Impact of Malnutrition Status on Muscle Parameter Changes over a 5-Year Follow-Up of Community-Dwelling Older Adults from the SarcoPhAge Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Diagnosis of Malnutrition
- -
- The phenotypic assessment includes (1) an unintentional weight loss higher than 4.5 kg in the past year [22], (2) a body mass index under 20 kg/m2 in participants younger than 70 years old or 22 kg/m2 in those older than 70 years old [5], and (3) a reduced muscle mass with a fat-free mass index (FFMI) under 17 kg/m2 in men and 15 kg/m2 in women or an appendicular lean mass index (ALMI) under 7 kg/m2 in men and 5.5 kg/m2 in women [5,23].
- -
- The etiological assessment involves (1) a reduced food intake determined according to the first item of the Mini Nutritional Assessment Short-Form (moderate or severe loss of appetite in the past three months) [24] and (2) inflammation evaluated by interleukin-6 (IL-6) and insulin-like growth factor 1 (IGF-1) [25], where the highest or the lowest quartile for IL-6 and IGF1, respectively, calculated in our own data set in both sexes, was considered a sex-specific threshold (i.e., IGF-1 ≤88 ng/mL in men and ≤82 ng/mL in women and IL-6 >3.84 pg/mL in men and >2.99 pg/mL in women). Inflammation is highlighted once the value of IL-6 is above or IGF-1 is below these thresholds. These thresholds are similar to other previous published thresholds for community-dwelling older adults [26,27]. The biomarkers used in the present study were identified as relevant for geroscience-guided clinical trials, robust, with a consistent ability to predict clinical and functional outcomes, responsive to intervention, and with a reliable and feasible measurement according to a comprehensive review conducted by a panel of experts [25]. From all the biomarkers considered in this review, IL-6 was selected over CRP for the assessment of inflammation because it was more robust and considered as more appropriate to reflect the aging process. TNF-α was not selected for this present study because it tends to be low and unstable when stored at a temperature of −80 °C. Regarding IGF1, this biomarker was selected for its responsiveness to caloric restriction given the fact that it was used for the diagnosis of malnutrition.
2.3. Muscle Parameters
2.4. Confounding Factors
2.5. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). World Report on Ageing and Health; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Hickson, M. Malnutrition and ageing. Postgrad. Med. J. 2006, 82, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Leij-Halfwerk, S.; Verwijs, M.H.; van Houdt, S.; Borkent, J.W.; Guaitoli, P.R.; Pelgrim, T.; Heymans, M.W.; Power, L.; Visser, M.; Corish, C.A.; et al. Prevalence of protein-energy malnutrition risk in European older adults in community, residential and hospital settings, according to 22 malnutrition screening tools validated for use in adults ≥65 years: A systematic review and meta-analysis. Maturitas 2019, 126, 80–89. [Google Scholar] [CrossRef]
- Abizanda, P.; Sinclair, A.; Barcons, N.; Lizán, L.; Rodríguez-Mañas, L. Costs of Malnutrition in Institutionalized and Community-Dwelling Older Adults: A Systematic Review. J. Am. Med. Dir. Assoc. 2016, 17, 17–23. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolters, M.; Volkert, D.; Streicher, M.; Kiesswetter, E.; Torbahn, G.; O’Connor, E.M.; O’Keeffe, M.; Kelly, M.; O’Herlihy, E.; O’Toole, P.W.; et al. Prevalence of malnutrition using harmonized definitions in older adults from different settings—A MaNuEL study. Clin. Nutr. 2019, 38, 2389–2398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojer, A.G.M.; Kruizenga, H.M.; Trappenburg, M.C.; Reijnierse, E.M.; Sipilä, S.; Narici, M.V.; Hogrel, J.Y.; Butler-Browne, G.; McPhee, J.S.; Pääsuke, M.; et al. The prevalence of malnutrition according to the new ESPEN definition in four diverse populations. Clin. Nutr. 2016, 35, 758–762. [Google Scholar] [CrossRef]
- Cederholm, T.; Bosaeus, I.; Barazzoni, R.; Bauer, J.; Van Gossum, A.; Klek, S.; Muscaritoli, M.; Nyulasi, I.; Ockenga, J.; Schneider, S.M.; et al. Diagnostic criteria for malnutrition—An ESPEN Consensus Statement. Clin. Nutr. 2015, 34, 335–340. [Google Scholar] [CrossRef]
- Söderström, L.; Rosenblad, A.; Thors Adolfsson, E.; Bergkvist, L. Malnutrition is associated with increased mortality in older adults regardless of the cause of death. Br. J. Nutr. 2017, 117, 532–540. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Rodriguez, D.; Locquet, M.; Reginster, J.Y.; Cavalier, E.; Bruyère, O.; Beaudart, C. Mortality in malnourished older adults diagnosed by ESPEN and GLIM criteria in the SarcoPhAge study. J. Cachexia Sarcopenia Muscle 2020. [Google Scholar] [CrossRef]
- Donini, L.M.; De Bernardini, L.; De Felice, M.R.; Savina, C.; Coletti, C.; Cannella, C. Effect of nutritional status on clinical outcome in a population of geriatric rehabilitation patients. Aging Clin. Exp. Res. 2004, 16, 132–138. [Google Scholar] [CrossRef]
- Salminen, K.S.; Suominen, M.H.; Soini, H.; Kautiainen, H.; Savikko, N.; Saarela, R.K.T.; Muurinen, S.; Pitkala, K.H. Associations Between Nutritional Status and Health-Related Quality of Life Among Long-Term Care Residents in Helsinki. J. Nutr. Health Aging 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandewoude, M.F.J.; van Wijngaarden, J.P.; De Maesschalck, L.; Luiking, Y.C.; Van Gossum, A. The prevalence and health burden of malnutrition in Belgian older people in the community or residing in nursing homes: Results of the NutriAction II study. Aging Clin. Exp. Res. 2019, 31, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Volkert, D. The role of nutrition in the prevention of sarcopenia. Wiener Med. Wochenschr. 2011, 161, 409–415. [Google Scholar] [CrossRef]
- Tzeng, P.L.; Lin, C.Y.; Lai, T.F.; Huang, W.C.; Pien, E.; Hsueh, M.C.; Lin, K.P.; Park, J.H.; Liao, Y. Daily lifestyle behaviors and risks of sarcopenia among older adults. Arch. Public Health 2020, 78. [Google Scholar] [CrossRef] [PubMed]
- Jyväkorpi, S.K.; Urtamo, A.; Kivimäki, M.; Strandberg, T.E. Macronutrient composition and sarcopenia in the oldest-old men: The Helsinki Businessmen Study (HBS). Clin. Nutr. 2020, 39. [Google Scholar] [CrossRef]
- Mithal, A.; Bonjour, J.P.; Boonen, S.; Burckhardt, P.; Degens, H.; El Hajj Fuleihan, G.; Josse, R.; Lips, P.; Morales Torres, J.; Rizzoli, R.; et al. Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporos. Int. 2013, 24, 1555–1566. [Google Scholar] [CrossRef]
- Landi, F.; Camprubi-Robles, M.; Bear, D.E.; Cederholm, T.; Malafarina, V.; Welch, A.A.; Cruz-Jentoft, A.J. Muscle loss: The new malnutrition challenge in clinical practice. Clin. Nutr. 2019, 38, 2113–2120. [Google Scholar] [CrossRef] [Green Version]
- Beaudart, C.; Sanchez-Rodriguez, D.; Locquet, M.; Reginster, J.Y.; Lengelé, L.; Bruyère, O. Malnutrition as a strong predictor of the onset of sarcopenia. Nutrients 2019, 11, 2883. [Google Scholar] [CrossRef] [Green Version]
- Robinson, S.M.; Reginster, J.Y.; Rizzoli, R.; Shaw, S.C.; Kanis, J.A.; Bautmans, I.; Bischoff-Ferrari, H.; Bruyère, O.; Cesari, M.; Dawson-Hughes, B.; et al. Does nutrition play a role in the prevention and management of sarcopenia? Clin. Nutr. 2018, 37, 1121–1132. [Google Scholar] [CrossRef] [Green Version]
- Beaudart, C.; Reginster, J.Y.; Petermans, J.; Gillain, S.; Quabron, A.; Locquet, M.; Slomian, J.; Buckinx, F.; Bruyère, O. Quality of life and physical components linked to sarcopenia: The SarcoPhAge study. Exp. Gerontol. 2015, 69, 103–110. [Google Scholar] [CrossRef]
- Guigoz, Y.; Lauque, S.; Vellas, B.J. Identifying the elderly at risk for malnutrition the mini nutritional assessment. Clin. Geriatr. Med. 2002, 18, 737–757. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaiser, M.J.; Bauer, J.M.; Ramsch, C.; Uter, W.; Guigoz, Y.; Cederholm, T.; Thomas, D.; Anthony, P.; Charlton, K.; Maggio, M.; et al. Validation of the mini nutritional assessment short-form (MNA®-SF): A practical tool for identification of nutritional status. J. Nutr. Health Aging 2009, 13, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Justice, J.N.; Ferrucci, L.; Newman, A.B.; Aroda, V.R.; Bahnson, J.L.; Divers, J.; Espeland, M.A.; Marcovina, S.; Pollak, M.N.; Kritchevsky, S.B.; et al. A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: Report from the TAME Biomarkers Workgroup. GeroScience 2018, 40, 419–436. [Google Scholar] [CrossRef] [PubMed]
- Adriaensen, W.; Matheï, C.; Vaes, B.; van Pottelbergh, G.; Wallemacq, P.; Degryse, J.-M. Interleukin-6 predicts short-term global functional decline in the oldest old: Results from the BELFRAIL study. Age 2014, 36, 9723. [Google Scholar] [CrossRef] [Green Version]
- Doi, T.; Shimada, H.; Makizako, H.; Tsutsumimoto, K.; Hotta, R.; Nakakubo, S.; Suzuki, T. Insulin-Like Growth Factor-1 Related to Disability Among Older Adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2016, 71, 797–802. [Google Scholar] [CrossRef] [Green Version]
- Guralnik, J.M.; Ferrucci, L.; Pieper, C.F.; Leveille, S.G.; Markides, K.S.; Ostir, G.V.; Studenski, S.; Berkman, L.F.; Wallace, R.B. Lower Extremity Function and Subsequent Disability: Consistency Across Studies, Predictive Models, and Value of Gait Speed Alone Compared With the Short Physical Performance Battery. J. Gerontol. Med. Sci. Public Domain 2000, 55, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 2015, 39, 142–148. [Google Scholar] [CrossRef]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Vetrano, D.L.; Landi, F.; Volpato, S.; Corsonello, A.; Meloni, E.; Bernabei, R.; Onder, G. Association of sarcopenia with short- and long-term mortality in older adults admitted to acute care wards: Results from the CRIME study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69, 1154–1161. [Google Scholar] [CrossRef] [Green Version]
- Steffl, M.; Bohannon, R.W.; Petr, M.; Kohlikova, E.; Holmerova, I. Relation between cigarette smoking and sarcopenia: Meta-analysis. Physiol. Res. 2015, 64, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Dallongeville, J.; Maré, N.; Fruchart, J.-C.; Amouyel, P. Community and International Nutrition Cigarette Smoking Is Associated with Unhealthy Patterns of Nutrient Intake: A Meta-analysis. J. Nutr. 1998, 128, 1450–1457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zadak, Z.; Hyspler, R.; Ticha, A.; Vlcek, J. Polypharmacy and malnutrition. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Streicher, M.; van Zwienen-Pot, J.; Bardon, L.; Nagel, G.; Teh, R.; Meisinger, C.; Colombo, M.; Torbahn, G.; Kiesswetter, E.; Flechtner-Mors, M.; et al. Determinants of Incident Malnutrition in Community-Dwelling Older Adults: A MaNuEL Multicohort Meta-Analysis. J. Am. Geriatr. Soc. 2018, 66, 2335–2343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Bokhorst-de van der Schueren, M.A.E.; Lonterman-Monasch, S.; de Vries, O.J.; Danner, S.A.; Kramer, M.H.H.; Muller, M. Prevalence and determinants for malnutrition in geriatric outpatients. Clin. Nutr. 2013, 32, 1007–1011. [Google Scholar] [CrossRef]
- Tangen, G.G.; Robinson, H.S. Measuring physical performance in highly active older adults: Associations with age and gender? Aging Clin. Exp. Res. 2020, 32, 229–237. [Google Scholar] [CrossRef]
- Tombaugh, T.N.; McIntyre, N.J. The Mini-Mental State Examination: A Comprehensive Review. J. Am. Geriatr. Soc. 1992, 40, 922–935. [Google Scholar] [CrossRef]
- Taylor, H.L.; Jacobs, D.R.; Schucker, B.; Knudsen, J.; Leon, A.S.; Debacker, G. A questionnaire for the assessment of leisure time physical activities. J. Chronic Dis. 1978, 31, 741–755. [Google Scholar] [CrossRef]
- Horton, N.J.; Lipsitz, S.R. Multiple imputation in practice: Comparison of software packages for regression models with missing variables. Am. Stat. 2001, 55, 244–254. [Google Scholar] [CrossRef]
- Glymour, M.M.; Weuve, J.; Berkman, L.F.; Kawachi, I.; Robins, J.M. When is baseline adjustment useful in analyses of change? An example with education and cognitive change. Am. J. Epidemiol. 2005, 162, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Liguori, I.; Curcio, F.; Russo, G.; Cellurale, M.; Aran, L.; Bulli, G.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; et al. Risk of Malnutrition Evaluated by Mini Nutritional Assessment and Sarcopenia in Noninstitutionalized Elderly People. Nutr. Clin. Pract. 2018, 33, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, K.A.; Meskers, C.G.M.; Trappenburg, M.C.; Verlaan, S.; Reijnierse, E.M.; Whittaker, A.C.; Maier, A.B. Malnutrition is associated with dynamic physical performance. Aging Clin. Exp. Res. 2020, 32, 1085–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Power, L.; Mullally, D.; Gibney, E.R.; Clarke, M.; Visser, M.; Volkert, D.; Bardon, L.; de van der Schueren, M.A.E.; Corish, C.A. A review of the validity of malnutrition screening tools used in older adults in community and healthcare settings—A MaNuEL study. Clin. Nutr. ESPEN 2018, 24, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, S.; Young, A.; Bauer, J.; Isenring, E. Nutrition Screening in Geriatric Rehabilitation: Criterion (Concurrent and Predictive) Validity of the Malnutrition Screening Tool and the Mini Nutritional Assessment-Short Form. J. Acad. Nutr. Diet. 2016, 116, 795–801. [Google Scholar] [CrossRef] [Green Version]
- Cascio, B.L.; Logomarsino, J.V. Evaluating the effectiveness of five screening tools used to identify malnutrition risk in hospitalized elderly: A systematic review. Geriatr. Nurs. 2018, 39, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Abiri, B.; Vafa, M. Nutrition and sarcopenia: A review of the evidence of nutritional influences. Crit. Rev. Food Sci. Nutr. 2019, 59, 1456–1466. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; Rolland, Y.; Cruz-Jentoft, A.J.; Bauer, J.M.; Sieber, C.; Cooper, C.; Al-Daghri, N.; Araujo de Carvalho, I.; Bautmans, I.; Bernabei, R.; et al. Assessment of Muscle Function and Physical Performance in Daily Clinical Practice: A position paper endorsed by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Calcif. Tissue Int. 2019, 105. [Google Scholar] [CrossRef] [Green Version]
- Goodpaster, B.H.; Park, S.W.; Harris, T.B.; Kritchevsky, S.B.; Nevitt, M.; Schwartz, A.V.; Simonsick, E.M.; Tylavsky, F.A.; Visser, M.; Newman, A.B. The loss of skeletal muscle strength, mass, and quality in older adults: The Health, Aging and Body Composition Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 1059–1064. [Google Scholar] [CrossRef]
- Bobos, P.; Nazari, G.; Lu, Z.; MacDermid, J.C. Measurement Properties of the Hand Grip Strength Assessment: A Systematic Review With Meta-analysis. Arch. Phys. Med. Rehabil. 2020, 101, 553–565. [Google Scholar] [CrossRef]
- Wang, Y.; Hart, D.L.; Stratford, P.W.; Mioduski, J.E. Baseline Dependency of Minimal Clinically Important Improvement. Phys. Ther. 2011, 91, 675. [Google Scholar] [CrossRef]
- Auyeung, T.W.; Lee, S.W.J.; Leung, J.; Kwok, T.; Woo, J. Age-associated decline of muscle mass, grip strength and gait speed: A 4-year longitudinal study of 3018 community-dwelling older Chinese. Geriatr. Gerontol. Int. 2014, 14, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, C.; Murphy, C.; Culligan, E.P.; Walton, J.; Sleator, R.D. Malnutrition in the elderly. Sci. Prog. 2019, 102, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.M.; Fusco, D.; Sisto, A.; Ortolani, E.; Savera, G.; Salini, S.; Marzetti, E. Age-Related Variations of Muscle Mass, Strength, and Physical Performance in Community-Dwellers: Results from the Milan EXPO Survey. J. Am. Med. Dir. Assoc. 2017, 18, 88.e17–88.e24. [Google Scholar] [CrossRef]
- Lengelé, L.; Moehlinger, P.; Bruyère, O.; Locquet, M.; Reginster, J.-Y.; Beaudart, C. Association between Changes in Nutrient Intake and Changes in Muscle Strength and Physical Performance in the SarcoPhAge Cohort. Nutrients 2020, 12, 3485. [Google Scholar] [CrossRef] [PubMed]
- Halaweh, H.; Willén, C.; Svantesson, U. Association between physical activity and physical functioning in community-dwelling older adults. Eur. J. Physiother. 2017, 19, 40–47. [Google Scholar] [CrossRef]
- Foong, Y.C.; Chherawala, N.; Aitken, D.; Scott, D.; Winzenberg, T.; Jones, G. Accelerometer-determined physical activity, muscle mass, and leg strength in community-dwelling older adults. J. Cachexia Sarcopenia Muscle 2016, 7, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Gianoudis, J.; Bailey, C.A.; Daly, R.M. Associations between sedentary behaviour and body composition, muscle function and sarcopenia in community-dwelling older adults. Osteoporos. Int. 2014, 26, 571–579. [Google Scholar] [CrossRef]
- Steffl, M.; Bohannon, R.W.; Sontakova, L.; Tufano, J.J.; Shiells, K.; Holmerova, I. Relationship between sarcopenia and physical activity in older people: A systematic review and meta-analysis. Clin. Interv. Aging 2017, 12, 835–845. [Google Scholar] [CrossRef] [Green Version]
- Yeung, S.S.Y.; Chan, R.S.M.; Kwok, T.; Lee, J.S.W.; Woo, J. Malnutrition According to GLIM Criteria and Adverse Outcomes in Community-Dwelling Chinese Older Adults: A Prospective Analysis. J. Am. Med. Dir. Assoc. 2020. [Google Scholar] [CrossRef]
- Rodríguez-Sánchez, B.; Sulo, S.; Carnicero, J.A.; Rueda, R.; Rodríguez-Mañas, L. Malnutrition prevalence and burden on healthcare resource use among spanish community-living older adults: Results of a longitudinal analysis. Clin. Outcomes Res. 2020, 12, 355–367. [Google Scholar] [CrossRef]
- McLeod, J.C.; Stokes, T.; Phillips, S.M. Resistance exercise training as a primary countermeasure to age-related chronic disease. Front. Physiol. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutz, N.E.P.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznariç, Z.; Nair, K.S.; et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gielen, E.; Beckwée, D.; Delaere, A.; De Breucker, S.; Vandewoude, M.; Bautmans, I.; Bautmans, I.; Beaudart, C.; Beckwée, D.; Beyer, I.; et al. Nutritional interventions to improve muscle mass, muscle strength, and physical performance in older people: An umbrella review of systematic reviews and meta-analyses. Nutr. Rev. 2021, 79, 121–147. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Stubbs, B.; Punzi, L.; Soysal, P.; Incalzi, R.A.; Saller, A.; Maggi, S. Effect of nutritional supplementations on physical performance and muscle strength parameters in older people: A systematic review and meta-analysis. Ageing Res. Rev. 2019, 51, 48–54. [Google Scholar] [CrossRef]
- De van der Schueren, M.A.E.; Keller, H.; Cederholm, T.; Barazzoni, R.; Compher, C.; Correia, M.I.T.D.; Gonzalez, M.C.; Jager-Wittenaar, H.; Pirlich, M.; Steiber, A.; et al. Global Leadership Initiative on Malnutrition (GLIM): Guidance on validation of the operational criteria for the diagnosis of protein-energy malnutrition in adults. Clin. Nutr. 2020, 39, 2872–2880. [Google Scholar] [CrossRef] [PubMed]
Total Study Sample (n = 411) | Malnutrition | p-Value b | ||
---|---|---|---|---|
Yes (n = 96) | No (n = 315) | |||
Age, years | 73.2 ± 6.1 | 73.9 ± 6.8 | 73.0 ± 5.8 | 0.19 |
Gender | 0.046 | |||
Men | 182 (44.8) | 34 (35.4) | 148 (47.0) | |
Women | 229 (55.7) | 62 (64.6) | 167 (53.0) | |
Smoking status, yes | 33 (8.0) | 14 (14.6) | 19 (6.0) | 0.007 |
Alcohol consumption, yes | 215 (52.3) | 54 (56.3) | 161 (51.1) | 0.38 |
Body mass index, kg/m2 | 26.8 ± 4.7 | 23.9 ± 4.0 | 27.7 ± 4.5 | <0.001 |
Number of concomitant diseases per individual | 4.2 ± 2.4 | 5.0 ± 2.4 | 4.0 ± 2.3 | <0.001 |
Number of drugs per individual | 5.8 ± 3.4 | 6.3 ± 3.5 | 5.6 ± 3.4 | 0.059 |
Mini-Mental State Examination (MMSE), 30 points | 28.1 ± 2.1 | 27.6 ± 2.3 | 28.2 ± 2.0 | 0.012 |
Level of physical activity, kcal/day a | 1102.9 ± 1257.8 | 1057.3 ± 1267.9 | 1116.7 ± 1256.4 | 0.68 |
Baseline | Five-Year Follow-Up | |||||
---|---|---|---|---|---|---|
Malnourished (n = 96) | Well-Nourished (n = 315) | p-Value * | Malnourished (n = 96) | Well-Nourished (n = 315) | p-Value * | |
Fat-free mass index (FFMI), kg/m2 | ||||||
Men | 16.8 ± 2.2 | 19.3 ± 2.3 | <0.001 | 16.7 ± 2.1 | 18.4 ± 2.2 | <0.001 |
Women | 14.3 ± 1.4 | 15.8 ± 1.9 | <0.001 | 14.9 ± 1.9 | 15.9 ± 1.8 | 0.002 |
Appendicular lean mass index (ALMI), kg/m2 | ||||||
Men | 7.0 ± 1.0 | 8.2 ± 1.0 | <0.001 | 6.9 ± 1.0 | 7.6 ± 1.0 | 0.005 |
Women | 5.5 ± 0.7 | 6.3 ± 1.0 | <0.001 | 5.9 ± 0.9 | 6.3 ± 0.8 | 0.002 |
Grip strength, kg | ||||||
Men | 32.5 ± 10.1 | 40.8 ± 7.8 | <0.001 | 22.6 ± 9.5 | 30.7 ± 9.0 | 0.045 |
Women | 19.8 ± 5.4 | 22.6 ± 7.1 | 0.005 | 14.7 ± 6.3 | 14.7 ± 6.5 | 0.993 |
Short Physical Performance Battery (SPPB), /12 Points | 8.4 ± 2.8 | 9.7 ± 2.0 | <0.001 | 8.8 ± 2.5 | 9.9 ± 1.9 | 0.001 |
Timed up and go (TUG), s | 13.4 ± 7.3 | 11.0 ± 4.9 | <0.001 | 12.4 ± 6.5 | 9.9 ± 4.0 | 0.001 |
Crude Model | Model 1 | Model 2 | |||
---|---|---|---|---|---|
Relative Change T0–T5 (%) | p-Value * | p-Value ** | p-Value *** | ||
Men (n = 182) | FFMI, kg/m2 | ||||
Well nourished Malnourished | −4.3 ± 6.4 −0.1 ± 6.9 | 0.03 | 0.02 | 0.17 | |
ALMI, kg/m2 | |||||
Well nourished Malnourished | −6.4 ± 8.4 −0.7 ± 9.6 | 0.04 | 0.03 | 0.19 | |
Grip strength, kg | |||||
Well nourished Malnourished | −24.1 ± 21.3 −23.5 ± 48.3 | 0.96 | 0.94 | 0.55 | |
Women (n = 229) | FFMI, kg/m2 | ||||
Well nourished Malnourished | −1.2 ± 7.1 4.6 ± 8.2 | 0.04 | 0.04 | 0.21 | |
ALMI, kg/m2 | |||||
Well nourished Malnourished | 0.5 ± 9.8 6.5 ± 11.4 | 0.005 | 0.005 | 0.30 | |
Grip strength, kg | |||||
Well nourished Malnourished | −33.2 ± 29.6 −26.8 ± 33.1 | 0.46 | 0.45 | 0.45 |
Crude Model | Model 1 | Model 2 | ||
---|---|---|---|---|
Relative Change T0–T5 (%) | p-Value * | p-Value ** | p-Value *** | |
SPPB, 12 Points | ||||
Well nourished Malnourished | 4.7 ± 1.7 15.8 ± 6.8 | 0.22 | 0.24 | 0.59 |
TUG, s | ||||
Well nourished Malnourished | −6.0 ± 1.7 −1.9 ± 3.8 | 0.40 | 0.24 | 0.12 |
Baseline, n (%) | p-Value | 5-Year Follow-Up, n (%) | p-Value | Proportion Difference | |
---|---|---|---|---|---|
Low FFMI | |||||
Malnourished Well nourished | 69 (71.9) 78 (24.8) | <0.001 | 59 (61.3) 80 (25.3) | <0.001 | −10.6 * +0.5 * |
Low ALMI | |||||
Malnourished Well nourished | 60 (62.5) 38 (12.1) | <0.001 | 43 (45.2) 58 (18.3) | 0.004 | −17.3 * +6.2 * |
Low Grip strength | |||||
Malnourished Well nourished | 20 (20.8) 22 (7.0) | <0.001 | 53 (55.0) 126 (45.2) | 0.108 | +34.2 +38.2 |
Low SPPB | |||||
Malnourished Well nourished | 42 (43.8) 64 (20.3) | <0.001 | 37 (38.5) 55 (17.4) | 0.01 | −5.3 −2.9 |
Low TUG | |||||
Malnourished Well nourished | 12 (12.3) 14 (4.4) | 0.005 | 9 (9.4) 6 (1.8) | 0.025 | −2.9 −2.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lengelé, L.; Bruyère, O.; Beaudart, C.; Reginster, J.-Y.; Locquet, M. Impact of Malnutrition Status on Muscle Parameter Changes over a 5-Year Follow-Up of Community-Dwelling Older Adults from the SarcoPhAge Cohort. Nutrients 2021, 13, 407. https://doi.org/10.3390/nu13020407
Lengelé L, Bruyère O, Beaudart C, Reginster J-Y, Locquet M. Impact of Malnutrition Status on Muscle Parameter Changes over a 5-Year Follow-Up of Community-Dwelling Older Adults from the SarcoPhAge Cohort. Nutrients. 2021; 13(2):407. https://doi.org/10.3390/nu13020407
Chicago/Turabian StyleLengelé, Laetitia, Olivier Bruyère, Charlotte Beaudart, Jean-Yves Reginster, and Médéa Locquet. 2021. "Impact of Malnutrition Status on Muscle Parameter Changes over a 5-Year Follow-Up of Community-Dwelling Older Adults from the SarcoPhAge Cohort" Nutrients 13, no. 2: 407. https://doi.org/10.3390/nu13020407
APA StyleLengelé, L., Bruyère, O., Beaudart, C., Reginster, J. -Y., & Locquet, M. (2021). Impact of Malnutrition Status on Muscle Parameter Changes over a 5-Year Follow-Up of Community-Dwelling Older Adults from the SarcoPhAge Cohort. Nutrients, 13(2), 407. https://doi.org/10.3390/nu13020407