Effect of Omega-3 Supplementation in Pregnant Women with Obesity on Newborn Body Composition, Growth and Length of Gestation: A Randomized Controlled Pilot Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Intervention
2.2. Ethical Approval
2.3. Maternal Measures
2.3.1. Baseline Characteristics
2.3.2. Maternal Dietary Assessment
2.3.3. Fatty Acid Plasma Assays
2.4. Neonatal Measures
2.4.1. Neonatal Body Composition
2.4.2. Neonatal Anthropometry and Fetal Growth
2.5. Length of Gestation
2.6. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Maternal Dietary Intake
3.3. Maternal Plasma Fatty Acids Concentrations
3.4. Neonatal Body Composition
3.5. Birthweight and Fetal Growth
3.6. Length of Gestation
3.7. Stratified Analyses
3.7.1. Stratified Analyses by First Trimester BMI Category: Obese vs. Overweight
3.7.2. Stratified Analyses by Baseline n-6/n-3 Dietary Intake
3.7.3. Stratified Analyses by Infant Sex
4. Discussion
4.1. Neonatal Body Composition
4.2. Birthweight and Fetal Growth
4.3. Length of Gestation
4.4. Stratified Analyses
4.5. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.; Xu, X.; Yan, Y. Estimated Global Overweight and Obesity Burden in Pregnant Women Based on Panel Data Model. PLoS ONE 2018, 13, e0202183. [Google Scholar] [CrossRef] [Green Version]
- Flegal, K.M.; Kruszon-Moran, D.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Trends in Obesity among Adults in the United States, 2005 to 2014. JAMA 2016, 315, 2284–2291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Branum, A.M.; Kirmeyer, S.E.; Gregory, E.C. Prepregnancy Body Mass Index by Maternal Characteristics and State: Data from the Birth Certificate. Natl. Vital Stat. Rep. 2016, 65, 1–11. [Google Scholar]
- Catalano, P.M.; Ehrenberg, H.M. The Short- and Long-Term Implications of Maternal Obesity on the Mother and Her Offspring. BJOG 2006, 113, 1126–1133. [Google Scholar] [CrossRef] [PubMed]
- Poston, L.; Caleyachetty, R.; Cnattingius, S.; Corvalán, C.; Uauy, R.; Herring, S.; Gillman, M.W. Preconceptional and Maternal Obesity: Epidemiology and Health Consequences. Lancet Diabetes Endocrinol. 2016, 4, 1025–1036. [Google Scholar] [CrossRef]
- Drake, A.J.; Reynolds, R.M. Impact of Maternal Obesity on Offspring Obesity and Cardiometabolic Disease Risk. Reproduction 2010, 140, 387–398. [Google Scholar] [CrossRef]
- Markopoulou, P.; Papanikolaou, E.; Analytis, A.; Zoumakis, E.; Siahanidou, T. Preterm Birth as a Risk Factor for Metabolic Syndrome and Cardiovascular Disease in Adult Life: A Systematic Review and Meta-Analysis. J. Pediatr. 2019, 210, 69–80. [Google Scholar] [CrossRef]
- Voerman, E.; Santos, S.; Golab, B.P.; Amiano, P.; Ballester, F.; Barros, H.; Bergström, A.; Charles, M.A.; Chatzi, L.; Chevrier, C.; et al. Maternal Body Mass Index, Gestational Weight Gain, and the Risk of Overweight and Obesity Across Childhood: An Individual Participant Data Meta-Analysis. PLoS Med. 2019, 16, e1002744. [Google Scholar] [CrossRef] [PubMed]
- Chernausek, S.D. Update: Consequences of Abnormal Fetal Growth. J. Clin. Endocrinol. Metab. 2012, 97, 689–695. [Google Scholar] [CrossRef] [Green Version]
- Segovia, S.A.; Vickers, M.H.; Gray, C.; Reynolds, C.M. Maternal Obesity, Inflammation, and Developmental Programming. BioMed Res. Int. 2014, 2014, 418975. [Google Scholar] [CrossRef] [PubMed]
- Segovia, S.A.; Vickers, M.H.; Reynolds, C.M. The Impact of Maternal Obesity on Inflammatory Processes and Consequences for Later Offspring Health Outcomes. J. Dev. Orig. Health. Dis. 2017, 8, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, E.; Nathanielsz, P.W. Mechanisms by which Maternal Obesity Programs Offspring for Obesity: Evidence from Animal Studies. Nutr. Rev. 2013, 71 (Suppl. 1), S42–S54. [Google Scholar] [CrossRef]
- Middleton, P.; Gomersall, J.C.; Gould, J.F.; Shepherd, E.; Olsen, S.F.; Makrides, M. Omega-3 Fatty Acid Addition during Pregnancy. Cochrane Database Syst. Rev. 2018, 11, CD003402. [Google Scholar] [CrossRef]
- Moon, R.J.; Harvey, N.C.; Robinson, S.M.; Ntani, G.; Davies, J.H.; Inskip, H.M.; Godfrey, K.M.; Dennison, E.M.; Calder, P.C.; Cooper, C.; et al. Maternal Plasma Polyunsaturated Fatty Acid Status in Late Pregnancy is Associated with Offspring Body Composition in Childhood. J. Clin. Endocrinol. Metab. 2013, 98, 299–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meher, A.; Randhir, K.; Mehendale, S.; Wagh, G.; Joshi, S. Maternal Fatty Acids and their Association with Birth Outcome: A Prospective Study. PLoS ONE 2016, 11, e0147359. [Google Scholar] [CrossRef] [Green Version]
- Donahue, S.M.; Rifas-Shiman, S.L.; Gold, D.R.; Jouni, Z.E.; Gillman, M.W.; Oken, E. Prenatal Fatty Acid Status and Child Adiposity at Age 3 Y: Results from a US Pregnancy Cohort. Am. J. Clin. Nutr. 2011, 93, 780–788. [Google Scholar] [CrossRef] [Green Version]
- Gimpfl, M.; Rozman, J.; Dahlhoff, M.; Kübeck, R.; Blutke, A.; Rathkolb, B.; Klingenspor, M.; HrabÄ› de Angelis, M.; Öner-Sieben, S.; Seibt, A. Modification of the Fatty Acid Composition of an Obesogenic Diet Improves the Maternal and Placental Metabolic Environment in Obese Pregnant Mice. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 1605–1614. [Google Scholar] [CrossRef]
- Heerwagen, M.J.; Stewart, M.S.; de la Houssaye, B.A.; Janssen, R.C.; Friedman, J.E. Transgenic Increase in N-3/N-6 Fatty Acid Ratio Reduces Maternal Obesity-Associated Inflammation and Limits Adverse Developmental Programming in Mice. PLoS ONE 2013, 8, e67791. [Google Scholar] [CrossRef]
- Makrides, M.; Gibson, R.A.; McPhee, A.J.; Yelland, L.; Quinlivan, J.; Ryan, P.; DOMInO Investigative Team. Effect of DHA Supplementation during Pregnancy on Maternal Depression and Neurodevelopment of Young Children: A Randomized Controlled Trial. JAMA 2010, 304, 1675–1683. [Google Scholar] [CrossRef] [Green Version]
- Makrides, M.; Best, K.; Yelland, L.; McPhee, A.; Zhou, S.; Quinlivan, J.; Dodd, J.; Atkinson, E.; Safa, H.; van Dam, J.; et al. A Randomized Trial of Prenatal N-3 Fatty Acid Supplementation and Preterm Delivery. N. Engl. J. Med. 2019, 381, 1035–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinding, R.K.; Stokholm, J.; Sevelsted, A.; Chawes, B.L.; Bønnelykke, K.; Barman, M.; Jacobsson, B.; Bisgaard, H. Fish Oil Supplementation in Pregnancy Increases Gestational Age, Size for Gestational Age, and Birth Weight in Infants: A Randomized Controlled Trial. J. Nutr. 2019, 149, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.J.; Yelland, L.; McPhee, A.J.; Quinlivan, J.; Gibson, R.A.; Makrides, M. Fish-Oil Supplementation in Pregnancy does Not Reduce the Risk of Gestational Diabetes or Preeclampsia. Am. J. Clin. Nutr. 2012, 95, 1378–1384. [Google Scholar] [CrossRef] [Green Version]
- Carlson, S.E.; Colombo, J.; Gajewski, B.J.; Gustafson, K.M.; Mundy, D.; Yeast, J.; Georgieff, M.K.; Markley, L.A.; Kerling, E.H.; Shaddy, D.J. DHA Supplementation and Pregnancy Outcomes. Am. J. Clin. Nutr. 2013, 97, 808–815. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Ji, X.; Zhang, L.; Hou, Z.; Li, C.; Tong, Y. Fish Oil Supplementation Improves Pregnancy Outcomes and Size of the Newborn: A Meta-Analysis of 21 Randomized Controlled Trials. J. Matern. Fetal Neonatal Med. 2016, 29, 2017–2027. [Google Scholar] [CrossRef] [PubMed]
- Saccone, G.; Saccone, I.; Berghella, V. Omega-3 Long-Chain Polyunsaturated Fatty Acids and Fish Oil Supplementation during Pregnancy: Which Evidence? J. Matern. Fetal Neonatal Med. 2016, 29, 2389–2397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imhoff-Kunsch, B.; Briggs, V.; Goldenberg, T.; Ramakrishnan, U. Effect of N-3 Long-Chain Polyunsaturated Fatty Acid Intake during Pregnancy on Maternal, Infant, and Child Health Outcomes: A Systematic Review. Paediatr. Perinat. Epidemiol. 2012, 26 (Suppl. 1), 91–107. [Google Scholar] [CrossRef] [PubMed]
- Hidaka, B.H.; Thodosoff, J.M.; Kerling, E.H.; Hull, H.R.; Colombo, J.; Carlson, S.E. Intrauterine DHA Exposure and Child Body Composition at 5 Y: Exploratory Analysis of a Randomized Controlled Trial of Prenatal DHA Supplementation. Am. J. Clin. Nutr. 2018, 107, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, S.F.; Ãsterdal, M.L.; Salvig, J.D.; Weber, T.; Tabor, A.; Secher, N.J. Duration of Pregnancy in Relation to Fish Oil Supplementation and Habitual Fish Intake: A Randomised Clinical Trial with Fish Oil. Eur. J. Clin. Nutr. 2007, 61, 976–985. [Google Scholar] [CrossRef] [Green Version]
- Simmonds, L.A.; Sullivan, T.R.; Skubisz, M.; Middleton, P.F.; Best, K.P.; Yelland, L.N.; Quinlivan, J.; Zhou, S.J.; Liu, G.; McPhee, A.J.; et al. Omega-3 Fatty Acid Supplementation in Pregnancy-Baseline Omega-3 Status and Early Preterm Birth: Exploratory Analysis of a Randomised Controlled Trial. BJOG 2020, 127, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Vidakovic, A.J.; Jaddoe, V.W.; Gishti, O.; Felix, J.F.; Williams, M.A.; Hofman, A.; Demmelmair, H.; Koletzko, B.; Tiemeier, H.; Gaillard, R. Body Mass Index, Gestational Weight Gain and Fatty Acid Concentrations during Pregnancy: The Generation R Study. Eur. J. Epidemiol. 2015, 30, 1175–1185. [Google Scholar] [CrossRef] [Green Version]
- Drèze, C.M.; Penfield-Cyr, A.; Smid, M.C.; Sen, S. Maternal Pre-Pregnancy Obesity Attenuates Response to Omega-3 Fatty Acids Supplementation during Pregnancy. Nutrients 2018, 10, 1908. [Google Scholar] [CrossRef] [Green Version]
- Drèze, C.M.; Rifas-Shiman, S.L.; Gold, D.R.; Oken, E.; Sen, S. Maternal Obesity and Offspring Cognition: The Role of Inflammation. Pediatr. Res. 2019, 85, 799–806. [Google Scholar] [CrossRef]
- Sen, S.; Rifas-Shiman, S.L.; Shivappa, N.; Wirth, M.D.; Hébert, J.R.; Gold, D.R.; Gillman, M.W.; Oken, E. Dietary Inflammatory Potential during Pregnancy is Associated with Lower Fetal Growth and Breastfeeding Failure: Results from Project Viva. J. Nutr. 2016, 146, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Penfield-Cyr, A.; Monthe-Dreze, C.; Smid, M.C.; Sen, S. Maternal BMI, Mid-Pregnancy Fatty Acid Concentrations, and Perinatal Outcomes. Clin. Ther. 2018, 40, 1659–1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haghiac, M.; Yang, X.H.; Presley, L.; Smith, S.; Dettelback, S.; Minium, J.; Belury, M.A.; Catalano, P.M.; de Mouzon, S.H. Dietary Omega-3 Fatty Acid Supplementation Reduces Inflammation in Obese Pregnant Women: A Randomized Double-Blind Controlled Clinical Trial. PLoS ONE 2015, 10, e0137309. [Google Scholar] [CrossRef] [Green Version]
- Calabuig-Navarro, V.; Puchowicz, M.; Glazebrook, P.; Haghiac, M.; Minium, J.; Catalano, P.; dMouzon, S.H.; O’Tierney-Ginn, P. Effect of ω-3 Supplementation on Placental Lipid Metabolism in Overweight and Obese Women. Am. J. Clin. Nutr. 2016, 103, 1064–1072. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.B.; Rimm, E.; Smith-Warner, S.A.; Feskanich, D.; Stampfer, M.J.; Ascherio, A.; Sampson, L.; Willett, W.C. Reproducibility and Validity of Dietary Patterns Assessed with a Food-Frequency Questionnaire. Am. J. Clin. Nutr. 1999, 69, 243–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and Validity of a Semiquantitative Food Frequency Questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Fawzi, W.W.; Rifas-Shiman, S.L.; Rich-Edwards, J.W.; Willett, W.C.; Gillman, M.W. Calibration of a Semi-Quantitative Food Frequency Questionnaire in Early Pregnancy. Ann. Epidemiol. 2004, 14, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Stanley, G.H.S. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Josefson, J.L.; Nodzenski, M.; Talbot, O.; Scholtens, D.M.; Catalano, P. Fat Mass Estimation in Neonates: Anthropometric Models Compared with Air Displacement Plethysmography. Br. J. Nutr. 2019, 121, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Catalano, P.M.; McIntyre, H.D.; Cruickshank, J.K.; McCance, D.R.; Dyer, A.R.; Metzger, B.E.; Lowe, L.P.; Trimble, E.R.; Coustan, D.R.; Hadden, D.R.; et al. The Hyperglycemia and Adverse Pregnancy Outcome Study: Associations of GDM and Obesity with Pregnancy Outcomes. Diabetes Care 2012, 35, 780–786. [Google Scholar] [CrossRef] [Green Version]
- Fenton, T.R.; Kim, J.H. A Systematic Review and Meta-Analysis to Revise the Fenton Growth Chart for Preterm Infants. BMC Pediatr. 2013, 13, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinding, R.K.; Stokholm, J.; Sevelsted, A.; Sejersen, T.; Chawes, B.L.; Bønnelykke, K.; Thorsen, J.; Howe, L.D.; Krakauer, M.; Bisgaard, H. Effect of Fish Oil Supplementation in Pregnancy on Bone, Lean, and Fat Mass at Six Years: Randomised Clinical Trial. BMJ 2018, 362, k3312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhlhausler, B.S.; Gibson, R.A.; Makrides, M. Effect of Long-Chain Polyunsaturated Fatty Acid Supplementation during Pregnancy or Lactation on Infant and Child Body Composition: A Systematic Review. Am. J. Clin. Nutr. 2010, 92, 857–863. [Google Scholar] [CrossRef] [Green Version]
- Lau, B.Y.; Cohen, D.J.; Ward, W.E.; Ma, D.W. Investigating the Role of Polyunsaturated Fatty Acids in Bone Development using Animal Models. Molecules 2013, 18, 14203–14227. [Google Scholar] [CrossRef] [Green Version]
- Koren, N.; Simsa-Maziel, S.; Shahar, R.; Schwartz, B.; Monsonego-Ornan, E. Exposure to Omega-3 Fatty Acids at Early Age Accelerate Bone Growth and Improve Bone Quality. J. Nutr. Biochem. 2014, 25, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Tachtsis, B.; Camera, D.; Lacham-Kaplan, O. Potential Roles of N-3 PUFAs during Skeletal Muscle Growth and Regeneration. Nutrients 2018, 10, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, M.; Yan, X.; Tong, J.F.; Zhao, J.; Zhu, M.J. Maternal Obesity, Inflammation, and Fetal Skeletal Muscle Development. Biol. Reprod. 2010, 82, 4–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidakovic, A.J.; Gishti, O.; Voortman, T.; Felix, J.F.; Williams, M.A.; Hofman, A.; Demmelmair, H.; Koletzko, B.; Tiemeier, H.; Jaddoe, V.W.; et al. Maternal Plasma PUFA Concentrations during Pregnancy and Childhood Adiposity: The Generation R Study. Am. J. Clin. Nutr. 2016, 103, 1017–1025. [Google Scholar] [CrossRef] [Green Version]
- Vaidya, H.; Cheema, S.K. Breastmilk with a High Omega-6 to Omega-3 Fatty Acid Ratio Induced Cellular Events Similar to Insulin Resistance and Obesity in 3T3-L1 Adipocytes. Pediatr. Obes. 2018, 13, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Catalano, P.M.; Drago, N.M.; Amini, S.B. Maternal Carbohydrate Metabolism and its Relationship to Fetal Growth and Body Composition. Am. J. Obstet. Gynecol. 1995, 172, 1464–1470. [Google Scholar] [CrossRef]
- Hull, H.R.; Dinger, M.K.; Knehans, A.W.; Thompson, D.M.; Fields, D.A. Impact of Maternal Body Mass Index on Neonate Birthweight and Body Composition. Am. J. Obstet. Gynecol. 2008, 198, 416. [Google Scholar] [CrossRef]
- Catalano, P.M.; Farrell, K.; Thomas, A.; Huston-Presley, L.; Mencin, P.; de Mouzon, S.H.; Amini, S.B. Perinatal Risk Factors for Childhood Obesity and Metabolic Dysregulation. Am. J. Clin. Nutr. 2009, 90, 1303–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catalano, P.; de Mouzon, S.H. Maternal Obesity and Metabolic Risk to the Offspring: Why Lifestyle Interventions may have Not Achieved the Desired Outcomes. Int. J. Obes. 2015, 39, 642–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauner, H.; Brunner, S.; Amann-Gassner, U. The Role of Dietary Fatty Acids for Early Human Adipose Tissue Growth. Am. J. Clin. Nutr. 2013, 98, 549S–555S. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.S.; Barraza-Villarreal, A.; Biessy, C.; Duarte-Salles, T.; Sly, P.D.; Ramakrishnan, U.; Rivera, J.; Herceg, Z.; Romieu, I. Dietary Supplementation with Polyunsaturated Fatty Acid during Pregnancy Modulates DNA Methylation at IGF2/H19 Imprinted Genes and Growth of Infants. Physiol. Genomics 2014, 46, 851–857. [Google Scholar] [CrossRef] [Green Version]
- Pellonperä, O.; Mokkala, K.; Houttu, N.; Vahlberg, T.; Koivuniemi, E.; Tertti, K.; Rönnemaa, T.; Laitinen, K. Efficacy of Fish Oil and/Or Probiotic Intervention on the Incidence of Gestational Diabetes Mellitus in an at-Risk Group of Overweight and Obese Women: A Randomized, Placebo-Controlled, Double-Blind Clinical Trial. Diabetes Care 2019, 42, 1009–1017. [Google Scholar] [CrossRef]
- Gao, C.; Liu, Y.; Gan, Y.; Bao, W.; Peng, X.; Xing, Q.; Gao, H.; Lai, J.; Liu, L.; Wang, Z.; et al. Effects of Fish Oil Supplementation on Glucose Control and Lipid Levels among Patients with Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials. Lipids Health. Dis. 2020, 19, 87. [Google Scholar] [CrossRef]
- Howell, K.R.; Powell, T.L. Effects of Maternal Obesity on Placental Function and Fetal Development. Reproduction 2017, 153, R97–R108. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.G.; Harris, M.A. The Role of N-3 Fatty Acids in Gestation and Parturition. Exp. Biol. Med. 2001, 226, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Christian, L.M.; Blair, L.M.; Porter, K.; Lower, M.; Cole, R.M.; Belury, M.A. Polyunsaturated Fatty Acid (PUFA) Status in Pregnant Women: Associations with Sleep Quality, Inflammation, and Length of Gestation. PLoS ONE 2016, 11, e0148752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, Y.; Djahanbakhch, O.; Hutchinson, J.; Bhullar, A.S.; Raveendran, M.; Hallot, A.; Eram, S.; Namugere, I.; Nateghian, S.; Ghebremeskel, K. Effect of Docosahexaenoic Acid-Enriched Fish Oil Supplementation in Pregnant Women with Type 2 Diabetes on Membrane Fatty Acids and Fetal Body Composition--Double-Blinded Randomized Placebo-Controlled Trial. Diabet. Med. 2014, 31, 1331–1340. [Google Scholar] [CrossRef] [PubMed]
- Yessoufou, A.; Moutairou, K. Maternal Diabetes in Pregnancy: Early and Long-Term Outcomes on the Offspring and the Concept of “Metabolic Memory”. Exp. Diabetes Res. 2011, 2011, 218598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, B.; Morgan, E.; Alejandro, E.U. Nutrient Sensor Signaling Pathways and Cellular Stress in Fetal Growth Restriction. J. Mol. Endocrinol. 2019, 62, R155–R165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenfeld, C.S. Sex-Specific Placental Responses in Fetal Development. Endocrinology 2015, 156, 3422–3434. [Google Scholar] [CrossRef] [Green Version]
- Carter, L.G.; Lewis, K.N.; Wilkerson, D.C.; Tobia, C.M.; Tenlep, S.Y.N.; Shridas, P.; Garcia-Cazarin, M.L.; Wolff, G.; Andrade, F.H.; Charnigo, R.J.; et al. Perinatal Exercise Improves Glucose Homeostasis in Adult Offspring. Am. J. Physiol. Endocrinol. Metab. 2012, 303, E1061–E1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, M.L.; Whitehead, A.L.; Julious, S.A. Guidance for using Pilot Studies to Inform the Design of Intervention Trials with Continuous Outcomes. Clin. Epidemiol. 2018, 10, 153–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total | Placebo | Omega-3 | p† | ||||
---|---|---|---|---|---|---|---|
n = 48 | n = 24 | n = 24 | |||||
Maternal Characteristics | Mean or n | SD or % or IQR | Mean or n or Median | SD or % or IQR | Mean or n | SD or % or IQR | |
or Median | or Median | ||||||
Age (years) | 26.9 | 5 | 27.1 | 4.8 | 26.7 | 5.2 | 0.89 |
BMI (kg/m2) | 30.2 | 28.2, 35.4 | 29.5 | 27.2, 33 | 32.2 | 28.6, 36.4 | 0.24 |
BMI category [n (%)] | 0.39 | ||||||
. Overweight | 24 | 50 | 13 | 54 | 10 | 42 | |
. Obese | 24 | 50 | 11 | 46 | 14 | 58 | |
Gestational weight gain (kg) | 9.3 | 5.9 | 8.9 | 5.1 | 9.7 | 6.7 | 0.62 |
Race [n (%)] | 0.21 | ||||||
. Caucasians | 21 | 44 | 11 | 46 | 10 | 42 | |
. African American | 17 | 35 | 6 | 25 | 11 | 46 | |
. Others | 10 | 21 | 7 | 29 | 3 | 12 | |
Nulliparous [n (%)] | 0.51 | ||||||
. Yes | 12 | 25 | 5 | 21 | 7 | 29 | |
. No | 36 | 75 | 19 | 79 | 17 | 71 | |
GA at recruitment (weeks) | 14.8 | 13, 15.6 | 14.9 | 13.2, 15.8 | 14.6 | 12.8, 15.4 | 0.5 |
GDM [n (%)] | 0.16 | ||||||
. Yes | 5 | 10 | 4 | 17 | 1 | 4 | |
. No | 43 | 90 | 20 | 83 | 23 | 96 |
Placebo a (n = 23) | p† | Omega-3 (n = 24) | p† | p‡ | p§ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Visit 1 | Visit 2 | Visit 1 | Visit 2 | |||||||||
Median | IQR | Median | IQR | Median | IQR | Median | IQR | |||||
Calories (kcal/d) | 2098 | 1423, 2900 | 2183 | 1103, 3259 | 0.44 | 1899 | 1648, 2564 | 1871 | 1615, 2420 | 0.84 | 0.67 | 0.78 |
Carbohydrates (g/day) | 287 | 191, 415 | 280 | 150, 472 | 0.45 | 265 | 191, 356 | 260 | 202, 359 | 0.51 | 0.77 | 0.87 |
Sucrose (g/day) | 54 | 34, 89 | 44 | 29, 81 | 0.35 | 53 | 33, 88 | 45 | 31, 82 | 0.28 | 0.81 | 0.93 |
Total sugars (g/day) | 156 | 86, 253 | 145 | 68, 223 | 0.33 | 136 | 91, 198 | 128 | 94, 190 | 0.51 | 0.58 | 0.97 |
Total proteins (g/day) | 84 | 51, 122 | 86 | 47, 144 | 0.93 | 72 | 60, 95 | 84 | 62, 110 | 0.24 | 0.58 | 0.83 |
Total fats (g/day) | 77 | 54, 112 | 70 | 41, 119 | 0.38 | 72 | 53, 85 | 69 | 58, 81 | 0.69 | 0.59 | 0.9 |
ALA (n-3) (g/day) | 1.3 | 0.8, 1.6 | 1.4 | 0.8, 1.9 | 0.92 | 1.1 | 0.9, 1.6 | 1.2 | 0.8, 1.4 | 0.51 | 1 | 0.25 |
LA (n-6) (g/day) | 12 | 8, 15 | 13 | 8, 20 | 0.9 | 12 | 10, 16 | 13 | 8, 17 | 0.42 | 0.92 | 0.81 |
Total n-3 (g/day) | 1.3 | 1.0, 1.8 | 1.6 | 0.8, 2.2 | 0.69 | 1.2 | 1, 1.6 | 1.4 | 0.9, 1.6 | 0.7 | 0.79 | 0.3 |
Total n-6 (g/day) | 11 | 8, 17 | 13 | 8, 20 | 0.83 | 12 | 9, 16 | 13 | 8, 16 | 0.36 | 0.94 | 0.5 |
n-6/n-3 ratio (units/day) | 9 | 8, 10 | 9 | 8, 10 | 0.65 | 9 | 8, 11 | 9 | 8, 10 | 0.44 | 0.75 | 0.8 |
Total PUFA (g/day) | 14 | 10, 18 | 15 | 9, 23 | 0.95 | 14 | 11, 18 | 14 | 10, 18 | 0.27 | 0.93 | 0.58 |
Total SFA (g/day) | 25 | 14, 38 | 24 | 14, 39 | 0.33 | 24 | 17, 29 | 24 | 18, 32 | 1 | 0.47 | 0.77 |
Placebo | p† | Omega-3 a | p† | p‡ | p§ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Visit 1 | Visit 2 | Visit 1 | Visit 2 | |||||||||
n = 24 | n = 24 | n = 23 | n = 24 | |||||||||
Median | IQR | Median | IQR | Median | IQR | Median | IQR | |||||
Plasma EPA, (%mol) | 0.2 | 0.2, 0.3 | 0.1 | 0.1, 0.2 | 0.002 * | 0.2 | 0.2, 0.3 | 0.5 | 0.2, 1 | 0.002 * | 0.28 | <0.001 * |
Plasma DHA (%mol) | 2.8 | 2.4, 3.3 | 2.4 | 2.2, 2.8 | <0.001 * | 2.8 | 2.5, 3.3 | 2.9 | 2.2, 3.7 | 0.61 | 0.81 | 0.03 * |
Plasma DHA+ EPA (% mol) | 2.9 | 2.7, 3.5 | 2.5 | 2.3, 3 | <0.001 * | 3.1 | 2.7, 3.6 | 3.4 | 2.5, 4.4 | 0.08 | 0.83 | 0.01 * |
Plasma total n-3 (%mol) | 4.1 | 4, 4.5 | 3.5 | 3.3, 4 | <0.001 * | 4.1 | 3.8, 4.6 | 4.3 | 3.6, 5.5 | 0.12 | 0.85 | 0.007 * |
Plasma total n-6 (%mol) | 44 | 41.3, 45.9 | 40 | 37.7, 42.6 | <0.001 * | 42.1 | 39.2, 46.2 | 39.1 | 37.1, 42 | <0.001 * | 0.54 | 0.52 |
Plasma AA (%mol) | 8.1 | 7.2, 9.3 | 6.4 | 5.5, 7.4 | <0.001 * | 8.3 | 6.8, 9.8 | 6 | 5, 6.6 | <0.001 * | 0.85 | 0.20 |
Plasma total n-6/n-3 ratio | 10.6 | 9.6, 11.1 | 11.7 | 9.9, 12.3 | 0.01 * | 10.2 | 9.4, 11.7 | 9.5 | 6.5, 11.8 | 0.06 | 0.78 | 0.02 * |
Plasma AA/DHA+EPA ratio | 2.6 | 2.4, 3.1 | 2.4 | 2.2, 2.7 | 0.008 * | 2.7 | 2.1, 3.2 | 1.7 | 1.1, 2.3 | <0.001 * | 0.75 | 0.003 * |
Plasma total SFA (%mol) | 31.3 | 30.3, 32.6 | 32.9 | 31.7, 34.2 | <0.001 * | 31.7 | 30, 33.1 | 32.9 | 31.3, 34.5 | 0.003 * | 0.8 | 0.87 |
Placebo | Omega-3 | p † | β (CI) a | ||||
---|---|---|---|---|---|---|---|
n = 24 | n = 24 | ||||||
Mean or n or Median | SD or % or IQR | Mean or n or Median | SD or % or IQR | ||||
Anthropometry-derived body composition measures | |||||||
FM (g) | 307 | 127 | 396 | 160 | 0.04 * | 71 (−16, 158) | |
FFM (g) | 2628 | 250 | 2883 | 310 | 0.003 * | 218 (49, 387) * | |
Body fat (%) | 10.1 | 3.5 | 11.7 | 3.8 | 0.16 | 1.2 (−1, 3.4) | |
Anthropometrics | N/A | ||||||
Birthweight (g) | 2935 | 356 | 3278 | 448 | 0.005 * | ||
Birth length (cm) | 48.1 | 1.9 | 49.4 | 1.9 | 0.02 * | ||
Fetal growth | N/A | ||||||
BWGA z-score (SD units) | −0.61 | 0.61 | −0.17 | 0.67 | 0.02 * | ||
BLGA z-score (SD units) | −0.56 | 0.62 | −0.33 | 0.73 | 0.24 | ||
Growth centile (percentile) | 30.5 | 18.5 | 43.7 | 20.7 | 0.02 * | ||
Size for gestation | 0.38 | ||||||
AGA, 10–90 %ile [n %)] | 20 | 83 | 22 | 92 | |||
SGA, <10 %ile [n (%)] | 4 | 17 | 2 | 8 | |||
LGA, >90 %ile [n (%)] | 0 | 0 | 0 | 0 | |||
GA (weeks) | 39 | 38, 39.4 | 40 | 38.5, 40.1 | 0.02 * | N/A | |
Preterm delivery, GA < 37 weeks [n (%)] | 3 | 13 | 1 | 4 | 0.30 | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monthé-Drèze, C.; Sen, S.; Hauguel-de Mouzon, S.; Catalano, P.M. Effect of Omega-3 Supplementation in Pregnant Women with Obesity on Newborn Body Composition, Growth and Length of Gestation: A Randomized Controlled Pilot Study. Nutrients 2021, 13, 578. https://doi.org/10.3390/nu13020578
Monthé-Drèze C, Sen S, Hauguel-de Mouzon S, Catalano PM. Effect of Omega-3 Supplementation in Pregnant Women with Obesity on Newborn Body Composition, Growth and Length of Gestation: A Randomized Controlled Pilot Study. Nutrients. 2021; 13(2):578. https://doi.org/10.3390/nu13020578
Chicago/Turabian StyleMonthé-Drèze, Carmen, Sarbattama Sen, Sylvie Hauguel-de Mouzon, and Patrick M. Catalano. 2021. "Effect of Omega-3 Supplementation in Pregnant Women with Obesity on Newborn Body Composition, Growth and Length of Gestation: A Randomized Controlled Pilot Study" Nutrients 13, no. 2: 578. https://doi.org/10.3390/nu13020578
APA StyleMonthé-Drèze, C., Sen, S., Hauguel-de Mouzon, S., & Catalano, P. M. (2021). Effect of Omega-3 Supplementation in Pregnant Women with Obesity on Newborn Body Composition, Growth and Length of Gestation: A Randomized Controlled Pilot Study. Nutrients, 13(2), 578. https://doi.org/10.3390/nu13020578