.; L’Italien, G.J.; Pio, J.R.; Williams, G.R. Impact of the Metabolic Syndrome on Mortality from Coronary Heart Disease, Cardiovascular Disease, and All Causes in United States Adults. Circulation 2004, 110, 1245–1250. [Google Scholar] [CrossRef]
- Mendel, R.R. The Molybdenum Cofactor. J. Biol. Chem. 2013, 288, 13165–13172. [Google Scholar] [CrossRef] [Green Version]
- Mohseni Salehi Monfared, S.S.; Pournourmohammadi, S. Teucrium polium Complex with Molybdate Enhance Cultured Islets Secretory Function. Biol. Trace Elem. Res. 2009, 133, 236–241. [Google Scholar] [CrossRef]
- Mooney, R.A.; Bordwell, K.L. Differential dephosphorylation of the insulin receptor and its 160-kDa substrate (pp160) in rat adipocytes. J. Biol. Chem. 1992, 267, 14054–14060. [Google Scholar] [CrossRef]
- Novotny, J.A. Molybdenum Nutriture in Humans. J. Evid. Based Complementary Altern. Med. 2011, 16, 164–168. [Google Scholar] [CrossRef]
- Novotny, J.A.; Peterson, C.A. Molybdenum. Adv. Nutr. 2018, 9, 272–273. [Google Scholar] [CrossRef]
- Ozturk, O.H.; Oktar, S.; Aydin, M.; Kucukatay, V. Effect of sulfite on antioxidant enzymes and lipid peroxidation in normal and sulfite oxidase-deficient rat erythrocytes. J. Physiol. Biochem. 2010, 66, 205–212. [Google Scholar] [CrossRef]
- Padilla, M.A.; Elobeid, M.; Ruden, D.M.; Allison, D.B. An Examination of the Association of Selected Toxic Metals with Total and Central Obesity Indices: NHANES 99-02. Int. J. Environ. Res. Public Health 2010, 7, 3332–3347. [Google Scholar] [CrossRef]
- Panneerselvam, R.; Govindaswamy, S. Effect of sodium molybdate on carbohydrate metabolizing enzymes in alloxan-induced diabetic rats. J. Nutr. Biochem. 2002, 13, 21–26. [Google Scholar] [CrossRef]
- Panneerselvam, S.R.; Govindasamy, S. Effect of sodium molybdate on the status of lipids, lipid peroxidation and antioxidant systems in alloxan-induced diabetic rats. Clin. Chim. Acta 2004, 345, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Xu, Z.; Mo, X.; Guo, Q.; Yin, J.; Xu, M.; Peng, Z.; Sun, T.; Zhou, L.; Peng, X.; et al. Association of plasma β-amyloid 40 and 42 concentration with type 2 diabetes among Chinese adults. Diabetologia 2020, 63, 954–963. [Google Scholar] [CrossRef]
- Peredo, H.A.; Andrade, V.; Donoso, A.S.; Lee, H.J.; Puyó, A.M. Sodium molybdate prevents hypertension and vascular prostanoid imbalance in fructose-overloaded rats. Auton. Autacoid Pharmacol. 2013, 33, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Neve, E.P.A.; Köfeler, H.; Hendriks, D.F.G.; Nordling, Å.; Gogvadze, V.; Mkrtchian, S.; Naslund, E.; Ingelman-Sundberg, M. Expression and Function of mARC: Roles in Lipogenesis and Metabolic Activation of Ximelagatran. PLoS ONE 2015, 10, e0138487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajagopalan, K. Molybdenum-An Essential Trace Element. Nutr. Rev. 1987, 45, 321–328. [Google Scholar] [CrossRef]
- Reul, B.; Becker, D.; Ongemba, L.; Bailey, C.; Henquin, J.; Brichard, S. Improvement of glucose homeostasis and hepatic insulin resistance in ob/ob mice given oral molybdate. J. Endocrinol. 1997, 155, 55–64. [Google Scholar] [CrossRef]
- Robberecht, H.; De Bruyne, T.; Hermans, N. Biomarkers of the metabolic syndrome: Influence of minerals, oligo- and trace elements. J. Trace Elem. Med. Biol. 2017, 43, 23–28. [Google Scholar] [CrossRef]
- Rotter, I.; Kosik-Bogacka, D.; Dołęgowska, B.; Safranow, K.; Lubkowska, A.; Laszczyńska, M. Relationship between the Concentrations of Heavy Metals and Bioelements in Aging Men with Metabolic Syndrome. Int. J. Environ. Res. Public Health 2015, 12, 3944–3961. [Google Scholar] [CrossRef] [Green Version]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, G.; Mendel, R.R.; Ribbe, M.W. Molybdenum cofactors, enzymes and pathways. Nature 2009, 460, 839–847. [Google Scholar] [CrossRef]
- Shao, W.; Liu, Q.; He, X.; Liu, H.; Gu, A.; Jiang, Z. Association between level of urinary trace heavy metals and obesity among children aged 6–19 years: NHANES 1999–2011. Environ. Sci. Pollut. Res. 2017, 24, 11573–11581. [Google Scholar] [CrossRef]
- Shiue, I.; Hristova, K. Higher urinary heavy metal, phthalate and arsenic concentrations accounted for 3–19% of the population attributable risk for high blood pressure: US NHANES, 2009–2012. Hypertens. Res. 2014, 37, 1075–1081. [Google Scholar] [CrossRef] [PubMed]
- Trumbo, P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary Reference Intakes. J. Am. Diet. Assoc. 2001, 101, 294–301. [Google Scholar] [CrossRef]
- Turnlund, J.R.; Keyes, W.R. Plasma molybdenum reflects dietary molybdenum intake. J. Nutr. Biochem. 2004, 15, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Mukherjee, B.; Karvonen-Gutierrez, C.A.; Herman, W.H.; Batterman, S.; Harlow, S.D.; Park, S.K. Urinary metal mixtures and longitudinal changes in glucose homeostasis: The Study of Women’s Health Across the Nation (SWAN). Environ. Int. 2020, 145, 106109. [Google Scholar] [CrossRef]
- Webb, A.J.; Patel, N.; Loukogeorgakis, S.; Okorie, M.; Aboud, Z.; Misra, S.; Rashid, R.; Miall, P.; Deanfield, J.; Benjamin, N.; et al. Acute Blood Pressure Lowering, Vasoprotective, and Antiplatelet Properties of Dietary Nitrate via Bioconversion to Nitrite. Hypertension 2008, 51, 784–790. [Google Scholar] [CrossRef] [Green Version]
- Wilson, P.W.; D’Agostino, R.B.; Parise, H.; Sullivan, L.; Meigs, J.B. Metabolic Syndrome as a Precursor of Cardiovascular Disease and Type 2 Diabetes Mellitus. Circulation 2005, 112, 3066–3072. [Google Scholar] [CrossRef]
- Xiao, L.; Zhou, Y.; Ma, J.; Sun, W.; Cao, L.; Wang, B.; Zhu, C.; Yang, S.; Wang, D.; Yuan, J.; et al. Oxidative DNA damage mediates the association between urinary metals and prevalence of type 2 diabetes mellitus in Chinese adults. Sci. Total Environ. 2018, 627, 1327–1333. [Google Scholar] [CrossRef]
- Goto, Y.; Kida, K.; Ikeuchi, M.; Kaino, Y.; Matsuda, H. Synergism in insulin-like effects of molybdate plus H2O2 or tungstate plus H2O2 on glucose transport by isolated rat adipocytes. Biochem. Pharmacol. 1992, 44, 174–177. [Google Scholar]
- Zeng, C.; Hou, G.; Dick, R.; Brewer, G.J. Tetrathiomolybdate Is Partially Protective Against Hyperglycemia in Rodent Models of Diabetes. Exp. Biol. Med. 2008, 233, 1021–1025. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, C.; Weisskopf, M.; Williams, P.L.; Parsons, P.J.; Palmer, C.D.; Louis, G.M.B.; James-Todd, T. A Prospective Study of Early Pregnancy Essential Metal(loid)s and Glucose Levels Late in the Second Trimester. J. Clin. Endocrinol. Metab. 2019, 104, 4295–4303. [Google Scholar] [CrossRef]
- Zhou, L.; Luo, C.; Yin, J.; Zhu, Y.; Li, P.; Chen, S.; Sun, T.; Xie, M.; Shan, Z.; Cao, B.; et al. Diverse Associations of Plasma Selenium Concentrations and SELENOP Gene Polymorphism with Metabolic Syndrome and Its Components. Oxidative Med. Cell. Longev. 2020, 2020, 5343014. [Google Scholar] [CrossRef] [Green Version]
Characteristics | MetS (n = 2678) | Controls (n = 2678) | p Value |
---|---|---|---|
Age (y) | 54.5 (10.9) | 54.8 (10.8) | 0.286 |
Male, n (%) | 1478 (55.2) | 1478 (55.2) | 1.000 |
BMI (kg/m2) | 25.88 (2.99) | 24.36 (2.78) | <0.001 |
Waist circumference (cm) | 90.33 (7.84) | 84.60 (8.19) | <0.001 |
Hip circumference (cm) | 98.26 (6.31) | 95.19 (6.28) | <0.001 |
Waist/hip ratio | 0.92 (0.05) | 0.89 (0.06) | <0.001 |
SBP (mmHg) | 137.78 (20.14) | 127.69 (19.85) | <0.001 |
DBP (mmHg) | 82.80 (11.70) | 76.96 (10.98) | <0.001 |
Fasting plasma glucose (mmol/L) | 5.76 (5.23–6.30) | 5.15 (4.80–5.51) | <0.001 |
Triglycerides (mmol/L) | 1.89 (1.41–2.55) | 1.15 (0.88–1.48) | <0.001 |
Total cholesterol (mmol/L) | 4.99 (4.36–5.71) | 4.94 (4.37–5.59) | 0.137 |
HDL cholesterol (mmol/L) | 1.20 (0.33) | 1.43 (0.36) | <0.001 |
LDL cholesterol (mmol/L) | 2.95 (0.94) | 2.99 (0.90) | 0.127 |
Smoking, n (%) a | 0.750 | ||
Current | 622 (23.3) | 602 (22.6) | |
Former | 277 (10.4) | 270 (7.8) | |
Never | 1772 (66.3) | 1796 (67.3) | |
Drinking, n (%) b | 0.691 | ||
Current | 692 (26.0) | 714 (26.8) | |
Former | 198 (7.4) | 205 (7.7) | |
Never | 1775 (66.6) | 1744 (65.5) | |
Physical activity, n (%) c | 0.111 | ||
Yes | 1469 (55.3) | 1521 (57.4) | |
No | 1189 (44.7) | 1127 (42.6) | |
Family history of diabetes, n (%) d | <0.001 | ||
Yes | 335 (12.7) | 256 (9.7) | |
No | 2310 (87.3) | 2390 (90.3) | |
Educational levels, n (%) e | 0.414 | ||
None or elementary school | 611 (23.0) | 631 (23.8) | |
Middle school | 1160 (43.7) | 1180 (44.5) | |
High school or college | 885 (33.3) | 838 (31.6) | |
Molybdenum (μg/L) | 1.24 (0.85–1.70) | 1.46 (1.05–1.97) | <0.001 |
Variables | Quartiles of Plasma Molybdenum Concentrations (μg/L) | Per SD of Log–Transformed Molybdenum | pTrend | |||
---|---|---|---|---|---|---|
Q1 (≤1.05) | Q2 (1.05–1.46) | Q3 (1.46–1.97) | Q4 (≥1.97) | |||
MetS | ||||||
No. of cases/controls | 1018/669 | 678/670 | 555/670 | 427/669 | ||
Crude OR | 1.00 | 0.66 (0.57–0.76) | 0.52 (0.45–0.61) | 0.40 (0.34–0.48) | 0.71 (0.67–0.76) | <0.001 |
Model 1 a | 1.00 | 0.67 (0.58–0.79) | 0.55 (0.47–0.65) | 0.43 (0.36–0.51) | 0.73 (0.69–0.78) | <0.001 |
Model 2 b | 1.00 | 0.70 (0.59–0.82) | 0.58 (0.49–0.69) | 0.47 (0.39–0.57) | 0.76 (0.71–0.82) | <0.001 |
Model 3 c | 1.00 | 0.71 (0.59–0.84) | 0.56 (0.46–0.68) | 0.47 (0.39–0.58) | 0.77 (0.71–0.83) | <0.001 |
Abdominal obesity | ||||||
No. of cases/controls | 1108/569 | 867/473 | 721/501 | 624/471 | ||
Crude OR | 1.00 | 0.94 (0.81–1.10) | 0.74 (0.64–0.86) | 0.68 (0.58–0.80) | 0.88 (0.84–0.94) | <0.001 |
Model 1 a | 1.00 | 0.86 (0.73–1.01) | 0.69 (0.59–0.81) | 0.66 (0.56–0.77) | 0.87 (0.82–0.92) | <0.001 |
Model 2 b | 1.00 | 0.77 (0.65–0.91) | 0.56 (0.48–0.67) | 0.51 (0.43–0.61) | 0.77 (0.72–0.82) | <0.001 |
Model 3 c | 1.00 | 0.80 (0.67–0.95) | 0.57 (0.48–0.68) | 0.53 (0.43–0.64) | 0.79 (0.74–0.85) | <0.001 |
Hypertriglyceridemia | ||||||
No. of cases/controls | 872/815 | 587/760 | 485/738 | 420/676 | ||
Crude OR | 1.00 | 0.72 (0.63–0.83) | 0.61 (0.53–0.71) | 0.58 (0.50–0.68) | 0.81 (0.77–0.86) | <0.001 |
Model 1 a | 1.00 | 0.74 (0.64–0.85) | 0.64 (0.55–0.75) | 0.60 (0.51–0.70) | 0.82 (0.78–0.87) | <0.001 |
Model 2 b | 1.00 | 0.74 (0.63–0.86) | 0.66 (0.56–0.77) | 0.61 (0.52–0.72) | 0.82 (0.78–0.88) | <0.001 |
Model 3 c | 1.00 | 0.76 (0.65–0.88) | 0.67 (0.56–0.79) | 0.64 (0.53–0.76) | 0.84 (0.79–0.90) | <0.001 |
Low HDL–C | ||||||
No. of cases/controls | 591/1096 | 481/867 | 389/835 | 318/777 | ||
Crude OR | 1.00 | 1.03 (0.89–1.20) | 0.86 (0.74–1.01) | 0.76 (0.64–0.90) | 0.90 (0.85–0.96) | <0.001 |
Model 1 a | 1.00 | 0.98 (0.84–1.14) | 0.87 (0.74–1.03) | 0.78 (0.65–0.92) | 0.91 (0.85–0.96) | <0.001 |
Model 2 b | 1.00 | 0.92 (0.79–1.09) | 0.79 (0.67–0.94) | 0.70 (0.58–0.84) | 0.86 (0.81–0.92) | <0.001 |
Model 3 c | 1.00 | 0.89 (0.75–1.06) | 0.77 (0.64–0.92) | 0.68 (0.56–0.82) | 0.85 (0.79–0.91) | <0.001 |
High blood pressure | ||||||
No. of cases/controls | 1127/488 | 822/501 | 726/485 | 644/438 | ||
Crude OR | 1.00 | 0.71 (0.61–0.83) | 0.65 (0.55–0.76) | 0.64 (0.54–0.75) | 0.85 (0.80–0.90) | <0.001 |
Model 1 a | 1.00 | 0.75 (0.63–0.88) | 0.66 (0.56–0.78) | 0.63 (0.53–0.75) | 0.85 (0.80–0.91) | <0.001 |
Model 2 b | 1.00 | 0.80 (0.68–0.95) | 0.74 (0.62–0.88) | 0.75 (0.62–0.90) | 0.93 (0.87–1.00) | <0.001 |
Model 3 c | 1.00 | 0.80 (0.67–0.95) | 0.73 (0.61–0.88) | 0.71 (0.58–0.86) | 0.92 (0.86–0.99) | 0.001 |
Hyperglycemia | ||||||
No. of cases/controls | 840/845 | 565/783 | 495/730 | 436/659 | ||
Crude OR | 1.00 | 0.73 (0.63–0.84) | 0.68 (0.59–0.79) | 0.67 (0.57–0.78) | 0.82 (0.77–0.86) | <0.001 |
Model 1 a | 1.00 | 0.74 (0.64–0.86) | 0.68 (0.58–0.79) | 0.64 (0.55–0.75) | 0.81 (0.76–0.85) | <0.001 |
Model 2 b | 1.00 | 0.89 (0.76–1.04) | 0.84 (0.71–0.99) | 0.86 (0.72–1.02) | 0.92 (0.87–0.98) | <0.001 |
Model 3 c | 1.00 | 0.90 (0.76–1.06) | 0.82 (0.68–0.97) | 0.84 (0.69–1.02) | 0.92 (0.86–0.99) | 0.055 |
Subgroup | % | Quartiles of Plasma Molybdenum Concentrations | Per SD of Log-Transformed Molybdenum | pInteraction | |||
---|---|---|---|---|---|---|---|
Q1 (≤1.05) | Q2 (1.05–1.46) | Q3 (1.46–1.97) | Q4 (≥1.97) | ||||
Age | 0.18 | ||||||
≤50 | 35.3 | 1.00 | 0.93 (0.71–1.22) | 0.66 (0.50–0.88) | 0.44 (0.33–0.60) | 0.69 (0.62–0.77) | |
>50 | 64.7 | 1.00 | 0.61 (0.49–0.74) | 0.54 (0.44–0.68) | 0.49 (0.38–0.61) | 0.77 (0.71–0.84) | |
Sex | 0.002 | ||||||
Men | 55.2 | 1.00 | 0.57 (0.46–0.72) | 0.53 (0.42–0.66) | 0.44 (0.34–0.56) | 0.74 (0.68–0.80) | |
Women | 44.8 | 1.00 | 0.94 (0.74–1.18) | 0.71 (0.55–0.91) | 0.58 (0.44–0.76) | 0.80 (0.72–0.88) | |
BMI | <0.001 | ||||||
≤24 | 32.7 | 1.00 | 0.39 (0.28–0.55) | 0.19 (0.13–0.26) | 0.12 (0.08–0.18) | 0.43 (0.37–0.50) | |
>24 | 67.3 | 1.00 | 0.85 (0.71–1.02) | 0.87 (0.71–1.06) | 0.79 (0.64–0.98) | 0.92 (0.85–0.99) | |
Current Smoking | 0.067 | ||||||
No | 77.1 | 1.00 | 0.76 (0.63–0.91) | 0.65 (0.54–0.79) | 0.52 (0.42–0.64) | 0.76 (0.71–0.82) | |
Yes | 22.9 | 1.00 | 0.57 (0.40–0.81) | 0.41 (0.28–0.59) | 0.39 (0.26–0.58) | 0.73 (0.64–0.84) | |
Current Drinking | 0.017 | ||||||
No | 73.6 | 1.00 | 0.80 (0.66–0.96) | 0.71 (0.59–0.86) | 0.57 (0.46–0.71) | 0.81 (0.75–0.87) | |
Yes | 26.4 | 1.00 | 0.56 (0.41–0.78) | 0.37 (0.26–0.51) | 0.32 (0.23–0.46) | 0.65 (0.57–0.74) | |
Physical activity | 0.603 | ||||||
No | 43.6 | 1.00 | 0.65 (0.50–0.83) | 0.52 (0.40–0.67) | 0.45 (0.35–0.60) | 0.72 (0.65–0.79) | |
Yes | 56.4 | 1.00 | 0.80 (0.65–0.98) | 0.67 (0.54–0.84) | 0.51 (0.40–0.66) | 0.79 (0.72–0.86) | |
Family history of diabetes | 0.427 | ||||||
No | 88.8 | 1.00 | 0.70 (0.59–0.83) | 0.59 (0.49–0.70) | 0.48 (0.40–0.58) | 0.76 (0.71–0.82) | |
Yes | 11.2 | 1.00 | 0.86 (0.53–1.40) | 0.68 (0.40–1.14) | 0.47 (0.27–0.82) | 0.74 (0.61–0.89) | |
Survey center | 0.467 | ||||||
Ezhou | 53.8 | 1.00 | 0.60 (0.48–0.75) | 0.50 (0.39–0.63) | 0.41 (0.31–0.54) | 0.71 (0.65–0.78) | |
Shenzhen | 46.2 | 1.00 | 0.85 (0.67–1.07) | 0.67 (0.52–0.85) | 0.54 (0.42–0.71) | 0.81 (0.74–0.88) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Huang, Y.; Luo, C.; Peng, X.; Jiao, Y.; Zhou, L.; Yin, J.; Liu, L. Inverse Association of Plasma Molybdenum with Metabolic Syndrome in a Chinese Adult Population: A Case-Control Study. Nutrients 2021, 13, 4544. https://doi.org/10.3390/nu13124544
Li B, Huang Y, Luo C, Peng X, Jiao Y, Zhou L, Yin J, Liu L. Inverse Association of Plasma Molybdenum with Metabolic Syndrome in a Chinese Adult Population: A Case-Control Study. Nutrients. 2021; 13(12):4544. https://doi.org/10.3390/nu13124544
Chicago/Turabian StyleLi, Ben, Yue Huang, Cheng Luo, Xiaolin Peng, Yang Jiao, Li Zhou, Jiawei Yin, and Liegang Liu. 2021. "Inverse Association of Plasma Molybdenum with Metabolic Syndrome in a Chinese Adult Population: A Case-Control Study" Nutrients 13, no. 12: 4544. https://doi.org/10.3390/nu13124544
APA StyleLi, B., Huang, Y., Luo, C., Peng, X., Jiao, Y., Zhou, L., Yin, J., & Liu, L. (2021). Inverse Association of Plasma Molybdenum with Metabolic Syndrome in a Chinese Adult Population: A Case-Control Study. Nutrients, 13(12), 4544. https://doi.org/10.3390/nu13124544