Hypertensive Disorders of Pregnancy in Relation to Coffee and Tea Consumption: The Japan Environment and Children’s Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Outcome Definition (HDP Classification)
2.4. Key Group Definitions (Assessment and Classification of Exposures)
2.5. Assessment of Covariates
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Participants According to Total Caffeine Intake
3.2. Risk of HDP According to Total Caffeine Intake
3.3. Risk of HDP According to Coffee and Tea Intakes
3.4. Risk of HDP According to Green, Oolong, and Black Tea Intakes
3.5. Risk of HDP According to the Frequencies of Decaffeinated Coffee and Tea Intakes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Modzelewska, D.; Belloco, R.; Elfvin, A.; Brantsaeter, A.L.; Meltzer, H.M.; Jacobbsson, B.; Sengpiel, V. Caffeine exposure during pregnancy, small for gestational age birth and neonatal outcome—Results from the Norwegian Mother and Child Cohort Study. BMC Pregnancy Childbirth 2019, 19, 80. [Google Scholar] [CrossRef] [PubMed]
- Sengpiel, V.; Elind, E.; Bacelis, J.; Nilsson, S.; Grove, J.; Myhre, R.; Haugen, M.; Meletzer, H.M.; Alexander, J.; Jacobsson, B.; et al. Maternal caffeine intake during pregnancy is associated with birth weight but not with gestational length: Results from a large prospective observational cohort study. BMC Med. 2013, 11, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenwood, D.C.; Thatcher, N.J.; Ye, J.; Garrard, L.; Keogh, G.; King, L.G.; Cade, J.E. Caffeine intake during pregnancy and adverse birth outcomes: A systematic review and dose-response meta-analysis. Eur. J. Epidemiol. 2014, 29, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, H.; Song, J.M.; Zhang, J.; Tang, Y.L.; Xin, C.M. A meta-analysis of risk of pregnancy loss and caffeine and coffee consumption during pregnancy. Int. J. Gynaecol. Obstet. 2015, 130, 116–122. [Google Scholar] [CrossRef]
- World Health Organization. WHO Recommendations on Antenatal Care for a Positive Pregnancy Experience; World Health Organization: Geneva, Switzerland, 2016; pp. 38–39. ISBN 978-92-4-154991-2.
- American College of Obstetricians and Gynecologists. ACOG committee opinion no. 462: Moderate caffeine consumption during pregnancy. Obstet. Gynecol. 2010, 116, 467–468. [Google Scholar] [CrossRef] [PubMed]
- Mol, B.W.J.; Roberts, C.T.; Thangaratinam, S.; Magee, L.A.; de Groot, C.J.M.; Hofmeyr, G.J. Pre-eclampsia. Lancet 2016, 387, 999–1011. [Google Scholar] [CrossRef]
- Moussa, H.N.; Arian, S.E.; Sibai, B.M. Management of hypertensive disorders in pregnancy. Women’s Health 2014, 10, 385–404. [Google Scholar] [CrossRef]
- Bakker, R.; Steegers, E.A.; Raat, H.; Hofman, A.; Jaddoe, V.W. Maternal caffeine intake, blood pressure, and the risk of hypertensive complications during pregnancy. The generation R study. Am. J. Hypertens. 2011, 24, 421–428. [Google Scholar] [CrossRef]
- van der Hoeven, T.; Browne, J.L.; Uiterwaal, C.; van der Ent, C.K.; Grobbee, D.E.; Dalmeijer, G.W. Antenatal coffee and tea consumption and the effect on birth outcome and hypertensive pregnancy disorders. PLoS ONE 2017, 12, e0177619. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.Q.; Xu, H.; Xiong, X.; Luo, Z.C.; Audibert, F.; Fraser, W.D. Tea consumption during pregnancy and the risk of pre-eclampsia. Int. J. Gynaecol. Obstet. 2009, 105, 123–126. [Google Scholar] [CrossRef]
- Okubo, H.; Miyake, Y.; Tanaka, K.; Sasaki, S.; Hirota, Y. Maternal total caffeine intake, mainly from Japanese and Chinese tea, during pregnancy was associated with risk of preterm birth: The Osaka Maternal and Child Health Study. Nutr. Res. 2015, 35, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nut. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosso, G.; Micek, A.; Godos, J.; Pajak, A.; Sciacca, S.; Bes-Rastrollo, M.; Galavano, F.; Martinez-Gonzalez, M.A. Long-term coffee consumption is associated with decreased incidence of new-onset hypertension: A dose-response meta-analysis. Nutrients 2017, 9, 890. [Google Scholar] [CrossRef] [PubMed]
- Harbowy, M.E.; Balentine, D.A.; Davies, A.P.; Cai, Y. Tea Chemistry. Clin. Rev. Plant Sci. 2010, 16, 415–480. [Google Scholar] [CrossRef]
- Graham, H.N. Green tea composition, consumption, and polyphenol chemistry. Prev. Med. 1992, 21, 334–350. [Google Scholar] [CrossRef]
- Ma, Z.L.; Wang, G.; Lu, W.H.; Cheng, X.; Chuai, M.; Lee, K.K.H.; Yang, X. Investigating the effect of excess caffeine exposure on placental angiogenesis using chicken ‘functional’ placental blood vessel network. J. Appl. Toxicol. 2016, 36, 285–295. [Google Scholar] [CrossRef]
- Brown, C.M.; Garovic, V.D. Mechanisms and management of hypertension in pregnant women. Curr. Hypertens. Rep. 2011, 13, 338–346. [Google Scholar] [CrossRef]
- Wang, A.; Rana, S.; Karumanchi, S.A. Preeclampsia: The role of angiogenic factors in its pathogenesis. Physiology 2009, 24, 147–158. [Google Scholar] [CrossRef]
- Kojima-Yuasa, A.; Hua, J.J.; Kennedy, D.O.; Matsui-Yuasa, I. Green tea extract inhibits angiogenesis of human umbilical vein endothelial cells through reduction of expression of VEGF receptors. Life Sci. 2003, 73, 1299–1313. [Google Scholar] [CrossRef]
- Kawamoto, T.; Nitta, H.; Murata, K.; Toda, E.; Tsukamoto, N.; Hasegawa, M.; Yamagata, Z.; Kayama, F.; Kishi, R.; Ohya, Y.; et al. Rationale and study design of the Japan Environment and Children’s Study (JECS). BMC Public Health 2014, 14, 25. [Google Scholar] [CrossRef] [Green Version]
- Michikawa, T.; Nitta, H.; Nakayama, S.F.; Yamazaki, S.; Isobe, T.; Tamura, K.; Suda, E.; Ono, M.; Yonemoto, J.; Iwai-Shimada, M.; et al. Baseline profile of participants in the Japan Environment and Children’s Study (JECS). J. Epidemiol. 2018, 28, 99–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokoyama, Y.; Takachi, R.; Ishihara, J.; Ishii, Y.; Sasazuki, S.; Sawada, N.; Shinozuka, Y.; Tanaka, J.; Kato, E.; Kitamura, K.; et al. Validity of short and long self-administered food frequency questionnaires in ranking dietary intake in middle-aged and elderly Japanese in the Japan Public Health Center-based prospective Study for the Next Generation (JPHC-NEXT) protocol area. J. Epidemiol. 2016, 26, 420–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, K.; Naruse, K.; Tanaka, K.; Metoki, H.; Suzuki, Y. Outline of definition and classification of “pregnancy induced hypertension (PIH)”. Hypertens. Res. Pregnancy 2013, 1, 3–4. [Google Scholar] [CrossRef] [Green Version]
- Japan Society for the Study of HYPERTENSION IN PREGNANCY. Best Practice Guide 2015 for Care and Treatment of Hypertension in Pregnancy; Medical View: Tokyo, Japan, 2015; ISBN 978-475-831-247-9. (In Japanese) [Google Scholar]
- Tsubono, Y.; Kobayashi, M.; Sasaki, S. Validity and reproducibility of a self-administered food frequency questionnaire used in the baseline survey of the JPHC Study Cohort I. J. Epidemiol. 2003, 13, S125–S133. [Google Scholar] [CrossRef]
- Ministry of Education Culture, Sports, Science and Technology. Office for Resources, Policy Division Science and Technology Policy Bureau. In Standard Tables of Food Composition in Japan—2015, 7th revised ed.; Official Gazette Corporation of Japan: Tokyo, Japan, 2015; ISBN 978-486-458-118-9. (In Japanese). [Google Scholar]
- Bartsch, E.; Medcalf, K.E.; Park, A.L.; Ray, J.G. High risk of pre-eclampsia identification Group. Clinical risk factors for pre-eclampsia determined in early pregnancy: Systematic review and meta-analysis of large cohort studies. BMJ 2016, 353, i1753. [Google Scholar] [CrossRef] [Green Version]
- English, F.A.; Kenny, L.C.; McCarthy, F.P. Risk factors and effective management of preeclampsia. Integr. Blood Press. Control 2015, 8, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, S.; Oishi, T.; Miyoshi, N.; Oishi, Y.; Nakamura, Y.; Isemura, M. Anti-cancer effects of green tea epigallocatechin-3-gallate and coffee chlorogenic acid. Molecules 2020, 25, 4533. [Google Scholar] [CrossRef]
- Tang, G.; Zhao, C.; Xu, X.; Gan, R.; Cao, S.; Liu, Q.; Shang, A.; Mao, Q.; Li, H. Phytochemical composition and antioxidant capacity of 30 Chinese teas. Antioxidants 2019, 8, 180. [Google Scholar] [CrossRef] [Green Version]
Caffeine Intake | |||||
---|---|---|---|---|---|
Q1 (Low) | Q2 | Q3 | Q4 (High) | p for Trend | |
Number of subjects | 21,422 | 21,306 | 21,517 | 21,288 | |
Median caffeine intake, mg per day | 0 | 23 | 56 | 131 | <0.001 |
Maternal age, year (SD) | 31.1 (4.9) | 30.7 (5.0) | 31.1 (5.0) | 31.3 (5.1) | <0.001 |
Gestational age at birth, week (SD) | 39.3 (1.5) | 39.3 (1.5) | 39.3 (1.5) | 39.3 (1.5) | 0.001 |
Birth weight, kg (SD) | 3027 (406) | 3035 (409) | 3036 (402) | 3022 (411) | <0.001 |
Pre-pregnancy BMI, kg/m2 (SD) | 20.9 (3.0) | 21.1 (3.1) | 21.1 (3.1) | 21.2 (3.3) | <0.001 |
Primiparity, % | 52.9 | 46.8 | 39.0 | 31.4 | <0.001 |
Number of women with missing data | 75 | 60 | 64 | 48 | |
High educational attainment, % | 24.8 | 22.7 | 21.6 | 19.5 | <0.001 |
Number of women with missing data | 70 | 73 | 72 | 70 | |
Current drinkers during pregnancy, % | 1.2 | 2.1 | 3.3 | 4.6 | <0.001 |
Number of women with missing data | 219 | 239 | 252 | 302 | |
Current smokers during pregnancy, % | 2.2 | 3.1 | 4.8 | 8.0 | <0.001 |
Number of women with missing data | 110 | 125 | 137 | 122 | |
Folic acid supplementation, % | 57 | 52.6 | 46.5 | 40.6 | <0.001 |
Number of women with missing data | 134 | 147 | 167 | 184 | |
Coffee intake, cups per day (SD) | 0.20 (0.61) | 0.24 (0.48) | 0.46 (0.48) | 1.03 (1.20) | <0.001 |
Total tea intake, cups per day (SD) | 0.12 (0.30) | 0.63 (0.40) | 1.24 (0.89) | 3.46 (2.99) | <0.001 |
Green tea intake, cups per day (SD) | 0.04 (0.08) | 0.35 (0.33) | 0.75 (0.81) | 2.27 (2.48) | <0.001 |
Oolong tea intake, cups per day (SD) | 0.02 (0.07) | 0.11 (0.21) | 0.25 (0.49) | 0.80 (1.82) | <0.001 |
Black tea intake, cups per day (SD) | 0.05 (0.28) | 0.16 (0.25) | 0.24 (0.34) | 0.39 (0.75) | <0.001 |
Q1 (Low) | Q2 | Q3 | Q4 (High) | p for Trend | |
---|---|---|---|---|---|
Number of subjects | 21,422 | 21,306 | 21,517 | 21,288 | |
Number of HDP | 541 | 556 | 559 | 566 | |
Median caffeine intake, mg | 0 | 23 | 56 | 131 | |
Rage of caffeine intake, mg | 0–11 | 11–36 | 36–80 | 81–3628 | |
OR (95% CI) of basic model a | 1 | 1.04 (0.92, 1.17) | 1.02 (0.91, 1.15) | 1.04 (0.93, 1.18) | 0.858 |
OR (95% CI) of model 1 b | 1 | 1.11 (0.98, 1.25) | 1.15 (1.02, 1.30) | 1.26 (1.11, 1.43) | 0.004 |
None | <1 Cup | 1 to <2 Cups | ≥2 Cups | p for Trend | |
---|---|---|---|---|---|
Coffee | |||||
Total number | 38,483 | 29,684 | 12,258 | 5108 | |
Number of HDP | 1068 | 741 | 303 | 110 | |
Range of caffeine intake, mg | 0–1660 | 0–1137 | 0–859 | 0–3628 | |
Median of caffeine intake, mg | 15 | 42 | 85 | 185 | |
OR (95% CI) of basic model a | 1 | 0.86(0.78, 0.95) | 0.83(0.73, 0.94) | 0.70(0.57, 0.86) | <0.001 |
OR (95% CI) of model 1 b | 1 | 0.93(0.85, 1.03) | 0.99(0.87, 1.14) | 0.89(0.72, 1.09) | 0.063 |
OR (95% CI) of model 2 c | 1 | 0.92(0.83, 1.01) | 0.95(0.83, 1.09) | 0.79(0.62, 0.99) | 0.012 |
Total Tea | |||||
Total number | 19,370 | 31,379 | 15,937 | 18,847 | |
Number of HDP | 485 | 758 | 446 | 533 | |
Range of caffeine intake, mg | 0–1080 | 0–1170 | 0–792 | 0–3628 | |
Median of caffeine intake, mg | 0 | 22 | 47 | 125 | |
OR (95% CI) of basic model a | 1 | 0.98(0.87, 1.10) | 1.13(0.99, 1.28) | 1.15(1.02, 1.30) | 0.007 |
OR (95% CI) of model 1 b | 1 | 1.05(0.94, 1.19) | 1.23(1.07, 1.40) | 1.24(1.09, 1.41) | <0.001 |
OR (95% CI) of model 2 c | 1 | 1.04(0.92, 1.17) | 1.19(1.03, 1.36) | 1.11(0.95, 1.29) | 0.065 |
None | <1 Cup | 1 to <2 Cups | ≥2 Cups | p for Trend | |
---|---|---|---|---|---|
Green tea | |||||
Total number | 31,700 | 31,950 | 9505 | 12,378 | |
Number of HDP | 789 | 828 | 253 | 352 | |
Range of caffeine intake, mg | 0–1161 | 6–1170 | 26–2245 | 52–3628 | |
Median of caffeine intake, mg | 8 | 34 | 59 | 130 | |
OR (95% CI) of basic model a | 1 | 1.02 (0.93, 1.13) | 1.01 (0.88, 1.17) | 1.10 (0.97, 1.26) | 0.135 |
OR (95% CI) of model 1 b | 1 | 1.03 (0.93, 1.15) | 1.03 (0.88, 1.20) | 1.14 (1.00, 1.30) | 0.023 |
OR (95% CI) of model 2 c | 1 | 1.02 (0.92, 1.14) | 1.00 (0.86, 1.17) | 1.05 (0.90, 1.23) | 0.261 |
Oolong tea | |||||
Total number | 58,177 | 20,915 | 2863 | 3578 | |
Number of HDP | 1439 | 584 | 86 | 113 | |
Range of caffeine intake, mg | 0–1799 | 5–1501 | 24–2245 | 48–3628 | |
Median of caffeine intake, mg | 26 | 44 | 71 | 138 | |
OR (95% CI) of basic model a | 1 | 1.19 (1.08, 1.32) | 1.33 (1.06, 1.66) | 1.42 (1.17, 1.73) | <0.001 |
OR (95% CI) of model 1 b | 1 | 1.13 (1.02, 1.25) | 1.26 (1.00, 1.58) | 1.31 (1.07, 1.60) | <0.001 |
OR (95% CI) of model 2 c | 1 | 1.12 (1.01, 1.24) | 1.23 (0.98, 1.55) | 1.21 (0.97, 1.51) | 0.012 |
Black tea | |||||
Total number | 49,520 | 31,549 | 3382 | 1082 | |
Number of HDP | 1308 | 796 | 79 | 39 | |
Range of caffeine intake, mg | 0–1170 | 0–2245 | 0–1799 | 0–3628 | |
Median of caffeine intake, mg | 21 | 46 | 91 | 169 | |
OR (95% CI) of basic model a | 1 | 0.99 (0.91, 1.09) | 0.94 (0.74, 1.18) | 1.42 (1.02, 1.96) | 0.426 |
OR (95% CI) of model 1 b | 1 | 1.03 (0.94, 1.14) | 0.97 (0.77, 1.24) | 1.45 (1.04, 2.02) | 0.272 |
OR (95% CI) of model 2 c | 1 | 1.02 (0.93, 1.13) | 0.95 (0.75, 1.20) | 1.33 (0.94, 1.88) | 0.461 |
Never or Unknown | Sometimes | Always | p for Trend | |
---|---|---|---|---|
Frequency of decaffeinated coffee | ||||
Total number | 54,764 | 21,683 | 9086 | |
Number of HDP | 1431 | 573 | 218 | |
Range of caffeine intake, mg | 0–3628 | 0–1137 | 0–746 | |
Median of caffeine intake, mg | 46 | 32 | 11 | |
OR (95% CI) of basic model a | 1 | 0.97 (0.88, 1.07) | 0.85 (0.73, 0.98) | 0.052 |
OR (95% CI) of model 1 b | 1 | 0.93 (0.84, 1.03) | 0.87 (0.75, 1.01) | 0.008 |
OR (95% CI) of model 2 c | 1 | 0.93 (0.84, 1.03) | 0.87 (0.75, 1.01) | 0.019 |
Frequency of decaffeinated black tea intake | ||||
Total number | 64,822 | 17,750 | 2961 | |
Number of HDP | 1682 | 459 | 81 | |
Range of caffeine intake, mg | 0–3628 | 0–1029 | 0–746 | |
Median of caffeine intake, mg | 41 | 27 | 11 | |
OR (95% CI) of basic model a | 1 | 1.01 (0.91, 1.13) | 1.07 (0.85, 1.34) | 0.763 |
OR (95% CI) of model 1 d | 1 | 0.98 (0.88, 1.10) | 1.05 (0.83, 1.32) | 0.753 |
OR (95% CI) of model 2 e | 1 | 0.98 (0.88, 1.09) | 1.04 (0.83, 1.31) | 0.738 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawanishi, Y.; Kakigano, A.; Kimura, T.; Ikehara, S.; Sato, T.; Tomimatsu, T.; Kimura, T.; Iso, H.; on behalf of the Japan Environment and Children’s Study Group. Hypertensive Disorders of Pregnancy in Relation to Coffee and Tea Consumption: The Japan Environment and Children’s Study. Nutrients 2021, 13, 343. https://doi.org/10.3390/nu13020343
Kawanishi Y, Kakigano A, Kimura T, Ikehara S, Sato T, Tomimatsu T, Kimura T, Iso H, on behalf of the Japan Environment and Children’s Study Group. Hypertensive Disorders of Pregnancy in Relation to Coffee and Tea Consumption: The Japan Environment and Children’s Study. Nutrients. 2021; 13(2):343. https://doi.org/10.3390/nu13020343
Chicago/Turabian StyleKawanishi, Yoko, Aiko Kakigano, Takashi Kimura, Satoyo Ikehara, Takuyo Sato, Takuji Tomimatsu, Tadashi Kimura, Hiroyasu Iso, and on behalf of the Japan Environment and Children’s Study Group. 2021. "Hypertensive Disorders of Pregnancy in Relation to Coffee and Tea Consumption: The Japan Environment and Children’s Study" Nutrients 13, no. 2: 343. https://doi.org/10.3390/nu13020343