Development of Fatty Acid Reference Ranges and Relationship with Lipid Biomarkers in Middle-Aged Healthy Singaporean Men and Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Anthropometric Measures
2.3. Blood Samples
2.4. Gas Chromatography Protocol
2.5. Fatty Acid Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Individual Fatty Acid Reference Ranges
4.2. Anthropometric Measures
4.3. Relationship with Lipid Biomarkers
4.4. Sex Differences
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ratnayake, W.M.N.; Galli, C. Fat and Fatty Acid Terminology, Methods of Analysis and Fat Digestion and Metabolism: A Background Review Paper. Ann. Nutr. Metab. 2009, 55, 8–43. [Google Scholar] [CrossRef] [PubMed]
- Fahy, E.; Subramaniam, S.; Brown, H.A.; Glass, C.K.; Merrill, A.H., Jr.; Murphy, R.C.; Raetz, C.R.H.; Russell, D.W.; Seyama, Y.; Shaw, W.; et al. A comprehensive classification system for lipids. J. Lipid Res. 2005, 46, 839–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billingsley, H.E.; Carbone, S.; Lavie, C.J. Dietary Fats and Chronic Noncommunicable Diseases. Nutrients 2018, 10, 1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, T.J.; Grégoire, J.; Pearson, G.J.; Barry, A.R.; Couture, P.; Dawes, M.; Francis, G.A.; Genest, J.; Grover, S.; Gupta, M.; et al. 2016 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidemia for the Prevention of Cardiovascular Disease in the Adult. Can. J. Cardiol. 2016, 32, 1263–1282. [Google Scholar] [CrossRef] [PubMed]
- Brenna, J.T.; Plourde, M.; Stark, K.D.; Jones, P.J.; Lin, Y.-H. Best practices for the design, laboratory analysis, and reporting of trials involving fatty acids. Am. J. Clin. Nutr. 2018, 108, 211–227. [Google Scholar] [CrossRef] [PubMed]
- Abdelmagid, S.A.; Clarke, S.E.; Nielsen, D.E.; Badawi, A.; El-Sohemy, A.; Mutch, D.M.; Ma, D.W.L. Comprehensive Profiling of Plasma Fatty Acid Concentrations in Young Healthy Canadian Adults. PLoS ONE 2015, 10, e0116195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sergeant, S.; Ruczinski, I.; Ivester, P.; Lee, T.C.; Morgan, T.M.; Nicklas, B.J.; Mathias, R.A.; Chilton, F.H. Impact of methods used to express levels of circulating fatty acids on the degree and direction of associations with blood lipids in humans. Br. J. Nutr. 2015, 115, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Sera, R.K.; McBride, J.H.; Higgins, S.A.; Rodgerson, D.O. Evaluation of reference ranges for fatty acids in serum. J. Clin. Lab. Anal. 1994, 8, 81–85. [Google Scholar] [CrossRef]
- Bradbury, K.E.; Skeaff, C.M.; Crowe, F.; Green, T.J.; Hodson, L. Serum Fatty Acid Reference Ranges: Percentiles from a New Zealand National Nutrition Survey. Nutrients 2011, 3, 152–163. [Google Scholar] [CrossRef]
- Tan, K.H.X.; Tan, L.W.L.; Sim, X.; Tai, E.S.; Lee, J.J.-M.; Chia, K.S.; Van Dam, R.M. Cohort Profile: The Singapore Multi-Ethnic Cohort (MEC) study. Int. J. Epidemiol. 2018, 47, 699–699j. [Google Scholar] [CrossRef] [Green Version]
- Whitton, C.; Ma, Y.; Bastian, A.C.; Chan, M.F.; Chew, L. Fast-food consumers in Singapore: Demographic profile, diet quality and weight status. Public Heal. Nutr. 2013, 17, 1805–1813. [Google Scholar] [CrossRef] [Green Version]
- Henry, C.J.; Kaur, B.; Quek, R.Y.C. Are Asian foods as “fattening” as western-styled fast foods? Eur. J. Clin. Nutr. 2019, 74, 348–350. [Google Scholar] [CrossRef] [PubMed]
- Koushki, M.; Nahidi, M.; Cheraghali, F. Physico-chemical properties, fatty acid profile and nutrition in palm oil. J. Paramed. Sci. 2015, 6, 117–134. [Google Scholar]
- Jiang, Y.-W.; Sheng, L.-T.; Pan, X.-F.; Feng, L.; Yuan, J.-M.; Pan, A.; Koh, W.-P. Midlife Dietary Intakes of Monounsaturated Acids, n–6 Polyunsaturated Acids, and Plant-Based Fat Are Inversely Associated with Risk of Cognitive Impairment in Older Singapore Chinese Adults. J. Nutr. 2019, 150, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Seah, J.Y.H.; Ong, C.N.; Koh, W.-P.; Yuan, J.-M.; Van Dam, R.M. A Dietary Pattern Derived from Reduced Rank Regression and Fatty Acid Biomarkers Is Associated with Lower Risk of Type 2 Diabetes and Coronary Artery Disease in Chinese Adults. J. Nutr. 2019, 149, 2001–2010. [Google Scholar] [CrossRef]
- Brostow, D.P.; O Odegaard, A.; Koh, W.-P.; Duval, S.; Gross, M.D.; Yuan, J.; A Pereira, M. Omega-3 fatty acids and incident type 2 diabetes: The Singapore Chinese Health Study. Am. J. Clin. Nutr. 2011, 94, 520–526. [Google Scholar] [CrossRef] [Green Version]
- Butler, L.M.; Yuan, J.; Huang, J.Y.; Su, J.; Wang, R.; Koh, W.-P.; Ong, C.-N. Plasma fatty acids and risk of colon and rectal cancers in the Singapore Chinese Health Study. NPJ Precis. Oncol. 2017, 1, 1–10. [Google Scholar] [CrossRef]
- Gago-Dominguez, M.; Yuan, J.; Sun, C.-L.; Lee, H.-P.; Yu, M.C. Opposing effects of dietary n-3 and n-6 fatty acids on mammary carcinogenesis: The Singapore Chinese Health Study. Br. J. Cancer 2003, 89, 1686–1692. [Google Scholar] [CrossRef] [Green Version]
- Koh, W.-P.; Dan, Y.Y.; Goh, G.B.-B.; Jin, A.; Wang, R.; Yuan, J.-M. Dietary fatty acids and risk of hepatocellular carcinoma in the Singapore Chinese health study. Liver Int. 2015, 36, 893–901. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Koh, H.W.L.; Choi, H.; Koh, W.-P.; Yuan, J.-M.; Newman, J.W.; Su, J.; Fang, J.; Ong, C.N.; Van Dam, R.M. Plasma fatty acids, oxylipins, and risk of myocardial infarction: The Singapore Chinese Health Study. J. Lipid Res. 2016, 57, 1300–1307. [Google Scholar] [CrossRef] [Green Version]
- Soh, A.Z.; Chee, C.B.; Wang, Y.-T.; Yuan, J.-M.; Koh, W.-P. Dietary Cholesterol Increases the Risk whereas PUFAs Reduce the Risk of Active Tuberculosis in Singapore Chinese. J. Nutr. 2016, 146, 1093–1100. [Google Scholar] [CrossRef] [PubMed]
- Stern, M.C.; Butler, L.M.; Corral, R.; Joshi, A.D.; Yuan, J.-M.; Koh, W.-P.; Yu, M.C. Polyunsaturated Fatty Acids, DNA Repair Single Nucleotide Polymorphisms and Colorectal Cancer in the Singapore Chinese Health Study. J. Nutr. Nutr. 2009, 2, 273–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Koh, W.-P.; Yuan, J.; Choi, H.; Su, J.; Ong, C.N.; Van Dam, R.M. Plasma α-Linolenic and Long-Chain ω-3 Fatty Acids Are Associated with a Lower Risk of Acute Myocardial Infarction in Singapore Chinese Adults. J. Nutr. 2015, 146, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Micha, R.; Khatibzadeh, S.; Shi, P.; Fahimi, S.; Lim, S.; Andrews, K.G.; E Engell, R.; Powles, J.; Ezzati, M.; Mozaffarian, D.; et al. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: A systematic analysis including 266 country-specific nutrition surveys. BMJ 2014, 348, g2272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.-W.; Wang, J.; Yang, Y.; Ouyang, S.; Cheng, L.; Liu, H.-Y.; Ma, P.; Luo, W.; Liu, S. Polymorphisms in FADS1 and FADS2 alter plasma fatty acids and desaturase levels in type 2 diabetic patients with coronary artery disease. J. Transl. Med. 2016, 14, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, X.; Loo, Y.T.; Henry, C.J. Body Fat Measurements in Singaporean Adults Using Four Methods. Nutr. 2018, 10, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, X.; Loo, Y.T.; Henry, C.J. Ultrasound measurement of intraabdominal fat thickness as a predictor of insulin resistance and low HDL cholesterol in Asians. Nutrition 2018, 56, 99–103. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1987, 55, 999–1033. [Google Scholar]
- Tai, E.S.; Chia, B.L.; Bastian, A.C.; Chua, T.; Ho, S.C.W.; Koh, T.S.; Low, L.P.; Tey, J.S.; Poh, K.-K.; Tan, C.E.; et al. Ministry of Health Clinical Practice Guidelines: Lipids. Singap. Med. J. 2017, 58, 155–166. [Google Scholar] [CrossRef] [Green Version]
- VanderJagt, D.J.; Glew, R.H.; Chuang, L.-T.; Berry, T.; Okolie, H.; Crossey, M.J. Lipid Profiles and trans Fatty Acids in Serum Phospholipids of Semi-nomadic Fulani in Northern Nigeria. J. Heal. Popul. Nutr. 2010, 28, 159–166. [Google Scholar] [CrossRef] [Green Version]
- A Schwertner, H.; Mosser, E.L. Comparison of lipid fatty acids on a concentration basis vs weight percentage basis in patients with and without coronary artery disease or diabetes. Clin. Chem. 1993, 39, 659–663. [Google Scholar] [CrossRef] [PubMed]
- Whitton, C.; Neelakantan, N.; Ong, C.N.; Van Dam, R.M. Reproducibility of Dietary Biomarkers in a Multiethnic Asian Population. Mol. Nutr. Food Res. 2019, 63, e1801104. [Google Scholar] [CrossRef]
- Asselin, C.; Ducharme, A.; Ntimbane, T.; Ruiz, M.; Fortier, A.; Guertin, M.-C.; Lavoie, J.; Diaz, A.; Levy, É.; Tardif, J.-C.; et al. Circulating levels of linoleic acid and HDL-cholesterol are major determinants of 4-hydroxynonenal protein adducts in patients with heart failure. Redox Biol. 2014, 2, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.; Lee, A.; Yoo, H.J.; Kim, M.; Kim, M.; Shin, D.Y.; Lee, J.H. Association between increased visceral fat area and alterations in plasma fatty acid profile in overweight subjects: A cross-sectional study. Lipids Heal. Dis. 2017, 16, 248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremblay-Franco, M.; Zerbinati, C.; Pacelli, A.; Palmaccio, G.; Lubrano, C.; Ducheix, S.; Guillou, H.; Iuliano, L. Effect of obesity and metabolic syndrome on plasma oxysterols and fatty acids in human. Steroids 2015, 99, 287–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickens, C.A.; Sordillo, L.M.; Comstock, S.S.; Harris, W.S.; Hortos, K.; Kovan, B.; Fenton, J.I. Plasma phospholipids, non-esterified plasma polyunsaturated fatty acids and oxylipids are associated with BMI. Prostaglandins Leukot. Essent. Fat. Acids 2015, 95, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Léveillé, P.; Chouinard-Watkins, R.; Windust, A.; Lawrence, P.; Cunnane, S.C.; Brenna, J.T.; Plourde, M. Metabolism of uniformly labeled 13 C-eicosapentaenoic acid and 13 C-arachidonic acid in young and old men. Am. J. Clin. Nutr. 2017, 106, 467–474. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Neelakantan, N.; Wu, Y.; Lote-Oke, R.; Pan, A.; Van Dam, R.M. Palm Oil Consumption Increases LDL Cholesterol Compared with Vegetable Oils Low in Saturated Fat in a Meta-Analysis of Clinical Trials. J. Nutr. 2015, 145, 1549–1558. [Google Scholar] [CrossRef] [Green Version]
- Stark, K.D.; Van Elswyk, M.E.; Higgins, M.R.; Weatherford, C.A.; Salem, J.N. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog. Lipid Res. 2016, 63, 132–152. [Google Scholar] [CrossRef]
- World Health Organization. Global Status Report on Noncommunicable Diseases 2014; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Lee, Y.S.; Biddle, S.; Chan, M.F.; Cheng, A.; Cheong, M.; Chong, Y.S.; Foo, L.L.; Lee, C.H.; Lim, S.C.; Ong, W.S.; et al. Health Promotion Board–Ministry of Health Clinical Practice Guidelines: Obesity. Singap. Med. J. 2015, 57, 292–300. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.-H.; Park, H.S.; Park, M.; Kim, H.; Kim, C. Optimal cutoffs of percentage body fat for predicting obesity-related cardiovascular disease risk factors in Korean adults. Am. J. Clin. Nutr. 2011, 94, 34–39. [Google Scholar] [CrossRef]
- Deurenberg-Yap, M.; Chew, S.K.; Deurenberg, P. Elevated body fat percentage and cardiovascular risks at low body mass index levels among Singaporean Chinese, Malays and Indians. Obes. Rev. 2002, 3, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Deurenberg-Yap, M.; Schmidt, G.; A Van Staveren, W.; Deurenberg, P. The paradox of low body mass index and high body fat percentage among Chinese, Malays and Indians in Singapore. Int. J. Obes. 2000, 24, 1011–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barba, C.; Cavalli-Sforza, T.; Cutter, J.; Deurenberg, P.; Deurenberg-Yap, M.; Darnton-Hill, I.; Gill, T.; James, P.; Ko, G.; Miu, A.H.; et al. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- Jih, J.; Mukherjea, A.; Vittinghoff, E.; Nguyen, T.T.; Tsoh, J.Y.; Fukuoka, Y.; Bender, M.S.; Tseng, W.; Kanaya, A.M. Using appropriate body mass index cut points for overweight and obesity among Asian Americans. Prev. Med. 2014, 65, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Clandinin, M.T.; Cook, S.L.; Konard, S.D.; French, M.A. The effect of palmitic acid on lipoprotein cholesterol levels. Int. J. Food Sci. Nutr. 2000, 51, s61–s71. [Google Scholar] [CrossRef]
- Wendland, E.; Farmer, A.; Glasziou, P.; Neil, A. Effect of α linolenic acid on cardiovascular risk markers: A systematic review. Heart 2006, 92, 166–169. [Google Scholar] [CrossRef] [Green Version]
- Hiraoka-Yamamoto, J.; Ikeda, K.; Negishi, H.; Mori, M.; Hirose, A.; Sawada, S.; Onobayashi, Y.; Kitamori, K.; Kitano, S.; Tashiro, M.; et al. Serum lipid effects of a monounsaturated (palmitoleic) fatty acid-rich diet based on macadamia nuts in healthy, young Japanese women. Clin. Exp. Pharmacol. Physiol. 2004, 31, S37–S38. [Google Scholar] [CrossRef]
- Leslie, M.A.; Cohen, D.J.A.; Liddle, D.M.; Robinson, L.E.; Ma, D.W.L. A review of the effect of omega-3 polyunsaturated fatty acids on blood triacylglycerol levels in normolipidemic and borderline hyperlipidemic individuals. Lipids Heal. Dis. 2015, 14, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.M.; Salter, A. Saturated fatty acids and coronary heart disease risk: The debate goes on. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 97–102. [Google Scholar] [CrossRef]
- Triglycerides: Why do they matter? Mayo Clinic. Available online: https://www.mayoclinic.org/diseases-conditions/high-blood-cholesterol/in-depth/triglycerides/art-20048186. (accessed on 7 June 2020).
- Grimsgaard, S.; Bønaa, K.H.; Bjerve, K.S. Fatty acid chain length and degree of unsaturation are inversely associated with serum triglycerides. Lipids 2000, 35, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- DiNicolantonio, J.J.; O’Keefe, J.H. Effects of dietary fats on blood lipids: A review of direct comparison trials. Open Hear. 2018, 5, e000871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talayero, B.G.; Sacks, F.M. The Role of Triglycerides in Atherosclerosis. Curr. Cardiol. Rep. 2011, 13, 544–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexopoulos, A.-S.; Qamar, A.; Hutchins, K.; Crowley, M.J.; Batch, B.C.; Guyton, J.R. Triglycerides: Emerging Targets in Diabetes Care? Review of Moderate Hypertriglyceridemia in Diabetes. Curr. Diabetes Rep. 2019, 19, 13. [Google Scholar] [CrossRef] [PubMed]
- Panel, E.; Nda, A. Scientific Opinion on the substantiation of health claims related to eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), docosapentaenoic acid (DPA) and maintenance of normal cardiac function (ID 504, 506, 516, 527, 538, 703, 1128, 1317, 1324, 1325). EFSA J. 2010, 8, 10. [Google Scholar]
- Arca, M.; Borghi, C.; Pontremoli, R.; De Ferrari, G.; Colivicchi, F.; Desideri, G.; Temporelli, P. Hypertriglyceridemia and omega-3 fatty acids: Their often overlooked role in cardiovascular disease prevention. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 197–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Häggström, M. Establishment and clinical use of reference ranges. WikiJournal Med. 2014, 1, 1–7. [Google Scholar] [CrossRef]
- Lam, B.C.C.; Koh, G.C.H.; Chen, C.; Wong, M.T.K.; Fallows, S.J. Comparison of Body Mass Index (BMI), Body Adiposity Index (BAI), Waist Circumference (WC), Waist-To-Hip Ratio (WHR) and Waist-To-Height Ratio (WHtR) as predictors of cardiovascular disease risk factors in an adult population in Singapore. PLoS ONE 2015, 10, e0122985. [Google Scholar]
- Hodson, L.; Eyles, H.C.; McLachlan, K.J.; Bell, M.L.; Green, T.J.; Skeaff, C.M. Plasma and Erythrocyte Fatty Acids Reflect Intakes of Saturated and n–6 PUFA within a Similar Time Frame. J. Nutr. 2013, 144, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Tsou, P.; Wu, C.-J. Sex-Dimorphic Association of Plasma Fatty Acids with Cardiovascular Fitness in Young and Middle-Aged General Adults: Subsamples from NHANES 2003. Nutrients 2018, 10, 1558. [Google Scholar] [CrossRef] [Green Version]
- Lohner, S.; Fekete, K.; Marosvölgyi, T.; Decsi, T. Gender Differences in the Long-Chain Polyunsaturated Fatty Acid Status: Systematic Review of 51 Publications. Ann. Nutr. Metab. 2013, 62, 98–112. [Google Scholar] [CrossRef] [PubMed]
- Burdge, G.C.; Wootton, S.A. Conversion of α-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br. J. Nutr. 2002, 88, 411–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fehily, A.M.; Dickerson, J.W.; Meade, B.W.; Ellis, F.R. Plasma and erythrocyte membrane fatty acids in oral contraceptive users. Clin. Chim. Acta 1982, 120, 41–47. [Google Scholar] [CrossRef]
- Jensen, M.D.; Levine, J. Effects of oral contraceptives on free fatty acid metabolism in women. Metabolism 1998, 47, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Marangoni, F.; Cetin, I.; Verduci, E.; Canzone, G.; Giovannini, M.; Scollo, P.; Corsello, G.; Poli, A. Maternal Diet and Nutrient Requirements in Pregnancy and Breastfeeding. An Italian Consensus Document. Nutrients 2016, 8, 629. [Google Scholar] [CrossRef] [PubMed]
Total Population | Males | Females | p-Value | |
---|---|---|---|---|
Population (#) | 476 | 186 | 290 | / |
Age (yrs) | 38.9 ± 14.6 | 38.41 ± 14.6 | 39.21 ± 14.7 | 0.5601 |
BMI (kg/m2) | 22.4 ± 3.4 | 23.3 ± 2.9 | 21.8 ± 3.6 | <0.0001 * |
Waist Circumference (cm) | 73.9 ± 9.2 | 79.3 ± 8.1 | 70.5 ± 8.2 | <0.0001 * |
DEXA Fat (%) | 31.0 ± 7.7 | 24.7 ± 5.7 | 35.1 ± 5.8 | <0.0001 * |
Glucose (mmol/L) | 4.55 ± 0.49 | 4.63 ± 0.51 | 4.50 ± 0.46 | 0.0032 * |
HDL Cholesterol (mmol/L) | 1.68 ± 0.43 | 1.51 ± 0.35 | 1.79 ± 0.44 | <0.0001 * |
LDL Cholesterol (mmol/L) | 3.35 ± 0.92 | 3.41 ± 0.93 | 3.32 ± 0.91 | 0.2771 |
Total Cholesterol (mmol/L) | 5.27 ± 1.03 | 5.21 ± 0.99 | 5.31 ± 1.05 | 0.2868 |
Triglycerides (mmol/L) | 0.97 ± 0.45 | 1.01 ± 0.44 | 0.95 ± 0.46 | 0.1328 |
Total Serum Fatty Acids (μmol/L) | 11,458 ± 2478 | 11,379 ± 2422 | 11,509 ± 2515 | 0.5775 |
Range | Percentile | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Fatty Acid | Min. | Mean | SD | Max. | 5 | 10 | 25 | 50 | 75 | 90 | 95 |
12:0 (Lauric) | t | 10.9 | 12.4 | 160.0 | t | 3.5 | 5.2 | 7.9 | 13.2 | 20.9 | 29.0 |
14:0 (Myristic) | 25.4 | 82.8 | 47.0 | 342.7 | 33.6 | 39.5 | 48.9 | 69.8 | 100.0 | 146.1 | 180.1 |
15:0 (Pentadecanoic) | t | 39.2 | 28.2 | 207.7 | 9.6 | 11.9 | 16.7 | 26.4 | 61.9 | 77.4 | 87.8 |
16:0 (Palmitic) | 1400.4 | 2667.5 | 625.1 | 6161.0 | 1809.8 | 1991.3 | 2256.2 | 2563.0 | 2967.9 | 3529.2 | 3908.3 |
17:0 (Margaric) | t | 37.8 | 15.4 | 162.0 | 17.6 | 22.2 | 28.1 | 35.6 | 45.0 | 56.2 | 66.3 |
18:0 (Stearic) | 415.2 | 745.2 | 155.5 | 1550.6 | 522.5 | 568.8 | 641.5 | 720.9 | 828.5 | 946.0 | 1021.8 |
20:0 (Arachidic) | 1.8 | 20.1 | 5.3 | 50.3 | 12.8 | 14.0 | 16.6 | 19.5 | 22.8 | 26.4 | 29.8 |
21:0 | 0.7 | 8.7 | 7.2 | 120.1 | 3.5 | 4.3 | 5.7 | 7.4 | 9.8 | 13.0 | 16.9 |
22:0 (Behenic) | 11.0 | 45.2 | 11.6 | 91.9 | 28.6 | 31.1 | 37.5 | 44.5 | 52.0 | 59.1 | 65.5 |
23:0 | t | 7.0 | 9.2 | 36.3 | t | t | t | t | 15.5 | 20.7 | 23.0 |
24:0 (Lignoceric) | 5.0 | 42.7 | 11.2 | 94.1 | 26.2 | 29.4 | 34.9 | 41.7 | 50.2 | 56.0 | 61.7 |
12:1c11 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | |
14:1c9 (Myristoleic) | t | 10.4 | 9.2 | 46.6 | t | t | 2.8 | 9.1 | 17.1 | 22.3 | 25.9 |
15:1c10 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | |
16:1c9 (Palmitoleic) | 6.5 | 196.0 | 84.2 | 526.4 | 88.8 | 105.9 | 135.1 | 180.2 | 238.1 | 309.0 | 359.4 |
17:1c10 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | |
18:1c9 (Oleic) | 263.1 | 2095.7 | 633.1 | 5070.1 | 1311.1 | 1431.0 | 1683.2 | 1975.6 | 2389.2 | 2969.2 | 3381.2 |
18:1c11 (cis-Vaccenic) | 13.1 | 163.9 | 43.2 | 355.9 | 106.5 | 115.7 | 134.7 | 159.5 | 186.7 | 218.8 | 240.3 |
18:1c12 | t | 4.2 | 3.3 | 17.3 | t | t | 2.1 | 3.9 | 5.8 | 8.1 | 10.8 |
18:1c13 | t | t | t | t | t | t | t | t | t | t | |
18:1c14 | t | t | t | t | t | t | t | t | t | t | |
19:1c10 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | |
20:1c5 | t | 6.3 | 2.9 | 18.8 | 3.0 | 3.3 | 4.3 | 5.6 | 7.4 | 10.7 | 12.2 |
20:1c8 | t | 3.0 | 1.6 | 18.0 | 1.2 | 1.5 | 2.0 | 2.7 | 3.7 | 4.8 | 5.9 |
20:1c11 (Gondoic) | 2.6 | 16.2 | 5.5 | 52.5 | 9.8 | 10.8 | 12.7 | 15.4 | 18.5 | 23.0 | 26.5 |
22:1n9 (Erucic) | t | 4.2 | 4.8 | 74.3 | t | 1.9 | 2.4 | 3.3 | 5.2 | 7.9 | 8.9 |
24:1n9 (Nervonic) | 2.6 | 63.9 | 17.7 | 187.1 | 41.1 | 44.1 | 52.7 | 61.6 | 72.7 | 84.2 | 92.3 |
16:1t9 (Palmitelaidic) | t | 7.9 | 5.7 | 27.1 | 2.0 | 2.2 | 2.9 | 6.8 | 10.9 | 16.3 | 19.9 |
18:1t4 | t | 0.2 | 1.4 | 26.8 | t | t | t | t | t | t | 1.1 |
18:1t5 | t | 6.6 | 8.8 | 62.2 | t | t | t | 3.6 | 9.1 | 17.9 | 25.0 |
18:1t6-8 | t | 3.3 | 2.5 | 16.5 | 0.7 | 0.9 | 1.5 | 2.7 | 4.6 | 6.5 | 8.4 |
18:1t9 (Elaidic) | t | 6.7 | 3.3 | 47.0 | 2.7 | 3.5 | 4.7 | 6.3 | 8.1 | 10.0 | 11.9 |
18:1t10 | t | 4.4 | 3.1 | 29.7 | 1.1 | 1.8 | 2.6 | 3.6 | 5.4 | 7.5 | 9.4 |
18:1t11(trans-Vaccenic) | t | 7.1 | 5.0 | 59.4 | 1.7 | 2.4 | 3.9 | 6.0 | 8.9 | 12.1 | 15.9 |
18:1t12 | t | 4.4 | 3.8 | 59.9 | 1.5 | 1.9 | 2.7 | 3.6 | 5.1 | 7.8 | 9.8 |
18:1t13 | t | 11.0 | 7.0 | 59.3 | 4.3 | 5.1 | 6.9 | 9.4 | 13.2 | 18.0 | 21.9 |
18:1t16 | t | 3.6 | 2.4 | 26.0 | t | t | 2.4 | 3.4 | 4.6 | 6.4 | 7.5 |
18:2tt | t | 4.1 | 4.4 | 25.9 | t | t | 0.9 | 2.7 | 5.5 | 10.4 | 13.6 |
18:2t9t12 (Linoelaidic) | t | 1.2 | 3.0 | 25.6 | t | t | t | t | t | 4.6 | 6.7 |
18:2c9t13 | t | 1.1 | 2.6 | 17.8 | t | t | t | t | t | 4.9 | 7.0 |
18:2ct | t | 5.2 | 3.2 | 24.1 | 2.0 | 2.5 | 3.3 | 4.4 | 6.0 | 8.8 | 11.7 |
18:2c9t12 | 1.0 | 13.7 | 4.6 | 38.5 | 8.1 | 9.4 | 10.8 | 12.6 | 15.6 | 20.0 | 23.2 |
18:2t9c12 | t | 7.9 | 3.2 | 21.0 | 3.2 | 4.2 | 5.8 | 7.7 | 9.5 | 11.9 | 13.4 |
18:2c9c14 | t | 1.3 | 2.4 | 18.2 | t | t | t | t | 2.1 | 3.9 | 6.3 |
18:2c9c15 (Mangiferic) | t | 2.5 | 3.6 | 21.3 | t | t | t | t | 4.5 | 7.2 | 9.2 |
18:2c9t11 (Rumenic) | t | 8.7 | 2.6 | 23.4 | 4.8 | 6.2 | 7.4 | 8.5 | 9.7 | 11.5 | 13.1 |
18:2c11t13 (CLA) | t | 1.0 | 2.0 | 10.7 | t | t | t | t | t | 4.3 | 5.9 |
18:2t10c12 (CLA) | t | 0.6 | 1.8 | 13.0 | t | t | t | t | t | 2.6 | 5.1 |
18:2c/c isomer (CLA) | t | 0.3 | 1.2 | 12.7 | t | t | t | t | t | t | 1.7 |
18:2c/c isomer (CLA) | t | 2.1 | 2.4 | 16.2 | t | t | t | 1.7 | 3.0 | 4.7 | 6.6 |
18:2tt (CLA) | t | 8.9 | 4.4 | 38.4 | 0.6 | 4.7 | 6.8 | 8.6 | 10.7 | 13.1 | 15.2 |
18:2n6 (Linoleic acid) | 1652.5 | 3700.2 | 777.5 | 7244.2 | 2559.2 | 2766.6 | 3181.0 | 3640.6 | 4090.3 | 4771.7 | 5081.2 |
18:3n6 (γ-linolenic) | 2.9 | 27.0 | 19.7 | 124.5 | 7.5 | 8.7 | 12.7 | 22.5 | 35.0 | 51.6 | 63.2 |
20:2n6 (Eicosadienoic) | 2.5 | 24.0 | 7.8 | 52.7 | 12.6 | 15.8 | 18.8 | 22.8 | 28.4 | 33.6 | 38.8 |
20:3n6 (Dihomo-γ-linolenic) | 2.0 | 115.3 | 46.3 | 273.9 | 56.6 | 64.0 | 80.1 | 106.4 | 141.4 | 181.1 | 206.4 |
20:4n6 (Arachidonic) | 104.3 | 685.8 | 177.4 | 1538.7 | 433.7 | 480.0 | 573.0 | 673.9 | 784.6 | 908.3 | 973.5 |
22:2n6 (Docosadienoic) | t | 7.9 | 4.8 | 33.5 | 2.5 | 3.2 | 4.6 | 6.5 | 10.3 | 14.3 | 16.7 |
22:4n6 (Adrenic) | 3.6 | 17.7 | 5.9 | 50.4 | 9.3 | 11.1 | 14.1 | 17.2 | 20.9 | 25.2 | 27.4 |
22:5n6 (Docosapentaenoic) | 3.7 | 19.7 | 6.2 | 44.7 | 11.0 | 12.6 | 15.4 | 19.0 | 23.4 | 27.5 | 31.1 |
20:3n9 (Mead) | 3.0 | 8.9 | 4.1 | 29.4 | 4.3 | 4.9 | 6.2 | 8.1 | 10.2 | 13.9 | 17.1 |
18:3n3 (α-linolenic) | 7.3 | 57.6 | 24.7 | 175.4 | 28.7 | 33.0 | 41.1 | 52.4 | 69.7 | 91.6 | 103.3 |
18:4n3 (Stearidonic) | t | t | t | t | t | t | t | t | t | t | |
20:3n3 (Dihomolinoleic) | t | 16.6 | 11.3 | 47.1 | t | 2.3 | 4.5 | 19.2 | 26.2 | 30.9 | 33.8 |
20:5n3 (Eicosapentaenoic) | 4.2 | 93.0 | 80.9 | 596.3 | 20.1 | 29.0 | 40.0 | 68.2 | 115.2 | 193.42 | 285.1 |
22:3n3 (Docosatrienoic Acid) | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | |
22:5n3 (Docosapentaenoic) | 14.7 | 43.5 | 15.5 | 118.7 | 23.7 | 27/0 | 32.5 | 40.7 | 50.5 | 65.3 | 71.5 |
22:6n3 (Docosahexaenoic) | 44.9 | 255.5 | 94.4 | 663.4 | 121.9 | 150.7 | 193.56 | 240.5 | 304.0 | 391.4 | 430.1 |
Fatty Acid | Common Name | Males (n = 186) | Females (n = 290) | p-Value |
---|---|---|---|---|
16:0 | Palmitic acid (PA) | 2683 ± 630.6 | 2658 ± 622.4 | 0.66 |
18:0 | Stearic acid (SA) | 716 ± 145.2 | 764 ± 159.2 | 0.001 * |
16:1c9 | Palmitoleic acid (PAO) | 185 ± 82.5 | 203 ± 84.7 | 0.03 * |
18:1c9 | Oleic acid (OA) | 2117 ± 645.0 | 2082 ± 625.9 | 0.55 |
18:2n6 | Linoleic acid (LA) | 3652 ± 737.4 | 3731 ± 801.9 | 0.28 |
20:4n6 | Arachidonic acid (ARA) | 687 ± 176.2 | 685 ± 178.5 | 0.86 |
18:3n3 | Alpha-linolenic acid (ALA) | 53.9 ± 23.0 | 60.0 ± 25.4 | 0.008 * |
20:5n3 | Eicosapentaenoic acid (EPA) | 84.4 ± 74.2 | 98.5 ± 84.7 | 0.06 |
22:5n3 | Docosapentaenoic acid (DPA) | 42.6 ± 14.8 | 44.1 ± 0.9 | 0.3 |
22:6n3 | Docosahexaenoic acid (DHA) | 240 ± 86.8 | 266 ± 97.8 | 0.003 * |
Range | Percentile | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Class | Min | Mean ± SD | Max | 5 | 10 | 25 | 50 | 75 | 90 | 95 |
TG | 0.36 | 0.97 ± 0.45 | 3.06 | 0.50 | 0.55 | 0.66 | 0.87 | 1.13 | 1.64 | 1.91 |
HDL | 0.80 | 1.68 ± 0.43 | 3.44 | 1.07 | 1.16 | 1.38 | 1.65 | 1.91 | 2.29 | 2.48 |
LDL | 0.99 | 3.35 ± 0.92 | 7.64 | 2.06 | 2.29 | 2.74 | 3.23 | 3.87 | 4.48 | 4.99 |
TC | 2.70 | 5.27 ± 1.03 | 9.44 | 3.74 | 4.08 | 4.58 | 5.17 | 5.85 | 6.67 | 7.05 |
Class | Desirable a | Borderline/High | Very High | |||||||
TG | 1.7–2.2 mmol/L | 2.3–4.4 mmol/L | ≥4.5 mmol/L | |||||||
HDL | 1.0–1.5 mmol/L | >1.6 mmol/L | ||||||||
LDL | 2.6–3.3 mmol/L | 3.4–4.8 mmol/L | ≥4.9 mmol/L | |||||||
TC | <5.2 mmol/L | 5.2–6.1 mmol/L | ≥6.2 mmol/L |
Fatty Acid | Common Name | Triglycerides | HDL | LDL | Total Cholesterol |
---|---|---|---|---|---|
β | β | β | β | ||
16:0 | Palmitic acid (PA) | 0.78 * | 0.02 | 0.55 * | 0.64 * |
18:0 | Stearic acid (SA) | 0.64 * | 0.18 * | 0.60 * | 0.72 * |
16:1c9 | Palmitoleic acid (PAO) | 0.70 * | −0.05 | 0.31 * | 0.38 * |
18:1c9 | Oleic acid (OA) | 0.81 * | −0.10 | 0.46 * | 0.50 * |
18:2n6 | Linoleic acid (LA) | 0.45 * | 0.24 * | 0.62 * | 0.72 * |
20:4n6 | Arachidonic acid (ARA) | 0.17 * | 0.25 * | 0.43 * | 0.37 * |
18:3n3 | Alpha-linolenic acid (ALA) | 0.61 * | −0.06 | 0.29 * | 0.34 * |
20:5n3 | Eicosapentaenoic acid (EPA) | 0 | 0.20 * | 0.22 * | 0.29 * |
22:5n3 | Docosapentaenoic acid (DPA) | 0.33 * | 0.19 * | 0.40 * | 0.49 * |
22:6n3 | Docosahexaenoic acid (DHA) | 0.27 * | 0.21 * | 0.44 * | 0.52 * |
TOTAL | 0.67 * | 0.12 ** | 0.59 * | 0.69 * |
Lipid Class | Exceeded Cut-Off a (#) | Percentile | 16:0 | 18:0 | 16:1c9 | 18:1c9 | 18:2n6 | 20:4n6 | 18:3n3 | 20:5n3 | 22:5n3 | 22:6n3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
TG | 11 | ≥95% b | 10 | 8 | 7 | 11 | 3 | 0 | 6 | 0 | 1 | 1 |
≤5% b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
HDL-Low | 11 | ≥75% c | 4 | 3 | 2 | 4 | 1 | 0 | 3 | 2 | 2 | 2 |
≤25% c | 3 | 5 | 3 | 1 | 4 | 5 | 4 | 4 | 6 | 4 | ||
LDL | 91 | ≥75% c | 62 | 63 | 38 | 54 | 65 | 46 | 44 | 39 | 52 | 52 |
≤25% c | 1 | 1 | 6 | 0 | 1 | 9 | 5 | 9 | 5 | 5 | ||
TC | 82 | ≥75% c | 54 | 60 | 37 | 50 | 66 | 52 | 43 | 43 | 53 | 52 |
≤25% c | 0 | 0 | 5 | 1 | 0 | 7 | 4 | 7 | 2 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lust, C.A.C.; Bi, X.; Henry, C.J.; Ma, D.W.L. Development of Fatty Acid Reference Ranges and Relationship with Lipid Biomarkers in Middle-Aged Healthy Singaporean Men and Women. Nutrients 2021, 13, 435. https://doi.org/10.3390/nu13020435
Lust CAC, Bi X, Henry CJ, Ma DWL. Development of Fatty Acid Reference Ranges and Relationship with Lipid Biomarkers in Middle-Aged Healthy Singaporean Men and Women. Nutrients. 2021; 13(2):435. https://doi.org/10.3390/nu13020435
Chicago/Turabian StyleLust, Cody A. C., Xinyan Bi, Christiani Jeyakumar Henry, and David W. L. Ma. 2021. "Development of Fatty Acid Reference Ranges and Relationship with Lipid Biomarkers in Middle-Aged Healthy Singaporean Men and Women" Nutrients 13, no. 2: 435. https://doi.org/10.3390/nu13020435
APA StyleLust, C. A. C., Bi, X., Henry, C. J., & Ma, D. W. L. (2021). Development of Fatty Acid Reference Ranges and Relationship with Lipid Biomarkers in Middle-Aged Healthy Singaporean Men and Women. Nutrients, 13(2), 435. https://doi.org/10.3390/nu13020435