Gender Differences in the Associations of Plasma Pyridoxal 5′-Phosphate with Plasma Polyunsaturated Fatty Acids among US Young and Middle-Aged Adults: NHANES 2003–2004
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Study Population
2.2. Assessment of Vitamin B6 and PUFA Intakes from Food and Supplements
2.3. Definition of Gender
2.4. Laboratory Measurements of Plasma PLP and PUFA
2.4.1. Pyridoxal 5′-Phosphate (PLP)
2.4.2. Plasma Polyunsaturated Fatty Acids (PUFA)
2.5. Study Covariates
2.5.1. Demographic Factors
2.5.2. Socioeconomic Factors
2.5.3. Dietary Factors
2.5.4. Other Factors
2.6. Statistical Methods
3. Results
3.1. Demographic, Socioeconomic, and Other Characteristics of Participants by Gender
3.2. Distributions of the Intakes of Vitamin B6 and PUFA and the Concentrations of Plasma PUFA and PLP by Gender
3.3. No Interaction Effects between Gender and Vitamin B6 Intake on Plasma PUFA Concentrations and Ratios
3.4. Associations of Plasma PLP Concentration with Plasma PUFA Concentrations and Ratios, Stratified by Gender
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salmon, W.D. The effect of certain oils in alleviating localised erythematous dermatitis (acrodynia or vitamin B-6 deficiency) in rats. J. Biol. Chem. 1938, 123, 104. [Google Scholar]
- Birch, T.W.; György, P. A study of the chemical nature of vitamin B(6) and methods for its preparation in a concentrated state. Biochem. J. 1936, 30, 304–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, P. The Rôle of the Unsaturated Fatty Acids in the Acrodynia (Vitamin B6 Deficiency) of the Albino Rat. J. Investig. Dermatol. 1940, 3, 505–522. [Google Scholar] [CrossRef] [Green Version]
- Cunnane, S.C.; Manku, M.S.; Horrobin, D.F. Accumulation of linoleic and gamma-linolenic acids in tissue lipids of pyridoxine-deficient rats. J. Nutr. 1984, 114, 1754–1761. [Google Scholar] [CrossRef]
- Bordoni, A.; Hrelia, S.; Lorenzini, A.; Bergami, R.; Cabrini, L.; Biagi, P.L.; Tolomelli, B. Dual influence of aging and vitamin B6 deficiency on delta-6-desaturation of essential fatty acids in rat liver microsomes. Prostaglandins Leukot. Essent. Fatty Acids 1998, 58, 417–420. [Google Scholar] [CrossRef]
- Cabrini, L.; Bergami, R.; Maranesi, M.; Carloni, A.; Marchetti, M.; Tolomelli, B. Effects of short-term dietary administration of marginal levels of vitamin B(6)and fish oil on lipid composition and antioxidant defences in rat tissues. Prostaglandins Leukot. Essent. Fatty Acids 2001, 64, 265–271. [Google Scholar] [CrossRef]
- She, Q.; Hayakawa, T.; Tsuge, H. Effect of Vitamin B6 Deficiency on Linoleic Acid Desaturation in the Arachidonic Acid Biosynthesis of Rat Liver Microsomes. Biosci. Biotechnol. Biochem 1994, 58, 459–463. [Google Scholar] [CrossRef]
- Tsuge, H.; Hotta, N.; Hayakawa, T. Effects of vitamin B-6 on (n-3) polyunsaturated fatty acid metabolism. J. Nutr. 2000, 130, 333S–334S. [Google Scholar] [CrossRef] [Green Version]
- Krajcovicova-Kudlackova, M.; Klvanova, J.; Dusinska, M. Polyunsaturated Fatty Acid Plasma Content in Groups of General Population with lowvitamin B6 or low iron serum levels. Ann. Nutr. Metab. 2004, 48, 118–121. [Google Scholar] [CrossRef]
- Zhao, M.; Lamers, Y.; Ralat, M.A.; Coats, B.S.; Chi, Y.Y.; Muller, K.E.; Bain, J.R.; Shankar, M.N.; Newgard, C.B.; Stacpoole, P.W.; et al. 3rd Marginal vitamin B-6 deficiency decreases plasma (n-3) and (n-6) PUFA concentrations in healthy men and women. J. Nutr. 2012, 142, 1791–1797. [Google Scholar] [CrossRef] [Green Version]
- Skeie, E.; Strand, E.; Pedersen, E.R.; Bjorndal, B.; Bohov, P.; Berge, R.K.; Svingen, G.F.; Seifert, R.; Ueland, P.M.; Midttun, O.; et al. Circulating B-vitamins and smoking habits are associated with serum polyunsaturated Fatty acids in patients with suspected coronary heart disease: A cross-sectional study. PLoS ONE 2015, 10, e0129049. [Google Scholar] [CrossRef] [PubMed]
- Mujica-Coopman, M.F.; Franco-Sena, A.B.; Farias, D.R.; Vaz, J.S.; Brito, A.; Kac, G.; Lamers, Y. Vitamin B-6 Status in Unsupplemented Pregnant Women Is Associated Positively with Serum Docosahexaenoic Acid and Inversely with the n-6-to-n-3 Fatty Acid Ratio. J. Nutr. 2017, 147, 170–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Childs, C.E.; Romeu-Nadal, M.; Burdge, G.C.; Calder, P.C. Gender differences in the n-3 fatty acid content of tissues. Proc. Nutr. Soc. 2008, 67, 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohner, S.; Fekete, K.; Marosvölgyi, T.; Decsi, T. Gender differences in the long-chain polyunsaturated fatty acid status: Systematic review of 51 publications. Ann. Nutr. Metab. 2013, 62, 98–112. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes. Nutrients 2010, 2, 355–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bokor, S.; Dumont, J.; Spinneker, A.; Gonzalez-Gross, M.; Nova, E.; Widhalm, K.; Moschonis, G.; Stehle, P.; Amouyel, P.; De Henauw, S.; et al. Single nucleotide polymorphisms in the FADS gene cluster are associated with delta-5 and delta-6 desaturase activities estimated by serum fatty acid ratios. J. Lipid Res. 2010, 51, 2325–2333. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. Polyunsaturated fatty acids and inflammatory processes: New twists in an old tale. Biochimie 2009, 91, 791–795. [Google Scholar] [CrossRef]
- Crowe, F.L.; Skeaff, C.M.; Green, T.J.; Gray, A.R. Serum n-3 long-chain PUFA differ by sex and age in a population-based survey of New Zealand adolescents and adults. Br. J. Nutr. 2008, 99, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Nikkari, T.; Luukkainen, P.; Pietinen, P.; Puska, P. Fatty acid composition of serum lipid fractions in relation to gender and quality of dietary fat. Ann. Med. 1995, 27, 491–498. [Google Scholar] [CrossRef]
- Bakewell, L.; Burdge, G.C.; Calder, P.C. Polyunsaturated fatty acid concentrations in young men and women consuming their habitual diets. Br. J. Nutr. 2006, 96, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Giltay, E.J.; Gooren, L.J.; Toorians, A.W.; Katan, M.B.; Zock, P.L. Docosahexaenoic acid concentrations are higher in women than in men because of estrogenic effects. Am. J. Clin. Nutr. 2004, 80, 1167–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdge, G.C.; Wootton, S.A. Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br. J. Nutr. 2002, 88, 411–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdge, G.C.; Jones, A.E.; Wootton, S.A. Eicosapentaenoic and docosapentaenoic acids are the principal products of alpha-linolenic acid metabolism in young men*. Br. J. Nutr. 2002, 88, 355–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decsi, T.; Kennedy, K. Sex-specific differences in essential fatty acid metabolism. Am. J. Clin. Nutr. 2011, 94, 1914S–1919S. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Lai, C.Q.; Mattei, J.; Ordovas, J.M.; Tucker, K.L. Association of vitamin B-6 status with inflammation, oxidative stress, and chronic inflammatory conditions: The Boston Puerto Rican Health Study. Am. J. Clin. Nutr. 2010, 91, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Sakakeeny, L.; Roubenoff, R.; Obin, M.; Fontes, J.D.; Benjamin, E.J.; Bujanover, Y.; Jacques, P.F.; Selhub, J. Plasma pyridoxal-5-phosphate is inversely associated with systemic markers of inflammation in a population of U.S. adults. J. Nutr. 2012, 142, 1280–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira Otto, M.C.; Wu, J.H.; Baylin, A.; Vaidya, D.; Rich, S.S.; Tsai, M.Y.; Jacobs, D.R., Jr.; Mozaffarian, D. Circulating and dietary omega-3 and omega-6 polyunsaturated fatty acids and incidence of CVD in the Multi-Ethnic Study of Atherosclerosis. J. Am. Heart Assoc. 2013, 2, e000506. [Google Scholar] [CrossRef] [Green Version]
- Rathod, K.S.; Kapil, V.; Velmurugan, S.; Khambata, R.S.; Siddique, U.; Khan, S.; Van Eijl, S.; Gee, L.C.; Bansal, J.; Pitrola, K.; et al. Accelerated resolution of inflammation underlies sex differences in inflammatory responses in humans. J. Clin. Investig. 2017, 127, 169–182. [Google Scholar] [CrossRef]
- Lerner, D.J.; Kannel, W.B. Patterns of coronary heart disease morbidity and mortality in the sexes: A 26-year follow-up of the Framingham population. Am. Heart J. 1986, 111, 383–390. [Google Scholar] [CrossRef]
- Card, J.W.; Carey, M.A.; Bradbury, J.A.; DeGraff, L.M.; Morgan, D.L.; Moorman, M.P.; Flake, G.P.; Zeldin, D.C. Gender differences in murine airway responsiveness and lipopolysaccharide-induced inflammation. J. Immunol. 2006, 177, 621–630. [Google Scholar] [CrossRef]
- Johnson, C.L.; Paulose-Ram, R.; Ogden, C.L.; Carroll, M.D.; Kruszon-Moran, D.; Dohrmann, S.M.; Curtin, L.R. National health and nutrition examination survey: Analytic guidelines, 1999–2010. Vital Health Stat. 2 2013, 161, 1–24. [Google Scholar]
- The Centers for Disease Control and Prevention MEC Interviewers Procedures Manual. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2003-2004/manuals/MECInterview.pdf (accessed on 22 April 2020).
- The Centers for Disease Control and Prevention, (CDC) National Health and Nutrition Examination Survey: NCHS Research Ethics Review Board (ERB) Approval. Available online: https://www.cdc.gov/nchs/nhanes/irba98.htm (accessed on 10 December 2020).
- The Centers for Disease Control and Prevention Laboratory Procedures Manual. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2003-2004/manuals/lab.pdf (accessed on 22 April 2020).
- Papsdorf, K.; Brunet, A. Linking Lipid Metabolism to Chromatin Regulation in Aging. Trends Cell Biol. 2019, 29, 97–116. [Google Scholar] [CrossRef] [PubMed]
- Toth, M.J.; Tchernof, A. Lipid metabolism in the elderly. Eur. J. Clin. Nutr. 2000, 54 (Suppl. 3), 121. [Google Scholar] [CrossRef]
- Fortier, M.; Tremblay-Mercier, J.; Plourde, M.; Chouinard-Watkins, R.; Vandal, M.; Pifferi, F.; Freemantle, E.; Cunnane, S.C. Higher plasma n-3 fatty acid status in the moderately healthy elderly in southern Québec: Higher fish intake or aging-related change in n-3 fatty acid metabolism? Prostaglandins Leukot. Essent. Fatty Acids 2010, 82, 277–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rees, D.; Miles, E.A.; Banerjee, T.; Wells, S.J.; Roynette, C.E.; Wahle, K.W.; Calder, P.C. Dose-related effects of eicosapentaenoic acid on innate immune function in healthy humans: A comparison of young and older men. Am. J. Clin. Nutr. 2006, 83, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Bordoni, A.; Biagi, P.L.; Turchetto, E.; Hrelia, S. Aging influence on delta-6-desaturase activity and fatty acid composition of rat liver microsomes. Biochem. Int. 1988, 17, 1001–1009. [Google Scholar]
- Ueland, P.M.; Ulvik, A.; Rios-Avila, L.; Midttun, O.; Gregory, J.F. Direct and Functional Biomarkers of Vitamin B6 Status. Annu. Rev. Nutr. 2015, 35, 33–70. [Google Scholar] [CrossRef]
- Morris, M.S.; Picciano, M.F.; Jacques, P.F.; Selhub, J. Plasma pyridoxal 5’-phosphate in the US population: The National Health and Nutrition Examination Survey, 2003-2004. Am. J. Clin. Nutr. 2008, 87, 1446–1454. [Google Scholar] [CrossRef] [Green Version]
- Enk, L.; Crona, N.; Friberg, L.G.; Samsioe, G.; Silfverstolpe, G. High-dose depot-medroxyprogesterone acetate--effects on the fatty acid composition of serum lecithin and cholesterol ester. Gynecol. Oncol. 1985, 22, 317–323. [Google Scholar] [CrossRef]
- Ottosson, U.B.; Lagrelius, A.; Rosing, U.; von Schoultz, B. Relative fatty acid composition of lecithin during postmenopausal replacement therapy—A comparison between ethinyl estradiol and estradiol valerate. Gynecol. Obstet. Investig. 1984, 18, 296–302. [Google Scholar] [CrossRef]
- Al, M.D.; van Houwelingen, A.C.; Kester, A.D.; Hasaart, T.H.; de Jong, A.E.; Hornstra, G. Maternal essential fatty acid patterns during normal pregnancy and their relationship to the neonatal essential fatty acid status. Br. J. Nutr. 1995, 74, 55–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawabata, T.; Kagawa, Y.; Kimura, F.; Miyazawa, T.; Saito, S.; Arima, T.; Nakai, K.; Yaegashi, N. Polyunsaturated Fatty Acid Levels in Maternal Erythrocytes of Japanese Women during Pregnancy and after Childbirth. Nutrients 2017, 9, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Centers for Disease Control and Prevention MEC In-Person Dietary Interviewers Procedures Manual. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2003-2004/manuals/DIETARY_MEC.pdf (accessed on 22 April 2020).
- National Center for Health Statistics National Health and Nutrition Examination Survey. Dietary Supplement Use 30-Day-File 1. 2003–2004 Data Documentation, Codebook, and Frequencies. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/DSQ1_C.htm (accessed on 31 October 2020).
- National Center for Health Statistics National Health and Nutrition Examination Survey. 1999–2018 Data Documentation, Codebook, and Frequencies. Dietary Supplement Database—Ingredient Information (DSII). Available online: https://wwwn.cdc.gov/Nchs/Nhanes/1999-2000/DSII.htm (accessed on 31 October 2020).
- Naqvi, A.Z.; Davis, R.B.; Mukamal, K.J. Dietary fatty acids and peripheral artery disease in adults. Atherosclerosis 2012, 222, 545–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jäncke, L. Sex/gender differences in cognition, neurophysiology, and neuroanatomy. F1000Res 2018, 7. [Google Scholar] [CrossRef] [PubMed]
- Short, S.E.; Yang, Y.C.; Jenkins, T.M. Sex, gender, genetics, and health. Am. J. Public Health 2013, 103 (Suppl. 1), 93. [Google Scholar] [CrossRef]
- National Center for Health Statistics National Health and Nutrition Examination Survey. 2003–2004 Data Documentation, Codebook, and Frequencies. Demographic Variables & Sample Weights (DEMO_C). Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/DEMO_C.htm (accessed on 22 April 2020).
- The Centers for Disease Control and Prevention Laboratory Procedure Manual: Pyridoxal 5′- Phosphate (PLP) NHANES 2003–2004. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2003-2004/labmethods/l43_c_met_plp.pdf (accessed on 22 April 2020).
- Hornung, R.W.; Reed, L.D. Estimation of average concentration in the presence of non-detectable value. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Food and Nutrition Board Institute of Medicine A Report of the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline and Subcommittee on Upper Reference Levels of Nutrients. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academies Press: Washington, DC, USA, 1998. [Google Scholar]
- The Centers for Disease Control and Prevention National Health and Nutrition Examination Survey 2003–2004 Data Documentation, Codebook, and Frequencies: Plasma Fatty Acids (Surplus) Data. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/SSFA_C.htm (accessed on 22 April 2020).
- Murphy, R.A.; Yu, E.A.; Ciappio, E.D.; Mehta, S.; McBurney, M.I. Suboptimal Plasma Long Chain n-3 Concentrations are Common among Adults in the United States, NHANES 2003–2004. Nutrients 2015, 7, 10282–10289. [Google Scholar] [CrossRef] [Green Version]
- Schleicher, R.L.; Sternberg, M.R.; Pfeiffer, C.M. Race-ethnicity is a strong correlate of circulating fat-soluble nutrient concentrations in a representative sample of the U.S. population. J. Nutr. 2013, 143, 966S–976S. [Google Scholar] [CrossRef]
- de Groot, R.H.M.; Emmett, R.; Meyer, B.J. Non-dietary factors associated with n-3 long-chain PUFA levels in humans—A systematic literature review. Br. J. Nutr. 2019, 121, 793–808. [Google Scholar] [CrossRef] [Green Version]
- Fisk, H.L.; Irvine, M.; Miles, E.A.; Lietz, G.; Mathers, J.C.; Packard, C.J.; Armah, C.K.; Kofler, B.M.; Curtis, P.J.; Minihane, A.M.; et al. Association of oily fish intake, sex, age, BMI and APOE genotype with plasma long-chain n-3 fatty acid composition. Br. J. Nutr. 2018, 120, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Stark, K.D.; Park, E.J.; Holub, B.J. Fatty acid composition of serum phospholipid of premenopausal women and postmenopausal women receiving and not receiving hormone replacement therapy. Menopause 2003, 10, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Ma, J.; Campos, H.; Hankinson, S.E.; Hu, F.B. Comparison between plasma and erythrocyte fatty acid content as biomarkers of fatty acid intake in US women. Am. J. Clin. Nutr. 2007, 86, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Raatz, S.K.; Bibus, D.; Thomas, W.; Kris-Etherton, P. Total fat intake modifies plasma fatty acid composition in humans. J. Nutr. 2001, 131, 231–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogden, C.L.; Carroll, M.D.; Fakhouri, T.H.; Hales, C.M.; Fryar, C.D.; Li, X.; Freedman, D.S. Prevalence of Obesity Among Youths by Household Income and Education Level of Head of Household—United States 2011–2014. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1231S. [Google Scholar] [CrossRef]
- Kleinbaum, D.G.; Klein, M. Logistic Regression. Chapter 6. Modeling Strategy Guidelines; Springer: New York, NY, USA, 2010; pp. 169–173. [Google Scholar]
- Oxenkrug, G. Insulin resistance and dysregulation of tryptophan-kynurenine and kynurenine-nicotinamide adenine dinucleotide metabolic pathways. Mol. Neurobiol. 2013, 48, 294–301. [Google Scholar] [CrossRef] [Green Version]
- Rios-Avila, L.; Nijhout, H.F.; Reed, M.C.; Sitren, H.S.; Gregory, J.F., 3rd. A mathematical model of tryptophan metabolism via the kynurenine pathway provides insights into the effects of vitamin B-6 deficiency, tryptophan loading, and induction of tryptophan 2,3-dioxygenase on tryptophan metabolites. J. Nutr. 2013, 143, 1509–1519. [Google Scholar] [CrossRef] [Green Version]
- Paul, L.; Ueland, P.M.; Selhub, J. Mechanistic perspective on the relationship between pyridoxal 5’-phosphate and inflammation. Nutr. Rev. 2013, 71, 239–244. [Google Scholar] [CrossRef]
- Nakamura, M.T.; Nara, T.Y. Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu. Rev. Nutr. 2004, 24, 345–376. [Google Scholar] [CrossRef]
- Zhao, M.; Ralat, M.A.; da Silva, V.; Garrett, T.J.; Melnyk, S.; James, S.J.; Gregory, J.F. 3rd Vitamin B-6 restriction impairs fatty acid synthesis in cultured human hepatoma (HepG2) cells. Am. J. Physiol. Endocrinol. Metab. 2013, 304, 342. [Google Scholar] [CrossRef] [Green Version]
- Brenner, R.R. Hormonal modulation of delta6 and delta5 desaturases: Case of diabetes. Prostaglandins Leukot. Essent. Fatty Acids 2003, 68, 151–162. [Google Scholar] [CrossRef]
- Brenner, R.R. Nutritional and hormonal factors influencing desaturation of essential fatty acids. Prog. Lipid Res. 1981, 20, 41–47. [Google Scholar] [CrossRef]
- Okayasu, T.; Nagao, M.; Ishibashi, T.; Imai, Y. Purification and partial characterization of linoleoyl-CoA desaturase from rat liver microsomes. Arch. Biochem. Biophys. 1981, 206, 21–28. [Google Scholar] [CrossRef]
- Aktas, M.; Elmastas, M.; Ozcicek, F.; Yilmaz, N. Erythrocyte Membrane Fatty Acid Composition in Premenopausal Patients with Iron Deficiency Anemia. J. Oleo Sci. 2016, 65, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Tichelaar, H.Y.; Smuts, C.M.; Gross, R.; Jooste, P.L.; Faber, M.; Benadé, A.J. The effect of dietary iron deficiency on the fatty acid composition of plasma and erythrocyte membrane phospholipids in the rat. Prostaglandins Leukot. Essent. Fatty Acids 1997, 56, 229–233. [Google Scholar] [CrossRef]
- Cunnane, S.C.; McAdoo, K.R. Iron intake influences essential fatty acid and lipid composition of rat plasma and erythrocytes. J. Nutr. 1987, 117, 1514–1519. [Google Scholar] [CrossRef] [Green Version]
- Smuts, C.M.; Tichelaar, H.Y.; van Jaarsveld, P.J.; Badenhorst, C.J.; Kruger, M.; Laubscher, R.; Mansvelt, E.P.; Benade, A.J. The effect of iron fortification on the fatty acid composition of plasma and erythrocyte membranes in primary school children with and without iron deficiency. Prostaglandins Leukot. Essent. Fatty Acids 1995, 52, 59–67. [Google Scholar] [CrossRef]
- Stangl, G.I.; Kirchgessner, M. Different degrees of moderate iron deficiency modulate lipid metabolism of rats. Lipids 1998, 33, 889–895. [Google Scholar] [CrossRef]
- Rao, G.A.; Larkin, E.C. Role of dietary iron in lipid metabolism. Nutr. Res. 1984, 4, 145–151. [Google Scholar] [CrossRef]
- Looker, A.C.; Dallman, P.R.; Carroll, M.D.; Gunter, E.W.; Johnson, C.L. Prevalence of iron deficiency in the United States. JAMA 1997, 277, 973–976. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention, (CDC) Iron deficiency--United States, 1999–2000. MMWR Morb. Mortal. Wkly. Rep. 2002, 51, 897–899.
- Blake, G.J.; Rifai, N.; Buring, J.E.; Ridker, P.M. Blood pressure, C-reactive protein, and risk of future cardiovascular events. Circulation 2003, 108, 2993–2999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Superko, H.R.; Superko, A.R.; Lundberg, G.P.; Margolis, B.; Garrett, B.C.; Nasir, K.; Agatston, A.S. Omega-3 Fatty Acid Blood Levels Clinical Significance Update. Curr. Cardiovasc. Risk Rep. 2014, 8, 407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, J.R.; Raskin, S. The eicosapentaenoic acid:arachidonic acid ratio and its clinical utility in cardiovascular disease. Postgrad. Med. 2019, 131, 268–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawlak, R.; Parrott, S.J.; Raj, S.; Cullum-Dugan, D.; Lucus, D. How prevalent is vitamin B(12) deficiency among vegetarians? Nutr. Rev. 2013, 71, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Rosell, M.S.; Lloyd-Wright, Z.; Appleby, P.N.; Sanders, T.A.; Allen, N.E.; Key, T.J. Long-chain n-3 polyunsaturated fatty acids in plasma in British meat-eating, vegetarian, and vegan men. Am. J. Clin. Nutr. 2005, 82, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Clarke, T.C.; Black, L.I.; Stussman, B.J.; Barnes, P.M.; Nahin, R.L. Trends in the use of complementary health approaches among adults: United States, 2002-2012. Natl. Health. Stat. Rep. 2015, 10, 1–16. [Google Scholar]
- Va, P.; Dodd, K.W.; Zhao, L.; Thompson-Paul, A.M.; Mercado, C.I.; Terry, A.L.; Jackson, S.L.; Wang, C.Y.; Loria, C.M.; Moshfegh, A.J.; et al. Evaluation of measurement error in 24-hour dietary recall for assessing sodium and potassium intake among US adults—National Health and Nutrition Examination Survey (NHANES), 2014. Am. J. Clin. Nutr. 2019, 109, 1672–1682. [Google Scholar] [CrossRef]
- De Keyzer, W.; Huybrechts, I.; De Vriendt, V.; Vandevijvere, S.; Slimani, N.; Van Oyen, H.; De Henauw, S. Repeated 24-hour recalls versus dietary records for estimating nutrient intakes in a national food consumption survey. Food Nutr. Res. 2011, 55. [Google Scholar] [CrossRef] [Green Version]
All (n = 864) | Men (n = 484) | Women (n = 380) | |||||
---|---|---|---|---|---|---|---|
Characteristics | n | % ± SE | n | % ± SE | n | % ± SE | p1 |
Gender | 864 | 100 ± 0 | 484 | 55.4 ± 1.5 | 380 | 44.6 ± 1.5 | 0.003 |
Age (years) | 0.046 | ||||||
20–29 | 227 | 21.9 ± 1.5 | 147 | 25.3 ± 1.8 | 80 | 17.7 ± 2.1 | |
30–39 | 226 | 26.6 ± 1.6 | 125 | 26.1 ± 1.7 | 101 | 27.2 ± 3.1 | |
40–49 | 253 | 31.4 ± 1.7 | 128 | 27.8 ± 2.5 | 125 | 35.9 ± 2.4 | |
50–59 | 158 | 20.1 ± 2.1 | 84 | 20.8 ± 3.0 | 74 | 19.2 ± 2.0 | |
Race/Ethnicity | 0.09 | ||||||
Non-Hispanic White | 444 | 70.9 ± 3.7 | 245 | 70.6 ± 4.0 | 199 | 71.2 ± 3.7 | |
Non-Hispanic Black | 180 | 10.4 ± 1.8 | 91 | 8.6 ± 1.8 | 89 | 12.6 ± 2.2 | |
Hispanic | 200 | 13.0 ± 2.8 | 123 | 14.3 ± 3.3 | 77 | 11.4 ± 2.5 | |
Others | 40 | 5.7 ± 0.5 | 25 | 6.4 ± 1.0 | 15 | 4.8 ± 1.0 | |
BMI (kg/m2) | 0.0004 | ||||||
<18.5 | 12 | 1.6 ± 0.4 | 5 | 1.0 ± 0.4 | 7 | 2.5 ± 0.7 | |
18.5–24.9 | 264 | 31.5 ± 1.4 | 148 | 27.8 ± 2.2 | 116 | 36.2 ± 2.5 | |
25–29.9 | 294 | 34.9 ± 2.0 | 188 | 41.6 ± 2.0 | 106 | 26.5 ± 2.8 | |
≥30 | 283 | 32.0 ± 1.9 | 139 | 29.7 ± 2.3 | 144 | 34.9 ± 2.9 | |
PIR | 0.0496 | ||||||
≤1.3 | 216 | 19.5 ± 1.7 | 108 | 16.6 ± 1.7 | 108 | 23.1 ± 2.8 | |
>1.3 | 612 | 80.5 ± 1.7 | 356 | 83.4 ± 1.7 | 256 | 76.9 ± 2.8 | |
Educational attainment | 0.352 | ||||||
≤High school degree | 430 | 43.1 ± 2.0 | 252 | 45.0 ± 2.0 | 178 | 40.7 ± 3.9 | |
>High school degree | 434 | 56.9 ± 2.0 | 232 | 55.0 ± 2.0 | 202 | 59.3 ± 3.9 | |
Physical activity (MET min/week) | 0.06 | ||||||
<500 | 343 | 35.7 ± 2.6 | 182 | 32.2 ± 3.2 | 161 | 40.0 ± 3.4 | |
500–1000 | 124 | 16.4 ± 1.6 | 66 | 15.3 ± 2.4 | 58 | 17.8 ± 1.8 | |
≥1000 | 397 | 47.9 ± 2.1 | 236 | 52.5 ± 2.9 | 161 | 42.3 ± 2.6 | |
Cigarette smoking | 0.16 | ||||||
Never smoker | 453 | 51.4 ± 2.4 | 235 | 48.0 ± 3.1 | 218 | 55.6 ± 3.8 | |
Former smoker | 150 | 18.8 ± 2.0 | 92 | 21.1 ± 1.8 | 58 | 16.0 ± 3.3 | |
Current smoker | 261 | 29.8 ± 2.1 | 157 | 30.9 ± 2.2 | 104 | 28.4 ± 3.0 | |
Alcohol consumption | 0.002 | ||||||
Lifetime abstainer | 89 | 9.1 ± 1.3 | 35 | 5.9 ± 1.0 | 54 | 13.2 ± 2.0 | |
Former drinker | 112 | 14.1 ± 2.2 | 54 | 12.2 ± 2.7 | 58 | 16.6 ± 2.4 | |
Current drinker | 588 | 76.8 ± 2.9 | 364 | 81.9 ± 3.1 | 224 | 70.2 ± 3.5 | |
Vitamin B6 supplement | 0.018 | ||||||
No | 619 | 66.8 ± 1.5 | 362 | 69.8 ± 1.8 | 257 | 63.1 ± 2.1 | |
Yes | 243 | 33.2 ± 1.5 | 122 | 30.2 ± 1.8 | 121 | 36.9 ± 2.1 | |
n-3 PUFA supplement | 0.36 | ||||||
No | 846 | 97.1 ± 0.9 | 477 | 97.9 ± 1.0 | 369 | 96.2 ± 1.5 | |
Yes | 16 | 2.7 ± 0.9 | 7 | 2.1 ± 1.0 | 9 | 3.8 ± 1.5 | |
Prescription medication | 0.011 | ||||||
No | 540 | 57.4 ± 2.0 | 332 | 62.3 ± 2.9 | 208 | 51.3 ± 2.5 | |
Yes | 322 | 42.6 ± 2.0 | 152 | 37.7 ± 2.9 | 170 | 48.7 ± 2.5 | |
Menopausal status 2 | <0.0001 | ||||||
No | NA | NA | NA | NA | 297 | 78.1 ± 1.5 | |
Yes | NA | NA | NA | NA | 83 | 21.9 ± 1.5 |
All (n = 864) | Men (n = 484) | Women (n = 380) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
n | Mean ± SE | n | Mean ± SE | n | Mean ± SE | p1 | ||||
Nutrient intakes from food | ||||||||||
Total energy (kcal/d) | 761 | 2375.2 ± 42.0 | 420 | 2763.2 ± 47.4 | 341 | 1896.1 ± 50.0 | <0.0001 | |||
Vitamin B6 (mg/d) | 761 | 2.05 ± 0.04 | 420 | 2.08 ± 0.06 | 341 | 2.01 ± 0.05 | 0.73 | |||
ALA (g/d) | 761 | 1.64 ± 0.04 | 420 | 1.55 ± 0.03 | 341 | 1.75 ± 0.07 | 0.046 | |||
LA (g/d) | 761 | 16.17 ± 0.40 | 420 | 15.68 ± 0.48 | 341 | 16.78 ± 0.40 | 0.38 | |||
EPA (g/d) | 761 | 0.034 ± 0.003 | 420 | 0.039 ± 0.005 | 341 | 0.027 ± 0.003 | 0.022 | |||
DHA (g/d) | 761 | 0.070 ± 0.005 | 420 | 0.078 ± 0.008 | 341 | 0.060 ± 0.004 | 0.027 | |||
AA (g/d) | 761 | 0.15 ± 0.01 | 420 | 0.16 ± 0.01 | 341 | 0.14 ± 0.005 | 0.019 | |||
Total fat (g/d) | 761 | 89.35 ± 1.27 | 420 | 87.08 ± 1.50 | 341 | 92.15 ± 1.37 | 0.06 | |||
Nutrient intakes from food & supplements | ||||||||||
Total vitamin B6 (mg/d) | 761 | 5.44 ± 0.56 | 420 | 5.57 ± 0.69 | 341 | 5.28 ± 0.74 | 0.86 | |||
Total ALA (g/d) | 761 | 1.65 ± 0.04 | 420 | 1.55 ± 0.03 | 341 | 1.76 ± 0.07 | 0.036 | |||
Total EPA (g/d) | 761 | 0.037 ± 0.004 | 420 | 0.042 ± 0.006 | 341 | 0.031 ± 0.004 | 0.1 | |||
Total DHA (g/d) | 761 | 0.072 ± 0.01 | 420 | 0.080 ± 0.008 | 341 | 0.063 ± 0.004 | 0.06 | |||
Plasma Variables | ||||||||||
ALA (μmol/L) | 850 | 59.87 ± 1.27 | 475 | 60.26 ± 1.64 | 375 | 59.40 ± 1.62 | 0.99 | |||
LA (μmol/L) | 850 | 3375.4 ± 35.0 | 475 | 3371.3 ± 40.6 | 375 | 3380.4 ± 36.4 | 0.9 | |||
EPA (μmol/L) | 849 | 41.12 ± 1.10 | 474 | 43.13 ± 1.83 | 375 | 38.81 ± 0.91 | 0.09 | |||
DHA (μmol/L) | 850 | 114.89 ± 3.77 | 475 | 112.71 ± 4.25 | 375 | 117.60 ± 3.58 | 0.043 | |||
AA (μmol/L) | 850 | 758.70 ± 6.23 | 475 | 764.41 ± 11.74 | 375 | 751.82 ± 6.88 | 0.16 | |||
EPA+DHA (μmol/L) | 849 | 158.73 ± 4.88 | 474 | 158.63 ± 6.16 | 375 | 158.86 ± 4.10 | 0.52 | |||
EPA/AA | 849 | 0.054 ± 0.001 | 474 | 0.056 ± 0.002 | 375 | 0.052 ± 0.001 | 0.13 | |||
(EPA+DHA)/AA | 849 | 0.209 ± 0.006 | 474 | 0.207 ± 0.006 | 375 | 0.211 ± 0.006 | 0.034 | |||
PLP (nmol/L) | 854 | 42.35 ± 1.88 | 479 | 51.07 ± 2.61 | 375 | 33.52 ± 1.85 | 0.0002 | |||
PLP category 2,3 | <0.0001 | |||||||||
<20 nmol/L | 175 | 18.6 ± 1.8 | 55 | 10.4 ± 1.9 | 120 | 29.0 ± 2.4 | ||||
≥20 nmol/L | 679 | 81.4 ± 1.8 | 424 | 89.6 ± 1.9 | 255 | 71.0 ± 2.4 |
Men (n = 484) | Women (n = 380) | ||||||||
---|---|---|---|---|---|---|---|---|---|
β | b (95% CI) | R2 | p | β | B (95% CI) | R2 | p | P-interaction1 | |
Plasma EPA (µmol/L) | |||||||||
Plasma PLP (nmol/L) | 0.004 | ||||||||
Model 0 | 0.203 | 0.155 (0.105, 0.204) | 0.04 | <0.0001 | −0.0001 | −0.0001 (−0.064, 0.064) | 2.1 × 10−8 | 0.998 | |
Model 1 | 0.180 | 0.135 (0.079, 0.190) | 0.24 | 0.0001 | −0.048 | −0.026 (−0.111, 0.059) | 0.18 | 0.525 | |
Model 2 | 0.138 | 0.104 (0.055, 0.154) | 0.27 | 0.0004 | −0.052 | −0.028 (−0.121, 0.065) | 0.22 | 0.528 | |
Plasma DHA (µmol/L) | |||||||||
Plasma PLP (nmol/L) | 0.020 | ||||||||
Model 0 | 0.169 | 0.096 (0.032, 0.160) | 0.03 | 0.006 | −0.038 | −0.016 (−0.090, 0.058) | 0.001 | 0.65 | |
Model 1 | 0.165 | 0.094 (0.039, 0.148) | 0.27 | 0.002 | −0.055 | −0.023 (−0.116, 0.069) | 0.19 | 0.60 | |
Model 2 | 0.101 | 0.058 (0.004, 0.112) | 0.31 | 0.036 | −0.062 | −0.026 (−0.122, 0.071) | 0.23 | 0.58 | |
Plasma AA (µmol/L) | |||||||||
Plasma PLP (nmol/L) | 0.365 | ||||||||
Model 0 | 0.020 | 0.007 (−0.029, 0.043) | 0.0004 | 0.70 | −0.104 | −0.028 (−0.057, 0.0005) | 0.01 | 0.05 | |
Model 1 | 0.025 | 0.008 (−0.029, 0.046) | 0.11 | 0.65 | −0.095 | −0.027 (−0.057, 0.004) | 0.08 | 0.08 | |
Model 2 | 0.013 | 0.004 (−0.034, 0.042) | 0.14 | 0.81 | −0.085 | −0.023 (−0.059, 0.012) | 0.14 | 0.19 | |
Plasma EPA + DHA (µmol/L) | |||||||||
Plasma PLP (nmol/L) | 0.010 | ||||||||
Model 0 | 0.198 | 0.115 (0.060, 0.170) | 0.04 | 0.001 | −0.024 | −0.010 (−0.077, 0.057) | 0.001 | 0.76 | |
Model 1 | 0.186 | 0.108 (0.059, 0.156) | 0.29 | 0.0003 | −0.052 | −0.021 (−0.109, 0.066) | 0.19 | 0.61 | |
Model 2 | 0.125 | 0.073 (0.026, 0.121) | 0.32 | 0.005 | −0.058 | −0.024 (−0.115, 0.068) | 0.22 | 0.59 | |
Plasma EPA/AA ratio | |||||||||
Plasma PLP (nmol/L) | 0.002 | ||||||||
Model 0 | 0.215 | 0.147 (0.102, 0.191) | 0.05 | <0.0001 | 0.062 | 0.028 (−0.037, 0.094) | 0.004 | 0.37 | |
Model 1 | 0.186 | 0.125 (0.079, 0.171) | 0.29 | <0.0001 | 0.001 | 0.001 (−0.074, 0.076) | 0.16 | 0.99 | |
Model 2 | 0.144 | 0.099 (0.056, 0.142) | 0.32 | 0.0002 | −0.011 | −0.005 (−0.092, 0.082) | 0.20 | 0.90 | |
Plasma (EPA + DHA)/AA ratio | |||||||||
Plasma PLP (nmol/L) | 0.004 | ||||||||
Model 0 | 0.198 | 0.107 (0.055, 0.160) | 0.04 | 0.001 | 0.054 | 0.018 (−0.043, 0.080) | 0.003 | 0.53 | |
Model 1 | 0.181 | 0.098 (0.053, 0.144) | 0.32 | 0.0003 | 0.016 | 0.005 (−0.064, 0.074) | 0.19 | 0.87 | |
Model 2 | 0.123 | 0.068 (0.024, 0.113) | 0.36 | 0.005 | −0.001 | −0.0004 (−0.070, 0.069) | 0.22 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Enrione, E.B.; Narayanan, V.; Li, T.; Campa, A. Gender Differences in the Associations of Plasma Pyridoxal 5′-Phosphate with Plasma Polyunsaturated Fatty Acids among US Young and Middle-Aged Adults: NHANES 2003–2004. Nutrients 2021, 13, 477. https://doi.org/10.3390/nu13020477
Kim H, Enrione EB, Narayanan V, Li T, Campa A. Gender Differences in the Associations of Plasma Pyridoxal 5′-Phosphate with Plasma Polyunsaturated Fatty Acids among US Young and Middle-Aged Adults: NHANES 2003–2004. Nutrients. 2021; 13(2):477. https://doi.org/10.3390/nu13020477
Chicago/Turabian StyleKim, Hyojung, Evelyn B. Enrione, Vijaya Narayanan, Tan Li, and Adriana Campa. 2021. "Gender Differences in the Associations of Plasma Pyridoxal 5′-Phosphate with Plasma Polyunsaturated Fatty Acids among US Young and Middle-Aged Adults: NHANES 2003–2004" Nutrients 13, no. 2: 477. https://doi.org/10.3390/nu13020477
APA StyleKim, H., Enrione, E. B., Narayanan, V., Li, T., & Campa, A. (2021). Gender Differences in the Associations of Plasma Pyridoxal 5′-Phosphate with Plasma Polyunsaturated Fatty Acids among US Young and Middle-Aged Adults: NHANES 2003–2004. Nutrients, 13(2), 477. https://doi.org/10.3390/nu13020477